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Abstract. In universally composable (UC) security, a global setup is
intended to capture the ideal behavior of a primitive which is accessible
by multiple protocols, allowing them to share state. A representative
example is the Bitcoin ledger. Indeed, since Bitcoin—and more generally
blockchain ledgers—are known to be useful in various scenarios, it has
become increasingly popular to capture such ledgers as global setup.
Intuitively, one would expect UC to allow us to make security statements
about protocols that use such a global setup, e.g., a global ledger, which
can then be automatically translated into the setting where the setup is
replaced by a protocol implementing it, such as Bitcoin.
We show that the above reasoning is flawed and such a generic security-
preserving replacement can only work under very (often unrealistic) strong
conditions on the global setup and the security statement. For example,
the UC security of Bitcoin for realizing a ledger proved by Badertscher et
al. [CRYPTO’17] is not sufficient per se to allow us to replace the ledger
by Bitcoin when used as a global setup. In particular, we cannot expect
that all security statements in the global ledger-hybrid world would be
preserved when using Bitcoin as a ledger.
On the positive side, we provide characterizations of security statements
for protocols that make use of global setups, for which the replacement is
sound. Our results can be seen as a first guide on how to navigate the
very tricky question of what constitutes a “good” global setup and how
to use it in order to keep the modular protocol-design approach intact.

1 Introduction

Universally Composable (UC) security [Can01] ensures strong composability
guarantees: Informally, a UC secure protocol remains secure no matter what
environment it is placed in, i.e., no matter what other protocols might be executed
alongside. This powerful security definition enables a constructive approach to
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protocols, where protocols can be designed and proved secure assuming access to
idealized primitives/functionalities, and instantiating the idealized functionalities
with UC-secure protocols does not affect the proven guarantees.

Canetti and Rabin [CR03] pointed out a limitation of the standard universal
composition theorem. In a nutshell, the issue is as follows: Assume that a protocol
π securely realizes a functionality F in the public-key infrastructure (PKI) model.
The UC composition theorem ensures that F can be replaced by π (and its PKI)
in any context. However, if a context protocol makes calls to two independent
instances of F, then any replacing instance of π needs to come with its own
independent (local to π) PKI; in other words, the two replaced instances of π
cannot share the same PKI4. This is a clear mismatch with reality, where we
would not create a different PKI for each protocol (instance), but rather people
would have one public-key/private-key pair which they would use in multiple –
and beyond this example, even different – protocols.

The first attempt to augment composable frameworks to realistically capture
shared setups was the JUC (Universal Composition with Joint State, [CR03])
model. However, JUC is limited to settings where we know in advance (the
number and even the session identifiers of) the protocols that will be using a
shared setup. Lifting this restriction, UC with global setups was proposed by
Canetti et al. [CDPW07], often referred to as the GUC framework. Intuitively, a
global setup can be accessed by arbitrary (unknown) protocols, and due to those
protocols the setup may be in any possible state at the point it gets accessed
by another protocol. Subsequently, a recent work [BCH+20] casts the notion of
global setups within the plain UC framework, eliminating the need for a new
model and thus enabling re-use of the vast literature about UC-secure protocols.
Both models come with a composition theorem that allows secure replacement of
protocols in the presence of a global setup.

Replacing Global Setups. In all the above models, the global setup is treated
as a functionality with fixed code that will eventually be implemented by a
trusted authority. In this paper, we investigate whether we can change this code
without affecting security of the context. More detailed, we analyze whether we
can replace a global setup with a (globally accessible) protocol that UC-emulates
the setup, and to which extent such a replacement preserves security statements
of protocols jointly using the global setup5. At first sight, it might be surprising
that none of the existing composition theorems solve this question. Intuitively,
as we depict a bit more formally in Figure 1, composition theorems allow us to
argue when we can replace some protocol φ by its UC-realization π. If π calls a
local setup S, then in any context any call to φ can be replaced by a call to πS

4 The statement applies also to any non-trivial type of hybrid functionalities whose use
might correlate the views of the protocols calling them, e.g., the common reference
string (CRS).

5 The terms setup and subroutine are synonyms in the context of UC and refer to a
protocol instance that is called by another protocol. Subroutines can be any type of
protocol: interactive such as Bitcoin, or trusted parties (“ideal functionalities”) such
as the ideal ledger.
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Fig. 1: Applying composition theorems in the UC literature. Here, X ←↩ Y
denotes that X can replace Y in arbitrary contexts. π, φ, φ′ denote protocols
potentially calling setup S. Assume π UC-emulates φ (with access to S) and that
S′ UC-emulates S.
UC composition (left): If S is only called by π, then πS can replace φ in
arbitrary contexts. GUC/UCGS composition (middle): πS can replace φS
even if the setup S is called by other protocols, too, and hence is global. This
work (right): πS′ can replace φS′ (under certain conditions), i.e., replacing φ
by π works, even when the global setup S (that both protocols call) is replaced
by its realization S′.

by the UC composition theorem. However, the UC composition theorem cannot
argue about φ and π anymore if any of these protocols call a setup that is not
local to them, i.e., that is also called by other protocols and hence global.

But why is considering global setups interesting? Indeed, until recently, global
setups such as an ideal PKI were intended to be replaced by trusted authorities
implementing the exact same functionality as the global PKI [CSV16]. But with
the rise of blockchain technology, more and more interactive protocols are proposed
to securely implement a global PKI [BdM93, RY16, MR17, GKLP18, KKM19,
PSKR20], a global clock [BGK+21] or a global ledger [BMTZ17]. Suddenly, the
above question of global setup replacement becomes highly relevant! Does a
protocol’s claimed security in the presence of an ideal global PKI such as, e.g.,
[CSV16, PS18, DPS19] still hold when the protocol is deployed with an interactive
PKI protocol instead? Does a security analysis carried out w.r.t an ideal global
ledger functionality [KZZ16, CGL+17, DFH18, DEFM19, DEF+19, EMM19,
CGJ19, ACKZ20, KL20] remain valid when the global ledger is replaced by, e.g.,
the Bitcoin blockchain? The same question can be asked for protocols using a
global clock [KZZ16, BGK+18, DFH18, DEF+19] or a global CRS [CKWZ13].
Our findings towards answering such questions are manifold. On the positive
side, we give several simple conditions on the global setup, or both the global
setup and the security statement, under which global replacement preserves a
security statement. On the negative side, our results indicate that global setups
need to be designed with care in order to not render the setup “irreplaceable”.
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Fig. 2: Topology of a security statement with a global setup.

Unless such irreplaceable setups are hard-coded as trusted third parties, security
results stated with respect to them are mainly of theoretical interest.

Technical challenges of global replacement. Let us first explain the general
topology of a security statement in the presence of a global setup in its most
common schenario. In Figure 2, protocol π securely realizes functionality F in
the presence of a global ideal PKI functionality. Being globally accessible by
protocols that are part of the distinguishing environment, the global PKI exists
in both the real execution with π and the ideal execution with F. The adversarial
interface at the global PKI is marked with ∗ in Figure 2, and it might allow the
adversary to, e.g., read public keys of others and register his own keys.

To understand why the global PKI in the above illustration might not be
replaceable by some protocol ΦPKI that securely realized an ideal PKI, we need
to review what “realization” (or UC-emulation, as it is often called) means here.
ΦPKI UC-realizes an ideal PKI if it is at least as strong as the ideal PKI. Hence,
intuitively, UC realization draws the “upper bound” of the attack surface against
ΦPKI in the following sense: protocol ΦPKI does not admit more attacks than
the ideal PKI. We use the notion of an “attack” to describe something that the
adversary can achieve via the adversarial interface. However, UC realization does
not imply a lower bound on attacks: ΦPKI can have arbitrarily strong guarantees,
thereby preventing several attacks that the ideal PKI admits6. And this lack of
a lower bound causes trouble in replacing a global protocol with its realization:
under replacement, the adversarial interface ∗ becomes restricted in an arbitrary
way, causing failure in the simulation carried out by S. If there is no way to
rescue the simulation (i.e., to work with the restricted interface), the security
statement witnessed by S is void and π does indeed not emulate F anymore in
the presence of the interactive PKI protocol ΦPKI.

With the above explanation, it should become clear that an extensive adver-
sarial interface at the global setup hinders its replacement. For example, the ideal
6 As an example, it is possible that a PKI protocol that disallows registration of
duplicate or non-wellformed public keys UC-emulates an ideal PKI that allows the
adversary to register arbitrary public keys. Intuitively, the larger the gap in the
guarantees, the easier is the UC realization to prove.
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PKI might allow the adversary to register an unlimited amount of (fresh) public
keys without delays, while a blockchain-based PKI protocol might protect against
such “flooding” of the PKI simply because transaction throughput is limited.
A security statement in the presence of a global PKI with a simulation that
exploits the public key flooding of the global PKI thus fails under replacement.
Along these lines we can further give examples of ideal ledgers from the literature
that require care when cast as global ledgers. For example, consider an ideal
transaction ledger that allows the adversary to arbitrarily reorder transactions
[BMTZ17]. A blockchain-based protocol realizing this ledger, however, might
enforce a transaction order that is partially determined by honest miners. Thus,
simulators exploiting adversarial reordering would not work with access to the
blockchain-based protocol instead of the ideal transaction ledger. Another ex-
ample is a global account ledger that allows the adversary to transfer arbitrary
amounts of his own money (i.e., money owned by corrupted parties) with arbi-
trary delays [DEFM19]. Any security statement exploiting this weakness of the
ledger in its simulation is not preserved when, instead of accessing the global
account ledger, parties run a cryptocurrency protocol instead that, e.g., employs
a monetary transaction limit or prevents large and sudden stake shift.7

When replacement voids security I. One might be tempted to say that in
the above examples, simulation can be adjusted to work with the stronger global
protocol since, intuitively, the stronger global protocol also allows less attacks in
the real world. However, this intuition can fail as we demonstrate now. We give a
constructed but not overly artificial example of a global setup replacement that
voids the underlying security statement, in the sense that there cannot exist any
simulator witnessing the emulation statement. Consider the following “secure data
distribution” protocol πsecDD run by some user U . The protocol needs access to a
global repository GauthBC where U can store data records: GauthBC records (U , x)
if user U provides input x and allows the adversary to read out any recorded pair
from its storage. Such a repository could be realized by authenticated broadcast.
Now, U first generates a key pair (pk, sk) and sends pk to the repository. It then
takes an input message m and pushes an encryption c := Encpk(m) to GauthBC
and additionally sends c on a network to a list of receiving parties Ri. It also
internally stores m and returns the activation to the caller.

The ideal functionality this simple protocol πsecDD realizes is an “encrypt-
then-push” service that we call Fenc+push. Fenc+push takes input m from U and
asks the simulator for a public key pk (m is never leaked). Upon receiving pk,
Fenc+push encrypts m and provides the ciphertext as input to the repository in

7 We note that our results, on the positive side, can be used to state the conditions
such that a security proof is not jeopardized. For example, in the aforementioned
work [DEFM19], this could be achieved by letting the protocol’s security be oblivious
of how exactly the base ledger settles an account balance, as long as it is eventually
settled to the value the protocol (or the ideal functionality) demands. Intuitively,
since this only depends on the black-box properties of persistence and liveness of the
underlying ledger, such an approach would admit a replacement by known blockchain
protocols.
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Fig. 3: When simulation fails under global replacement: simulator S works with
ciphertext c (left), but might fail when only receiving ciphertext length |c| (right)
from the stronger global setup GAEncBC that replaces the weaker GauthBC.

the name of U . To prove that the protocol realizes Fenc+push (under adaptive
corruption of U), we come up with a proper simulator: the simulator simulates a
public-private key pair (for U), provides Fenc+push with the public key, and simply
reads out the ciphertext that the functionality created (in the name of U) from
GauthBC to simulate the ciphertext on the network to be sent to the receivers. This
is a perfect simulation of the real world. In case U is corrupted, the simulator
provides the secret key to the adversary which is consistent with the encrypted
input message m.

Now, assume we replace GauthBC by a stronger version GAEncBC that works
identically except that the adversary only receives the length |x| when reading
any of the user’s records, which corresponds to encrypted broadcast to a list
of receivers. Intuition says that working with a stronger repository, i.e., using
encrypted and authenticated broadcast rather than authenticated only, cannot be
of harm and improves security for everyone. But this change does not only make
the above simulation strategy impossible; in fact, no simulator exists to prove
the same statement, i.e., that πsecDD realizes Fenc+push anymore. The simulator
does not have access to the ciphertext anymore which is now kept secret by
GAEncBC, and hence must simulate a ciphertext without knowing the underlying
message m. Figure 3 illustrates the issue. The simulation is trapped in the
well-known commitment problem [Nie02] 8. We conclude that πsecDD as defined
fails in realizing Fenc+push when running with GAEncBC (which implies the weaker
GencBC). This means that we must change the protocol (e.g., use non-committing
encryption) to again realize Fenc+push, or if we stick to protocol πsecDD, we must
weaken the security guarantees of Fenc+push (e.g., leak message m).

8 In order to conclude the proof, the environment can perform a standard trick: after
seeing the ciphertext on the network (either real or simulated), the distinguisher
can afterwards instruct the (dummy) adversary to corrupt the user U to obtain the
secret key and check that the ciphertext contains the right message. For ordinary
encryption schemes, this test will always succeed in the real world, and with substantial
probability fail in the ideal world [Nie02].
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While this example is arguably constructed, the problem’s core translates
directly to more serious situations, such as protocols (e.g., state-channels) proven
secure with respect to a global ledger abstraction that is instantiated with a
concrete blockchain protocol that is typically stronger (i.e., offers less adversarial
capabilities) than its abstraction.

We now sketch another technically easy example that shows that security
statements can fail completely, once a global setup is replaced by another one
that UC-emulates it. Again, we replace the global setup by a stronger variant to
achieve the contradiction. The example also illustrates how security guarantees
can be blurred when exploiting adversarial capabilities of the global setup, and
it does not rely on adaptive corruptions in doing so.

When replacement voids security II. Assume a simple protocol φ for some
party P that works as follows: it expects as input transactions of a certain type.
Before submitting them to a global transaction ledger, φ orders the transactions
according to size and submits this list to the ledger. Assume that the ledger is
a transaction ledger similar to the one in [BMTZ17] that allows the adversary
to re-order transactions before a block is formed and added to the immutable
ledger state.

The ideal functionality Fφ that this protocol realizes can be the following: it
takes as input the list of transactions provided by P , and orders them differently,
say according to lexicographic order, and submits this list to the global transaction
ledger. This is of course weird, but possible to simulate: to prove this construction,
we observe that the simulator has the freedom to reorder freely (before the
transactions are appended to the ledger state) and chooses the ordering that
equals the one induced by the actions of the real-world adversary, which even
yields a perfect simulation!

Now assume we use a stronger transaction ledger that does not allow to reorder
the transaction list in the ledger and hence makes the adversarial capabilities less
powerful. However, since no simulator can now change the order, the order of
transactions in the transaction ledger directly signals to the environment, whether
it interacts with the ideal world (lexicographic order) or the real world (size).
Therefore, using a stronger ledger (which UC-realizes the weaker one) renders
the construction invalid as no simulator does exist. The point here is that every
simulator must crucially carry out a reordering attack and that there is no other
strategy to rectify the ideal world if re-ordering is impossible. This shows how the
usage of a global ideal ledger can create false impressions of obtained guarantees,
since Fφ is impossible to realize w.r.t any real transaction ledger protocol which
disallows arbitrary reordering.

Our Results. We provide various conditions under which replacement of a global
setup by a protocol realizing it does not affect the validity of the underlying
security statement. Our results of Section 3 give a partial guide on how to
navigate the very tricky question of what constitutes a “good” global setup. More
concretely, we provide three theorems for soundly replacing global setups by their
emulation in existing security statements. We note that only the first replacement

7



strategy is conditioned on solely the global setup and its emulation, and is hence
oblivious of the underlying security statement. Contrary, the latter replacement
strategies require us to put conditions on the simulator of the underlying security
statement.

Replacement with equivalent setup. A setup can be replaced with its real-
ization if the realization is actually equivalent to the setup, including adversarial
capabilities. The notion of equivalence of adversarial capabilities is formalized
using the simulation argument: after replacing, there must be an efficient way to
emulate all queries that were available before. This is formalized in Theorem 3
and recovers the, to our knowledge, only pre-existing result about global setup
replacement in the literature [CSV16] (see related work below for details). How-
ever, replacement with equivalent protocols is only of limited interest in practise,
and thus Theorem 3 merely constitutes a sanity check of our chosen methodology
of considering global replacement using the UCGS terminology [BCH+20].

Replacements for agnostic simulations. We show that the replacement
of a global setup G in a protocol π UC-realizing φ is sound if the simulator S
witnessing this construction fulfills one of the following two conditions.

– S is agnostic of the adversarial capabilities of G and the only dependence
is on exported capabilities that are available also to honest parties. This is
formalized in Theorem 4.

– The interaction of S with the global setup can be characterized by a set
I of adversarial queries that are admissible, a concrete technical condition
that formalizes the idea that adversarial capabilities and their actions will be
preserved once G is going to be replaced. This is formalized in Theorem 5. A
generalization of the results to the case of several global subroutines is given
in Section 4.

The first condition on the simulator is appealing as it is simple to check. As an
example, [KZZ16] gives a security statement in the presence of a global ledger that
allows reordering, but their simulation is agnostic of this particular adversarial
capability. Similarly, the simulation of the lightning network in [KL20] works
by only assuming that the simulator can access capabilities of honest parties to
read the ledger state and submit transactions. We point out that since F can
communicate with G naturally via an ordinary party identifier (see [BCH+20])
or in its own “name”, the simulator S can indeed perform those tasks via F and
hence use G just like an honest caller of the protocol (and importantly without
making use of the adversarial interface of G).9

The second condition brings more flexibility to protocol designers since S can
use certain capabilities I at the adversarial interface. Formally, we introduce the
concept of filtering adversarial queries Definition 8 that would hinder replacement,
9 We note that prior works often leave it unspecified how exactly the simulator performs
those tasks in the name of honest parties and how it will get the replies. The way
we suggested, namely via F , is actually the only admissible way without directly
running into the replacement problem again.
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leaving only a set I of adversarial queries which are fine to use relative to an
implementation (or a set of implementations) that is going to replace the setup.

Our theorems further follow by applications of the UCGS and UC composition
theorems at a level of abstraction which seems to share a lot of similarities
with other frameworks and their composition theorems. For example, the exact
corruption model is irrelevant, as long as the behavior of and upon corruption
can be formulated via an “adversarial” interface, where the above conditions can
be evaluated on (such as the backdoor tape in UC). Our results are formulated
using terminology and composition theorem of [BCH+20], which equips the
standard UC model with a definition for global subroutines and composition in
the presence of such. In doing so, we refrain from introducing a new variant of
UC in order to state our results. We further believe that our results are natural
and can be adapted to other simulation-based frameworks than UC.

Implications on the Global Random Oracle Model. Often, a global setup
is modeled as a pure setup assumption for proofs. The probably most prominent
example is the global random oracle model (RO) [CJS14, BGK+18, CDG+18].
While our results are presented in a rather constructive way that help to evaluate
protocol designers what impact their choice of global setup has as a building
block to-be-replaced, our results are general and hence applicable to the global
RO setting as well. For global random oracles, different versions of different
(adversarial) strengths exist and the question about comparability and unification
has been brought up by Camenisch et al. [CDG+18]. In fact, composing different
constructions w.r.t different global random oracles is unfortunate, since the main
reason to switch to global RO (vs. local RO) is that in practice, all random oracles
are instantiated by a single hash function anyway. If composing constructions
forces us to again have a couple of different global random oracles (which are
supposedly replaced by a single hash function) we are back at square one. As
we present in Section 3.4, our results provide a general framework to evaluate
whether different RO assumptions can be unified across a set of constructions,
which is very vital for the global RO model and nicely complements the study
of [CDG+18] (in the sense outlined described in the related work section).

Why replacing the setup in both worlds? Looking back at Figure 2
and the described issues of simulation failing under a replaced and restricted
adversarial interface, one can ask the following question: why can’t we replace the
global PKI just in the real world, hence restricting only the real-world adversary?
Indeed, we formally prove (using only standard UC composition) that we can just
let π make subroutine calls to the replacement of global setup G, and leave the
ideal world to be F in combination with context G. However, such replacement
is not very useful: the different contexts allow to obscure the achieved level of
security as formalized by F . The high-level reason is that F is misleading in
its role as idealization of π if we ignore the context. For example, F can offer
much better security guarantees (for example, less powerful adversarial interface)
because of the weak context that offers more influence to an adversary. In the
sum, the real world is stronger and the ideal world is weaker (hence the statement
must go through) but the exact idealization of π remains unclear because the
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context is not equal and cannot be “factored out”. The second example above
(the re-ordering example with a global ledger) is of this type.

Why not simply using a stronger ideal setup to begin with? To
circumvent the replaceability issues that we deal with in this paper, we could
simply prove our security statements with respect to a stronger global functionality
that is very close or even UC-equivalent to the protocol. This way, we can likely
argue that the simulator of our security statement works equally well with both
setups, and we can allow for replacement of the global setup (cf. Theorem 3).
What is the downside of this approach? The strengthened functionality no longer
abstracts an “ideal service” to be used in a modular protocol analysis or design.
For example, one could strengthen the ideal global ledger to exactly match the
guarantees and adversarial interfaces of Bitcoin. But then the security analysis
with respect to that ledger remains valid only when replacing it with Bitcoin,
while an analysis with respect to an abstracted global ledger functionality can (if
carried out as suggested in our paper) remain valid when replacing the global
ledger with any blockchain that UC-realizes it. This idea of modular composition
is at the core of universal composability frameworks and our paper shows how to
preserve it for global functionalities.

Conclusion - what is a “good” global setup? Our results indicate that
care has to be taken when global setups are used as building blocks intended
to be replaced with interactive protocols. Since replacement requires conditions
on both setup and security proof, “good” global setups cannot be identified
as such by just looking at the setup. Of course, to be instantiable by another
protocol at all, a “good” global ideal building block needs to be UC-realizable
(in a non-trivial manner) in the first place. But it also matters that such a global
building block is used in a good way in a security statement, meaning that the
simulation does not overly exploit the adversarial interface, as otherwise it would
be doomed to fail under replacement. We believe that our work provides good
intuition and formal guidance on how to design and use global building blocks in
modular protocol design.

Related Work. To our knowledge, there is very limited work on the replaceability of
a global UC setup. In fact, the only work that has looked at the question in general
is [CSV16]. However, the treatment there is in GUC which requires considerable
effort to even define “global” protocols, and even then, the treatment inherits the
inconsistencies of the GUC model. [CSV16] identifies emulation equivalence as a
sufficient condition on the global setup and protocol replacing it, to allow a generic
preservation of security properties. However, these conditions are too strict to
be applied on more complicated primitives, such as blockchain ledgers, which
have recently become a standard example of global subroutines. Nonetheless, we
recover their result (“General Functionality Composition”, Theorem 3.1 [CSV16])
in Theorem 4.

While our results are described using the recent UCGS modelling [BCH+20],
they can easily be adapted to any framework which supports universal composition
and global setups.
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Finally, an investigation of replaceability targeted to special variants of global
random oracles was recently made in [CDG+18]; in a nutshell, their approach
is contrary to ours in the sense that their work investigates the replacement of
a stronger by a weaker random oracle (i.e., one that gives the simulator more
power). Such a replacement can only be sound for specific definitions of random
oracles (ones that are defined to take away leverage from the real-world adversary,
but not the simulator) and need to be accompanied by a protocol transformation.
As we outline in Section 3.4, our most general theorem nicely complements their
study on unifying different global RO assumptions.

Organization of this paper. While our ideas are formulated in a generality such
that they can be applied to several composable frameworks that support global
setup [KMT20, MR11], when it comes to proofs, we must fix a particular model
which we choose to be UC [Can20] and its treatment of global subroutines
as recently established in [BCH+20]. We provide a brief introduction to UC
and UCGS in Section 2, which should suffice to follow the ideas of our proofs.
In Section 3 we provide global subroutine replacement theorems for protocols
accessing only a single global setup. We generalize our concepts to many global
subroutines in Section 4.

2 Preliminaries: Global Subroutines in UC

In this section we recap how to formalize global setups in the UC framework
using the language of UCGS [BCH+20]. We first provide the minimal background
on the UC model that is necessary to understand the concepts.

2.1 UC Basics

Formally, a protocol π is an algorithm for a distributed system and formalized as
an interactive Turing machine. An ITM has several tapes, for example an identity
tape (read-only), an activation tape, or input/output tapes to pass values to its
program and return values back to the caller. A machine also has a backdoor
tape where (especially in the case of ideal functionalities) interaction with an
adversary is possible or corruption messages are handled. While an ITM is a
static object, UC defines the notion of an ITM instance (denoted ITI), which is
defined by the extended identity eid = (M, id), where M is the description of an
ITM and id = (sid, pid) is a string consisting of a session identifier sid and a party
identifier pid ∈ P . An instance, also called a session, of a protocol π (represented
as an ITM Mπ) with respect to a session number sid is defined as a set of ITIs
{(Mπ, idpid)}pid∈P where idpid = (sid, pid).

The real process can now be defined by an environment Z (a special ITI) that
spawns exactly one session of the protocol in the presence of an adversary A (also
a special ITI), where A is allowed to interact with the ITIs via the backdoor tape,
e.g., to corrupt them or to obtain information from the hybrid functionalities, e.g.
authenticated channels, that the protocol is using. The adversary ITI can only

11



communicate with the backdoor tapes of the protocol machines. An environment
can be restricted by a so-called identity bound ξ ∈ Ξ which formalizes which
external parties the environment might claim when interacting as input provider
to the protocol. The less restrictive the bound, the more general the composition
guarantees are. The UC theorem is quantified by such a predicate.

The output of the execution is the bit output by Z and is denoted by
execπ,A,Z(k, z, r) where k is the security parameter, z ∈ {0, 1}∗ is the input to
the environment, and randomness r for the entire experiment. Let execπ,A,Z(k, z)
denote the random variable obtained by choosing the randomness r uniformly at
random and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z denote the ensemble
{execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal-world process The ideal process is formulated with respect to an another
protocol φ, which in its most familiar form is a protocol IDEALF for an ITM
F which is called an ideal functionality for which we describe the situation.
In the ideal process, the environment Z interacts with F , an ideal-world ad-
versary (often called the simulator) S and a set of trivial, i.e., dummy ITMs
representing the protocol machines of IDEALF that forward to the functionality
whatever is provided as inputs to them by the environment (and return back
whatever received from the functionality). In the ideal world, the ideal-world
adversary (aka the simulator) can decide to corrupt parties and can interact
via the backdoor tape with the functionality. For example, via the backdoor
tape, the functionality could for example leak certain values about the inputs,
or allow certain influence on the system. We denote the output of this ideal-
world process by execF,A,Z(k, z, r) where the inputs are as in the real-world
process. Let execF,S,Z(k, z) denote the random variable obtained by choosing
the randomness r uniformly at random and evaluating execF,S,Z(k, z, r). Let
execF,S,Z denote the ensemble {execF,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Secure Realization and Composition In a nutshell, a protocol π ξ-UC-emulates
(ideal) protocol φ if the “real-world” process (where π is executed) is indistin-
guishable from the ideal-world process (where φ is executed), i.e., if for any
(efficient) adversary A there exists an (efficient) ideal-world adversary (the simu-
lator) S such that for every (efficient) ξ-bounded environment Z it holds that
execπ,A,Z ≈ execφ,S,Z .

The emulation notion is composable, i.e., if π UC-emulates φ, then in a larger
context protocol ρ, the subroutine φ can be safely replaced by π, denoted by
ρφ→π. For this replacement to be well-defined, a few technical preconditions
must be satisfied. First, the protocols must be compliant, which ensures that
in case π and φ might both be subroutines in ρ they do not share the same
session (ensuring that the replacement operator works as intended). Furthermore,
compliance also makes sure that the protocol is invoked properly, i.e., with the
correct identities specified in ξ. The definitions of these UC concepts relevant to
our work are given in the full version [BHZ20]. The second major precondition
is that protocols should be subroutine respecting, meaning that each session of
π can run in parallel with other sessions of protocols without interfering with
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them (in order for the UC-emulation notion which considers a single challenge
session to be a reasonable precondition for the composition theorem). The exact
condition is as follows:
Definition 1 (Subroutine respecting [Can20]). Protocol π is subroutine
respecting if each session s of π, occurring within an execution of any protocol
with any environment satisfies the following four requirements, in any execution
of any protocol ρ with any adversary and environment (as per the definition of
protocol execution; it is stressed that these requirements must be satisfied even
when session s of π is a subroutine of ρ, and in particular when the execution
involves ITIs which are not members of that extended session s):
1. The sub-parties of session s reject all inputs passed from an ITI which is not

already a main party or subsidiary of session s (note that rejecting a message
means that the recipient ITI returns to its state prior to receiving the message
and ends the activation without sending any message; see [Can20, Section
3.1.2]).

2. The main parties and sub-parties of session s reject all incoming subroutine
outputs passed from an ITI which is not already a main party or subsidiary
of session s.

3. No sub-party of session s passes subroutine output to an existing ITI that is
not already a main party or sub-party of session s.

4. No main party or sub-party of session s passes input to an existing ITI that
is not already a main party or sub-party of session s.

Theorem 1 (UC Theorem). Let ρ, π, φ be protocols and let ξ be a predicate on
extended identities, such that ρ is (π, φ, ξ)-compliant, both φ and π are subroutine
exposing and subroutine respecting, and π UC-emulates φ with respect to ξ-
identity-bounded environments. Then ρφ→π UC-emulates protocol ρ.

2.2 UC with Global Subroutines

A global subroutine can be imagined as a module that a protocol uses as a
subroutine, but which might be available to more than this protocol only. While
initial formalizations to capture when a module is available to everyone, i.e., to
the environment, defined a UC-variant [CDPW07], it was recently shown that
capturing this can be fully accommodated within UC [BCH+20]. In a nutshell,
if π is proven to realize φ in the presence of a global subroutine γ, then the
environment can access this subroutine in both, the ideal and the real world,
which must be taken care of by the protocol. As a rule of thumb, proving that π
realizes φ in the presence of global γ is harder than when γ is a local subroutine,
i.e., not visible by the environment.

The framework presented in [BCH+20] defines a new UC-protocol M[π, γ]
that is an execution enclave of π and γ. M[π, γ] provides the environment access
to the main parties of π and γ in a way that does not change the behavior of the
protocol or the set of machines. The clue is that M[π, γ] itself is a normal UC
protocol and the emulation is perfect under certain conditions on π and γ. We
first state the definition from [BCH+20].
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Definition 2 (UC emulation with global subroutines). Let π, φ and γ be
protocols. We say that π ξ-UC-emulates φ in the presence of γ if protocol M[π, γ]
ξ-UC-emulates protocol M[φ, γ].

The first condition is the following and expresses the fact that γ might
communicate with protocols outside of π’s realm:

Definition 3 (γ-subroutine respecting). A protocol π is called γ-subroutine
respecting if the four conditions of Definition 1 required from any (sub-)party of
some instance of π are relaxed as follows:
– the conditions do not apply to those sub-parties of instance s that also belong
to some extended session s′ of protocol γ;

– (sub-)parties of s may pass input to machines that belong to some extended
session s′ of protocol γ, even if those machines are not yet part of the extended
instance of s .

The second condition is a technical condition on the global subroutine which
is called regularity. The condition says that (a) a shared subroutine does not
spawn new ITIs by providing subroutine output to them, and (b) that the shared
subroutine may not invoke the outside protocol as a subroutine. It is usually
not a problem for global setups to satisfy this, since most of the time, we can
model functionalities to be reactive and assume “signaling events” to happen
out-of-band.

The formal definition is taken from [BCH+20].

Definition 4 (Regular setup). Let φ, γ be protocols. We say that γ is a φ-
regular setup if, in any execution, the main parties of an instance of γ do not
invoke a new ITI of φ via a message destined for the subroutine output tape, and
do not have an ITI with code φ as subsidiary.

In [BCH+20, Proposition 3.5], the authors show that if the protocol π is
γ-subroutine respecting, where γ itself is π-regular and subroutine respecting,
then the interaction between π and the global subroutine γ is very structured
without unexpected artifacts. We state the proposition here for completeness.
Here, α is an arbitrary protocol and α̂ is a version of α that makes use of M[[]π, γ]
instead of π and has an indistinguishable behavior. We refer to [BCH+20] and
just state the proposition.

Proposition 1. Let γ be subroutine respecting and π be γ-subroutine respecting.
Then the protocol M[π, γ] is subroutine respecting. In addition, let γ be π-regular,
and let α be a protocol that invokes at most one subroutine with code π. Denote
by α̂ the transformed protocol described above. Then the transcript established by
the set of virtual ITIs in an execution of some environment with α̂ is identical to
the transcript established by the set of ITIs induced by the environment that has
the same random tape but interacts with α.

The UCGS theorem is then the composition theorem for protocols that are
defined with respect to a global subroutine γ. Note that not γ is replaced, but φ
by its implementation π.
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Theorem 2 (Universal Composition with Global Subroutines – UCGS
Theorem). Let ρ, φ, π, γ be subroutine-exposing protocols, where γ is a φ-regular
setup and subroutine respecting, φ, π are γ-subroutine respecting and ρ is (π, φ, ξ)-
compliant and (π,M[code, γ], ξ)-compliant for code ∈ {φ, π}. Assume π ξ-UC-
emulates φ in the presence of γ, then ρφ→π UC-emulates ρ.

3 Replacement Theorems for a Global Subroutine

In this section, we consider a setting where protocols access only one global
subroutine, e.g., a global CRS, or a global ledger, but not both of them. That is,
we only consider protocols whose shared setup is formulated as a single protocol.
For this simplest global setting, we start by exploring which replacement of the
global subroutine follows already from application of the UC composition theorem.
Then, we recover the replacement theorem of [CSV16], which preserves security
statements if the global subroutine is replaced by an equivalent protocol. And
finally, we give conditions for security-preserving replacement of non-equivalent
global subroutines.

3.1 Common Preconditions of our Theorems

Throughout this section, we assume the following preconditions for our theorems.
Recall that we are interested in replacing a global subroutine while preserving
security statements made with respect to this subroutine. We assume the security
statement to be the following: protocol π (potentially with access to further
local hybrids H) UC-emulates an ideal functionality F in the presence of global
subroutine G, with respect to dummy adversary A. Simulator SA is a witness for
this emulation. The statement is depicted below and referred to in the text as
precondition (1).

GF

SA
Backdoor Tape Backdoor Tape

π

π

π π

H G
Backdoor Tape

A

(1)
UC-emulates

≈

Second, since our aim is to investigate how UC emulation of global subroutines
can be useful for context protocols, we assume that the global subroutine is
emulated as follows: ψ UC-emulates G, with respect to dummy adversary D (where
ψ potentially makes use of other hybrids H′). We call a simulator witnessing this
statement SD. We refer to this emulation as precondition (2).
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G
Backdoor Tape

SD
H′

ψ ψ

ψ

ψ
D

≈(2)
UC-emulates

Given this notation, the core question of our work can be stated as follows:
given preconditions (1) and (2), under which additional conditions does it hold
that

π UC-emulates F in the presence of global ψ?

Simplifying notation. We note that, while our theorems hold for arbitrary UC
protocols, to ease understanding, we formulate them with the special protocols
idealF and idealG . Intuitively, F is a “target” functionality that is to be realized
and G a global ideal setup. To further simplify, we slightly abuse notation and
write G instead of idealG , e.g., we write “ψ UC-emulates G” instead of “ψ
UC-emulates idealG”.

3.2 Warm-Up: Replacing Real-World Global Setups

Our first lemma states that under precondition (2) we can replace the shared
subroutine by the construction that UC emulates it. Another way to view this is
that “lifting” to global subroutines (w.r.t any application protocol π) preserves
UC emulation. An important feature of this statement is that it follows from
standard UC composition thanks to the embedding of global setups in standard
UC. Throughout the section, we will maintain a running example to illustrate all
our statements.

Running Example. Let G = Gledger be an ideal ledger and π a lottery protocol
requiring a ledger. Further, let ψ = FunCoin be a cryptocurrency implementing
the ledger Gledger. By UC emulation, all manipulation and attacks allowed on
FunCoin must also be allowed against Gledger. In particular, this holds for any
manipulation or attack carried out while running a lottery.

Lemma 1. Assume a protocol π makes subroutine calls to global subroutine G
and that ψ is a protocol that UC-emulates G. Then π invoking ψ instead of G
UC-emulates protocol π.

Proof. On a high level, the argument is as follows: if an environment could tell
a run of π with ψ from a run of π with G, then running π internally would
already let the environment distinguish a run of ψ from a run of G, violating the
precondition of the lemma.
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≈π

π

π π

H

A

H′

ψ ψ

ψ

ψ

by (2)

behave as if invoked
by the environment

UC-emulates

Since for the technical argument, we have to stick to a particular model, we
have use the UC language in a more precise way: hence, we assume that π, ψ,
G be protocols and let ξ ∈ Ξ be a predicate on extended identities, such that π
is (ψ,G, ξ)-compliant, π, G, ψ are subroutine exposing, G and ψ are subroutine
respecting, and π is subroutine respecting except via calls to G. We note that
these technical conditions are as they appear in UC in order to guarantee that
the UC-operator is well defined. To formalize emulation in the presence of a
shared setup, we use the terminology of UCGS [BCH+20] (see Section 2.2 for a
short recap), where global access to G is granted by an overlay M[·,G]. In order
for this overlay to be opaque to the execution of π with G, we need to assume G
to be π-regular (see Definition 4 and Proposition 1).

With this terminology, it remains to show that if ψ UC-emulates G with respect
to ξ-identity-bounded environments, then M[πG→ψ, ψ] UC-emulates protocol
M[π,G] (with respect to ξ-identity bounded environments). This follows from
the UC composition theorem: First, observe that M[π,G] is an ordinary UC-
protocol, mimicking all effects that the global (and hence shared) subroutine
might have with the environment. Similarly, M[πG→ψ, ψ] is an ordinary UC-
protocol where subroutine G is replaced by ψ. Note that, similar to the role of
the control function in UC, the embedding M[·] does not reveal the code of the
main instances when interacting with the environment, and therefore we have
that M[π,G]G→ψ and M[πG→ψ, ψ] are equivalent protocols. Since ψ UC-emulates
G w.r.t. all environments that are bounded by ξ, the UC composition theorem
implies that M[πG→ψ, ψ] UC-emulates M[π,G]. ut

Lemma 1 will serve mainly as a tool in proving the upcoming theorems. Next,
we can apply the UC composition theorem to our two preconditions. This yields
the following theorem. It says that, in any UC emulation statement w.r.t a global
setup, we can safely strengthen the real-world setup, while leaving the setup
in the ideal world unchanged. The intuition behind it is illustrated with the
following example.

Running Example. Back to our lottery. The lottery’s provider wants to create
trust in his product. He therefore proves that, when run with the global ideal
ledger, the lottery protocol UC-emulates some ideal functionality Flottery which
enforces a fair lottery. In his proof, both the lottery protocol and Flottery may
exploit weaknesses of Gledger. Since FunCoin is at least as secure as Gledger, the
provider can safely advertise that running the lottery with FunCoin is as secure
as Flottery with Gledger, since this replacement can only decrease the number of
possible attacks on the global setup while running the lottery.
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Lemma 2. Assume a protocol π UC-emulates F in the presence of global sub-
routine G and that G is UC-emulated by ψ, then replacing π’s subroutine G by ψ
UC-emulates F that has access to global subroutine G.

Proof. We again need some technical conditions from standard UC and UCGS:
Let π, F , ψ, G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities,
such that π is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and ψ
are subroutine respecting, π and F are subroutine respecting except via calls
to G and G is π-regular. If ψ UC-emulates G with respect to ξ-identity-bounded
environments, and if π UC-emulates F in the presence of G w.r.t. ξ′-identity-
bounded environments, then what we have to prove is that M[πG→ψ, ψ] UC-
emulates protocol M[F ,G] w.r.t. ξ′-identity-bounded environments. This however
follows from standard composition: Recall that protocols M[πG→ψ, ψ] and M[π,G]
from Lemma 1 are embeddings of protocols with global setup as normal UC
protocols. Therefore, we can apply the UC composition theorem: M[πG→ψ, ψ]
UC-emulates M[π,G], and by our assumption M[π,G] UC-emulates M[F ,G]. ut

The conclusion of this subsection is that under both conditions (1) and (2)
it follows that both π and ψ running together are indistinguishable from the
ideal world, where both components are idealized. This is often assurance enough
that the protocol in combination with a particular implementation of the global
setup achieves a good level of security. However, note that the security is stated
in terms of abstractions of both real-world components. The overall guarantees
are thus hard to tell, and false impressions of security might be created. Let us
illustrate this issue with the following.

Running Example. Assume that the provider does not have a strong cryptographic
background and that he actually struggled conducting the aforementioned proof.
But suddenly, he realized that the proof is easy when he assumes that Gledger,
which is used by both the poker game and Flottery, admits arbitrarily many
adversarial ledger entries. He calls this new setup GweakLedger and is delighted
when he finds out that it is still emulated by FunCoin (since UC emulation is
transitive). He then happily applies Lemma 2 and rightfully advertises that his
lottery (together with FunCoin) is as secure as Flottery (together with GweakLedger).

With this example we see that Lemma 2 falls short in examining the security of
the challenge protocol when proven w.r.t. an (even slight) abstraction of the setup
and not its implementation. In the above example, Flottery might provide very
strong fairness guarantees, that however can only be achieved with a simulation
that crucially exploits introduction of adversarial entries into GweakLedger. Thus,
when looking only at Flottery, false impressions of security guarantees are created.
In particular, with the stronger global Gledger or the actual protocol FunCoin,
which do not have this weakness, Flottery might not even be realizable by the
lottery – to say the least, the existing simulation is likely to fall short in witnessing
such an emulation statement.

To remedy the situation (and to blow our provider’s cover), we need to
understand the implications of replacing the global setup in the ideal world.
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In particular, preventing a security proof from exploiting weaknesses in the
abstraction of the setup seems to be crucial to arrive at a plausible and realistic
level of security. In the remainder of this section, we ask under which conditions
a security proof might be preserved when replacing the global setup in both
worlds.

3.3 Full Replacement of the Global Subroutine

We now turn our attention to “full” replacement strategies, where the global
subroutine is replaced by a protocol UC-emulating it in both the real and the ideal
world. Of course, this is to be understood w.r.t an existing security statement,
that is, our precondition (1). Let us emphasize again that we are only interested
in replacement strategies that preserve the underlying security statement.

Equivalence Transformations of the Global Subroutine. Canetti et al.
demonstrated, using the terminology of GUC, that replacing the global subroutine
by an equivalent procedure preserves protocol emulation w.r.t the subroutine. The
replacement theorem is proven in [CSV16], and we recover it here for completeness.
Thanks to the embedding within plain UC that UCGS achieves, our proof is
able to capture the arguments at a more abstract level, essentially reducing all
steps to standard UC-emulation. Let us first illustrate how and why equivalence
replacement works with the lottery.

Running Example. The provider keeps receiving calls from cryptographers who
find it suspicious that his simulation exploits the weaknesses of GweakLedger. Since
FunCoin does not offer introduction of arbitrary adversarial blocks, the provider
however cannot carry out his simulation with FunCoin. Searching the internet,
the provider learns about a shady cryptocurrency called DarkCoin. Further
investigating, the provider can prove that DarkCoin admits the exact same
attacks as GweakLedger, i.e., is UC-equivalent to GweakLedger

10. Thus, the provider
can run his simulation with DarkCoin instead of GweakLedger, since DarkCoin
allows for all adversarial queries that are possible with GweakLedger. Moreover, the
provider can be assured that his simulation is still good for the now modified real
world, since DarkCoin does not admit more attacks than GweakLedger. Relieved, he
announces that, when using the globally available DarkCoin, his lottery protocol
emulates Flottery.

Theorem 3 (Full Replacement via Equivalence Transformations). As-
sume π UC-emulates F in the presence of a global subroutine G. If ψ UC-emulates
G and vice-versa, i.e., their adversarial interfaces are equivalent, then π, invoking
ψ instead of G, UC-emulates F , invoking ψ instead of G, and where ψ is the
global subroutine.

Proof. We again have to phrase our theorem in the language of UCGS: Let π, F ,
ψ, G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such
10 Formally, ψ and ψ′ are UC-equivalent if ψ UC-emulates ψ′ and ψ′ UC-emulates ψ.
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that π is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and ψ are
subroutine respecting, π and F are subroutine respecting except via calls to
G and G is π-regular. If ψ UC-emulates G with respect to ξ-identity-bounded
environments —and vice-versa— and if π UC-emulates F in the presence of G
w.r.t. ξ′-identity-bounded environments, then M[πG→ψ, ψ] UC-emulates protocol
M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded environments.

The sequence of steps needed in this proof are the following hybrid protocols.

– The real protocol H0 := M[πG→ψ, ψ].
– The first intermediate step H1 := M[π,G].
– The second intermediate step H2 := M[F ,G].
– The destination protocol H3 := M[FG→ψ, ψ].

As in the proof of Lemma 1 , H0 is equivalent to M[π,G]G→ψ and hence H1 =
Hψ→G

0 . By standard composition, H0 UC-emulates H1 since the embedding is an
normal UC-protocol and subroutine ψ UC-emulates G. Next, the transition from
H1 to H2 is trivial: H1 UC-emulates H2 by the theorem assumption. Finally, we
go the “reverse” direction as in the argument of the first step thanks to the fact
that we know that G UC-emulates ψ. More formally, we have H3 = M[F ,G]G→ψ
and again, H3 is obtained by normal subroutine replacement within protocol H2.
Therefore, H2 UC-emulates H3 by the theorem assumption and we have that H0
UC-emulates H3 which concludes the proof. ut

To the best of our knowledge, Theorem 3 is the only composition theorem
allowing for replacement of global subroutines with their UC emulation that
already exists in the literature [CSV16]. It can be applied to soundly replace, e.g.,
a globally available ideal PKI with its implementation at a trusted PKI provider.
However, it falls short in replacing global setups with protocols, which are likely
to be stronger than their abstraction as a UC functionality. In the remainder of
this section we discuss solutions for such replacements.

Global-agnostic Simulations of the Challenge Protocol. The condition
discussed in this section is useful for protocols designers to check whether their
proof remains valid when a global subroutine is replaced, by means of checking
the structure of the simulator. Intuitively, a sufficient condition is if the simulator
can simulate without accessing the adversarial interface of the global setup. More
generally speaking, for all UC-adversaries A the corresponding simulation strategy
SA should only externally-write onto the backdoor tape of the global subroutine
session(s) if the real-world adversary did so. An easy way to achieve this is to
have the ideal functionality F communicate with the global setup G directly and
if needed, provide the simulator (simulating the actions of π when having access
to the backdoor tape of F) with the necessary information. Intuitively, the reason
this is sound is that the only way F can interact with the global setup just like
an honest party would do (and in particular, not via the backdoor tape). Since
replacing F by a protocol that implements it can never change the behavior for
honest parties in a noticeable way (otherwise, it is obviously distinguishable)
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the replacement is unproblematic. We first formally capture what it means for a
simulator to not use the adversarial interface of the global subroutine.
Definition 5 (G-agnostic). An adversary S interacting with subroutine G is
G-agnostic if the only external write requests (made by S’s shell) destined for (the
backdoor tape) of parties and subparties of any session of G are those instructed by
the environment directly and any messages via the backdoor tapes of (sub-)parties
of any session of G are delivered directly to the environment without activating
the body of S.

Running Example. Recently, numbers of users participating in the provider’s lot-
tery dropped significantly. Being sure that this is because of his recent recommen-
dation to use DarkCoin, the provider desperately hires a team of cryptographers.
Examining the provider’s simulation carried out with respect to GweakLedger, the
team finds a better simulation strategy that only requires legitimate use of the
ledger by sending transaction requests to it. The new simulator thus acts like
an honest party using the ledger. In particular it does not exploit any of the
adversarial interfaces of GweakLedger. Since FunCoin allows to submit transactions,
replacing GweakLedger by FunCoin in the proof does not hinder the new simulation.
With FunCoin back in the picture, user statistics begin to slowly recover and the
provider is delighted.
Theorem 4 (Full Replacement due to Agnostic Simulations I). Assume
π UC-emulates F in the presence of a global subroutine G such that the simulator
S for this construction is G-agnostic. Let further ψ UC-emulate G. Then π,
invoking ψ instead of G, UC-emulates F , invoking ψ instead of G, and where ψ
is the global subroutine.
Proof. We first state the theorem in the language of UCGS as before. Let π, F ,
ψ, G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such
that π is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and ψ are
subroutine respecting, π and F are subroutine respecting except via calls to
G and G is π-regular. Let ψ UC-emulate G with respect to ξ-identity-bounded
environments and let π UC-emulate F in the presence of G w.r.t. ξ′-identity-
bounded environments. Let SA denote a simulator for the latter emulation
that satisfies Definition 5. Then M[πG→ψ, ψ] UC-emulates protocol M[FG→ψ, ψ]
w.r.t. ξ′-identity-bounded environments.

The proof strategy is as follows:

π

π

π π

H G
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More formally, we make the following transitions, going from top left to
bottom right in the picture.

M[πG→ψ, ψ] UC-emulates M[π,G]. This directly follows from Lemma 1 and
the precondition of ψ UC-emulating G. Let A′ denote the simulator of this
emulation.

execπ,A′,Z ≈ execF,SA′ ,Z . We show how to simulate for the specific adversary
A′. SA′ works as SA, but lets the internally simulated A on π issue its external
write requests to the global subroutine directly to SD, which overall has the
effect as if A and SD were combined when talking to the global subroutine.
The simulator SA (simulating π while interacting with F) performs a good
simulation even against this combined attacker, because SA does not care
about this interaction due to the agnostic property: SA does not issue any
queries to G itself (that might get blocked or modified by SD) and acts as a
relay between G and Z. Assume Z distinguishes both distributions. Then, Z
running SD internally instead of sending requests to SD to the adversary is a
successful distinguisher of π,A and F ,SA, since due to SA being G-agnostic,
Z is oblivious of the order of SA and SD (and, naturally, of the order of A
and SD). Since such a Z would violate precondition (1), we conclude that
both distributions are indistinguishable.

execF,SA′ ,Z ≈ execF,S′,Z , where S ′ denotes the simulator SA sending requests
to ψ via dummy adversary D. Recall that SA′ combines SA and SD. If
both executions are distinguishable, an environment running SA and F could
distinguish an execution of ψ and D from an execution of SD with G, violating
the precondition that ψ UC-emulates G, i.e., precondition (2).

execF,S′,Z ≈ execF,SA,Z . Since the dummy adversary D is just a relay, we can
safely remove it from the execution.

ut

General Condition for Global-Functionality Replacement. With the pre-
vious theorem, we showed that a global subroutine can be safely replaced by its
emulation in all security statements which are proven via a simulator who does
not access the global subroutine. This however not only means that the simulator
cannot manipulate the state of the global setup, but is also completely oblivious
of it. This is often too strong of a condition. For example, consider a simulator
witnessing a protocol’s security in the presence of a global CRS. Such a simulator
should at least be allowed to read out the CRS, since, intuitively, the CRS is
publicly available information. Similarly, a simulator in a global ledger world
should at least be allowed to read the state of the ledger. And indeed, our next
replacement theorem admits global replacements that do not interfere with such
simulators, as long as the power of the simulator is reflected in the real world
even with respect to the stronger emulation of the global subroutine.

To ease the technical presentation of the condition on the simulator, for
the next theorem we restrict ourselves to the special case of functionalities
as global subroutines. The treatment could be generalized to arbitrary global
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subroutines. Let us start with introducing some technical tools which help us
formalize interaction between adversaries and global functionalities.

Definition 6 (Ordered interaction). Let I be a set of queries. An ideal func-
tionality G is called I-ordered if G answers to inputs x ∈ I on the backdoor tape
with (x, y), and uses format (⊥, ·) otherwise.

The definition simply demands that ITM G, in his answers to the adversary,
repeats what query it responds to if the query belongs to some set I. Note that
quite often in the literature, such an association is necessary but left implicit in
the description, since it is obvious which query will result in which answer (by
repeating the input and maintaining a clear order when answering adversarial
requests). Next, we define some useful notation when running two programs in
one machine. Essentially, we define a wrapper that routes incoming queries to
the program which they are intended for.

Definition 7 (Parallel composition of adversaries). Let S1 and S2 be two
ITMs. Then [S1,S2] denotes the adversary with the following shell: whenever
activated with value (x, y) on the backdoor tape, it activates Si if x was issued by
Si and in any other case activates S2 by default. Conversely, if activated with
input (i, x) on the input tape (for any x), the shell activates Si on input x.

Definition 8 (Admissible backdoor-tape filter). Let SD be the simulator of
condition (2), i.e., the construction of G from ψ. Let I be a subset of adversarial
queries allowed by G, and let G be I-ordered. Let further fI denote a simple
program which takes inputs x ∈ I and writes them on the backdoor tape of G,
and if provided with input (x, y) on the backdoor tape, returns y to the caller that
provided the corresponding input x (other values on the subroutine output tape are
ignored by f). We say that fI is an admissible backdoor-tape filter for (SD, ψ,G)
if there exists a simulator [SfI

,D] such that execG,[fI ,SD],Z ≈ execψ,[SfI
,D],Z .

We omit (SD, ψ,G) if it is clear from the context.

Pictorially, fI is an admissible filter if there is a simulator SfI
such that:

G
Backdoor Tape

fI SD

≈ H′

ψ ψ

ψ

ψ

SfI D

comp. ind.

Note that a filter is nothing else than a program making the adversarial
interface of G less powerful while not interfering with the assumed simulator.

Running Example. Let us assume that the ledger GweakLedger has adversarial inter-
faces J := {readState, permute, putEntry }. DarkCoin UC-emulates GweakLedger
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with simulator SD that, say, only uses interface putEntry. Thus, f{readState} is
admissible for (SD,DarkCoin,GweakLedger) since SD does not depend on how often
GweakLedger outputs the state. The simulator Sf{readState} simply collects the state
of the DarkCoin ledger from publicly available information. On the other hand,
f{permute} (and f{permute,readState}) can only be admissible if SD performs a good
simulation regardless of the order in which entries (including adversarial ones)
appear on the ledger, and if there exists an attacker Sf{permute} that can carry out
a permuting attack against DarkCoin.

The next definition restricts the simulator’s usage of the global functionality.
Essentially, the simulator is not allowed to query the global G except for queries
in some set I.

Definition 9 (G\I-agnostic). Let S denote an adversary interacting with global
subroutine G and let I denote a subset of the adversarial queries allowed by G,
and let G be I-ordered. S is called G\I-agnostic if the only external write requests
(made by the simulator’s shell) destined for G are either requests x ∈ I or those
instructed by the environment directly, and any messages via the backdoor tapes
from the (sub-)parties of G are delivered directly to the environment without
activating the body of S, except when they are of the form (x, ·) where the query
x ∈ I has been issued by the body of S.

We are now ready to state our most general replacement theorem for global
subroutines for simulators that are global-agnostic except for queries in some set
I that pass the backdoor-tape filter of the shared subroutine. Those queries can
be asked by the simulator any time. The intuition is that, due to the admissible
property, we know how to “attack” an instantiation of G to extract information
from it that is indistinguishable from what the filtered adversarial interface of G
offers.

Running Example. Bitcoin is known to UC-emulate a ledger functionality Gledger
[BMTZ17], which we assume to offer an adversarial interface readState11. Let
SD denote the simulator of this emulation statement. Since any permissionless
blockchain, and in particular Bitcoin, publicly encodes the ledger state, it holds
that f{readState} is admissible for (SD,Bitcoin,Gledger) (the simulator Sf{readState}

that witnesses admissibility is interacting with Bitcoin and obtains the state
the same way an honest miner would do). Now if some blockchain application
π proven w.r.t Gledger comes with a simulation that only queries Gledger with
readState, the security statement remains valid when Gledger is replaced with
Bitcoin. That is, π is guaranteed to realize the same functionality, regardless of
whether Gledger or Bitcoin is used as global ledger.

Theorem 5 (Full Replacement due to Agnostic Simulations II). Assume
execψ,D,Z ≈ execG,SD,Z and let I be a subset of adversarial queries allowed by
G such that fI is an admissible backdoor-tape filter for (SD, ψ,G). Let further π
11 In [BMTZ17], any party, including the adversary, can obtain the ledger state by

sending (READ, sid) to Gledger.
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UC-emulate F in the presence of the global subroutine G such that the simulator
SA for this precondition is G \I-agnostic. Then, π, invoking ψ instead of G,
UC-emulates F , invoking ψ instead of G, and where ψ is the global subroutine.

Proof. We first state the theorem in the language of UCGS as before. Let π, F , ψ,
G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that π
is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and ψ are subroutine
respecting, π and F are subroutine respecting except via calls to G and G is
π-regular. Let ψ UC-emulate G with respect to ξ-identity-bounded environments.
Let SD denote the simulator of this condition, and be I a subset of adversarial
queries allowed by G such that fI is admissible for (SD, ψ,G). Let further π
UC-emulate F in the presence of G w.r.t. ξ′-identity-bounded environments.
Let SA denote a simulator for this emulation, and let SA be G \ I-agnostic.
Then M[πG→ψ, ψ] UC-emulates protocol M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded
environments.

The sequence of steps needed in this proof are the following.

π

π

π π

H G
Backdoor

A SD

A′

G
Backdoor≈

F
Backdoor

≈
F

Backdoor

H′

ψ ψ

ψ

ψ ≈
S ′

F
Backdoor

H′

ψ ψ

ψ

ψ

comp. ind.

SA G\I-agnostic

comp. ind.

≈π

π
π π

H

A

H′

ψ ψ

ψ

ψ
Lemma 1

UC-emulates

fI admissible

precondition (1)

precondition (2)

[fI ,SD]

SA′

SA

[SfI ,D]
SA

perf. ind.

S ′

More formally, we make the following transitions, going from top left to
bottom right in the picture.

M[πG→ψ, ψ] UC-emulates M[π,G]. This directly follows from Lemma 1 and
the precondition of ψ UC-emulating G. Let A′ denote the simulator of this
emulation.

execπ,A′,Z ≈ execF,SA′ ,Z . We show how to simulate for the specific adversary
A′. SA′ works as SA, but lets the internally simulated A on π issue its
external write requests to the global subroutine directly to [fI ,SD] (using the
adressing mechanism described in Definition 7), which overall has the effect
as if A and [fI ,SD] were combined when talking to the global subroutine.
We need to argue that the simulator SA (simulating π while interacting with
F) still performs a good simulation even against this combined attacker.
Due to SA being G\I-agnostic, SA’s requests reach G unmodified since they
pass fI . Definition 9 further ensures that SA acts as a dummy adversary
regarding all requests between Z and [fI ,SD]. A distinguisher Z between
both distributions can thus be turned into a distinguisher between executions
π,A and F ,SA which runs program [fi,SD] internally, violating precondition
(1).
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execF,SA′ ,Z ≈ execF,S′,Z , where S ′ denotes the simulator SA sending requests
to ψ via adversary [SfI

,D]. Recall that SA′ combines SA and SD. If both
executions are distinguishable, an environment running SA and F could
distinguish an execution of ψ and [SfI

,D] from an execution of [fI ,SD] with
G, violating the precondition that fI is an admissible backdoor-tape filter for
(SD, ψ,G).

ut

3.4 Case study: Comparable Constructions and Random Oracles

The benefit of composable security is that it enables a secure modular design of
protocols. When one tries to achieve a new functionality, then one can rely on
already realized functionalities as a setup, being assured that those can modularly
be replaced by their already known implementations at any time. As we showed
in this paper, this idea generally fails for global (hybrid) setups, but is partly
restored by the above theorems by giving conditions on when such a replacement
of a global setup is possible.

Still, the following mismatch might occur in such a modular protocol design
which motivates another important aspect of Theorem 5. Assume two protocols
are proven with respect to different global setups, π1 realizes F1 in the GRO
setting, and π2, which makes (local) calls to F1 and realizes F2 w.r.t. a GRO
that allows the adversary upon request to program random points of the function
table and otherwise is identical to GRO. Therefore, obtaining a combined security
claim w.r.t. a single RO assumption is in general not clear and might not be
possible because they assume different global setups the realization of F1 w.r.t. the
observable RO has never been formally realized. Applying the UCGS theorem is
not possible and replacing, within π, the functionality F1 by π1 can only be a
heuristic in the best case. This situation is of course unfortunate. As pointed out
in [CDG+18] obtaining a common RO for both constructions is very vital for the
global RO model: the main reason to switch to global RO (vs. local RO) is that
in practice, all random oracles are instantiated by a single hash function anyway.
If composing constructions forces us to again have a couple of different global
random oracles in the end (which we replace by a single hash function) we are
back at square one.

Luckily, Theorem 5 gives us a tool to figure out whether π2 actually achieves
F2 in the presence of the plain GRO (which in turn would allow us to apply the
UCGS composition theorem): For protocol π2 UC-emulating F2 in the presence of
a global RO that supports, say, adversarial queries I (e.g, including random-points
programmability), it is therefore enough to specify the set I ′ ⊆ I of filter requests
for which the preconditions of Theorem 5 is satisfied. In this case, it follows that
the very same construction can be proven with respect to any stronger version
of the assumed GRO that blocks inputs from any subset of I \ I ′ and hence
preserving the queries that are necessary for this simulator. The reason is that
the simulator in the UC-emulation proof of the construction π2 is agnostic to
what happens aside of its filter requests, and this includes the possibility that
no request aside of its filter requests of queries in I ′ are made (and on the other

26



hand, the protocol in the real world is not disturbed by the exact set of queries
since it is proven w.r.t. the rpGRO).

The final conclusion is that incomparable constructions can become compa-
rable by general security-preservation results, such as the one in Theorem 5: if
I ′ does not contain the programmability request, then the two protocol π1 and
π2 work for the same GRO as established by Theorem 5. Hence, for those two
constructions, π2 can replace hybrid F1 by π1, which is then not a heuristic
argument, but a sound composition step that is formally backed by the UCGS
composition theorem.

We note that the study of [CDG+18] goes into the other direction by per-
forming a transformation on π1 in order to be secure w.r.t. some weaker oracle
G2. Such transformations can only exist for specific choices of RO’s (since generic
composition results fail when using a weaker setup due to increased attack surface
for the real attacker), and our results applied to global RO constructions gives a
tool to go the other way in certain cases.

4 Generalization to many Global Subroutines

We now consider protocols that use more than one global setup. Such a situation
often appears in the literature, e.g., when a protocol makes use of a global ledger
and a global clock, or a global PKI and a global random oracle. Formally, such a
protocol is subroutine respecting except via calls to subroutines γi, i ∈ [n]. In
this section, we show how to leverage the results from the previous section to
replace one, or several, or all of the global subroutines γi. A bit more formally,
we now assume precondition (1) be as follows:

(1) π UC-emulates F in the presence of global γ1, . . . , γn

Looking ahead, we will have to make some assumptions on the global sub-
routines γ1, . . . , γn and the corresponding protocols ψ1, . . . , ψn to realize them.
Roughly speaking, ψn will not depend on any other global subroutine to realize
γn, while ψn−1 (and hence also γn−1) is allowed to depend γn but on no other
global subroutine. We will be more formal about how to define “depend” in this
context.

Before formalizing our results, let us describe the idea behind them. Essentially,
we will interpret the setups γ1, . . . , γn as a single global setup γ̂. γ̂ simply runs
all γi internally and dispatches messages correspondingly. For this single global
setup γ̂, we can interpret precondition (1) above as precondition (1) from the
previous section with single setup γ̂, and apply the replacement theorems from
the previous section. The only open question is: which protocol realizes the single
global setup γ̂? Note that this emulation is needed to replace precondition (2)
in Section 3.1. So let ψ1, . . . , ψn denote the protocols we want to replace the
global subroutines with, i.e., ψi UC-emulates γi for all i. We show that, under the
condition that all setups form a hierarchy regarding who gives input to whom, ψ̂
UC-emulates γ̂.

We first state a general program structure:
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Definition 10 (Merging subroutines.). Let ρ̂ρ1,...,ρn
:= [ρ1, . . . , ρn] be a pro-

gram that accepts inputs of the form (query, sid, i, x) and invokes subroutine ρi
with input x, all with respect to the same session sid.

In UC, we must ensure that this simple program structure can be made a
compliant protocol (and subroutine exposing) as we are going to replace its
subroutines later. For two protocols γi, ψi, the above program becomes (ψi, γi, ξ)
compliant if it never relays inputs not satisfying the bound ξ by its caller. The
remaining, more technical conditions for compliance can be trivially satisfied. In
order not to overload notation, we assume such a predicate is known and enforced
by ρ̂ρ1,...,ρn

. 12 We identify UC-realization with multiple setups with the single
global subroutine case as follows:

Definition 11 (UC emulation with multiple global setups). Let π, φ and
γ1, . . . , γn be protocols. We say that π ξ-UC-emulates φ in the presence of global
subroutines γ1, . . . , γn if protocols π and φ are formulated with respect to a global
subroutine γ̂γ1,...,γn

and M[π, γ̂γ1,...,γn
] ξ-UC-emulates protocol M[φ, γ̂γ1,...,γn

].

Note that the overlay we define is just a dispatching service. Hence, a protocol
designer might still define π in the way of having π directly access each γi. This
transition is straightforward.13

We hence obtained a reduction between the single global-subroutine world
and the multiple global-subroutine world.

Remark 1. The following theorem makes the hierarchy idea formal that we
discussed at the onset of this section. In order to express that γi does not depend
on other subroutines γj , j < i we use the concept of regularity to ensure that γi
does only invoke global subroutines that presumably already have been replaced
(by condition 1. below, only the γi’s and no other protocol can be seen as global).
This facilitates that for any subroutine γi we can make use of precondition 3. that
ψi realizes γi in the presence of global subroutines γj , j < i, and be sure this
is independent of what is yet to be replaced later. This gives a sound order of
replacements.

Theorem 6 (Reduction Theorem). Let γ1, . . . , γn and ψ1, . . . , ψn be proto-
cols. ψ̂ψ1,...,ψn

UC-emulates γ̂γ1,...,γn
if for each protocol ρi ∈ {γi, ψi} the following

conditions hold:

1. ρi, when i < n, is subroutine respecting except for calls to γi+1, . . . , γn. ρn is
subroutine respecting. All ρi are subroutine exposing.

12 The remaining conditions are technicalities such as setting the forced-write flag and
not calling ψi and γi with the same session sid which obviously can be satisfied. For
the UCGS theorem, this protocol is compliant if it additionally never invokes a model
element, which is obvious.

13 Whether the transition is also trivial is a different question. In frameworks that have
a complex runtime structure, introducing such an intermediate dispatching machine
might be costly and would require π to request more runtime-resources. In UC, this
would cost k import more for π, where k denotes a security parameter.

28



2. ρi, when i > 1, is γj-regular and ψj-regular for all j ∈ {1, . . . , i− 1}.
3. ψi ξ-UC-emulates γi, for i < n, in the presence of global subroutines

γi+1, . . . , γn. And ψn UC-emulates γn.

Proof. We again use the transitivity of indistinguishability of ensembles. The
sequence of hybrid worlds that are needed to conclude are depicted below for the
case of three global subroutines.

≈

D

H′

ψ2 ψ2

ψ2

ψ2

H′′

ψ3 ψ3

ψ3

ψ3

H′′

ψ1 ψ1

ψ1

ψ1
H′

ψ2 ψ2

ψ2

ψ2

H′′

ψ1 ψ1

ψ1

ψ1

G3
Backdoor

≈ H′′

ψ1 ψ1

ψ1

ψ1

G3
Backdoor

G2
Backdoor

D
SA′

D A′
SDD

≈ G3
Backdoor

G2
Backdoor

SDfin := SA′′

A′′

G1
Backdoor

Each step is characterized by two elements: a single context protocol µi, and
the number i which protocol is to be replaced. Let µi := [ψ1, . . . , ψi, γi+1, . . . , γn],
i = 1, . . . , n and µ0 := γ̂γ1,...,γn

. We start with µn := ψ̂ψ1,...,ψn
.

Step 1: In the context protocol µn−1 we perform the replacement µγn→ψn

n−1 ,
resulting in µn. By the Theorem’s precondition, we can invoke the UC com-
position theorem, since γn and ψn are subroutine respecting and subroutine
exposing and µn is compliant. Therefore, the UC composition theorem implies
execµn,D,Z ≈ execµn−1,Sn,Z .

Step 2 ≤ i ≤ n: starting with context protocol µn−i we replace µγn→ψn

n−i which
results in µn−i+1. For this step, we can invoke the UCGS theorem since the
preconditions of the UCGS theorem are satisfied: γi resp. ψi can be treated
as protocols that are subroutine respecting except with calls to γi+1, . . . , γn
and hence Definition 11 applies. Furthermore, all protocols are subroutine
exposing, and formally, the “global setup” of this construction, i.e., the
subsystem consisting of γi+1, . . . , γn, is γi- and ψi-regular as demanded by the
precondition, i.e., they never send input to any of the subroutine prior to i that
have not yet been replaced. Hence, the UCGS theorem yields that µn−i UC-
emulates µn−i+1 and in other words, execµn−i+1,A,Z ≈ execµn−i,Sn−i+1,Z .

The final step follows by applying transitivity to obtain the final simulator Sfin for
the overall construction. Since we started with the dummy real-world adversary
for ψ̂ψ1,...,ψn

this formally yields a simulator for the dummy adversary that proves
exec

ψ̂,D,Z ≈ exec
γ̂,SDfin,Z

. ut

29



We now set ψ := ψ̂ψ1,...,ψn
, G := γ̂γ1,...,γn

and SD := SDfin in precondition (2)
in Section 3.1. This yields a precondition that lets us replace all global subroutines
using the various replacement theorems from the previous section.

Remark 2. In some situations, we might want to replace only one global subrou-
tine but not all of them. As an example, consider a protocol accessing a global
PKI functionality γ1, which in turn uses a global RO γ2. In an instantiation, the
global PKI is likely replaced by an interactive protocol ψ1 (potentially involving a
certificate authority, but still using the global RO). To ensure that the protocol’s
security proof remains valid under this replacement, we need to replace only γ1
but not γ2. However, due to the fact that every protocol trivially UC-emulates
itself, we can apply Theorem 6 with ψ2 := γ2, which will leave the global RO as
a proof element.
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