
Updatable Public Key Encryption in the
Standard Model

Yevgeniy Dodis1∗, Harish Karthikeyan1, and Daniel Wichs2†

1 New York University
{dodis,karthik}@cs.nyu.edu

2 Northeastern University and NTT Research
wichs@ccs.neu.edu

Abstract. Forward security (FS) ensures that corrupting the current
secret key in the system preserves the privacy or integrity of the prior
usages of the system. Achieving forward security is especially hard in
the setting of public-key encryption (PKE), where time is divided into
periods, and in each period the receiver derives the next-period secret
key from their current secret key, while the public key stays constant.
Indeed, all current constructions of FS-PKE are built from hierarchical
identity-based encryption (HIBE) and are rather complicated.

Motivated by applications to secure messaging, recent works of Jost
et al. (Eurocrypt’19) and Alwen et al. (CRYPTO’20) consider a natural
relaxation of FS-PKE, which they term updatable PKE (UPKE). In this
setting, the transition to the next period can be initiated by any sender,
who can compute a special update ciphertext. This ciphertext directly
produces the next-period public key and can be processed by the receiver
to compute the next-period secret key. If done honestly, future (regular)
ciphertexts produced with the new public key can be decrypted with the
new secret key, but past such ciphertexts cannot be decrypted with the
new secret key. Moreover, this is true even if all other previous-period
updates were initiated by untrusted senders.

Both papers also constructed a very simple UPKE scheme based on the
CDH assumption in the random oracle model. However, they left open
the question of building such schemes in the standard model, or based on
other (e.g., post-quantum) assumptions, without using the heavy HIBE
techniques. In this work, we construct two efficient UPKE schemes in the
standard model, based on the DDH and LWE assumptions, respectively.
Somewhat interestingly, our constructions gain their efficiency (compared
to prior FS-PKE schemes from the same assumptions) by using tools from
the area of circular-secure and leakage resilient public-key encryption
schemes (rather than HIBE).

∗Partially supported by gifts from VMware Labs and Google, and NSF grants
1619158, 1319051, 1314568.

†Partially supported by NSF grants CNS-1413964, CNS-1750795 and the Alfred P.
Sloan Research Fellowship.

1 Introduction

For privacy applications, Forward Security (FS) refers to the ability to update
sensitive information in a way that: (1) the system continues to be functional
in the future; (2) compromise of the current secret state of the system does
not affect the privacy of past secrets. For example, the famous authenticated
Diffie-Hellman key agreement protocol, — where the party use long-term signing
keys to authenticate the ephemeral public values ga and gb used to produce the
shared key k = gab, — is forward-secure under the Decisional Diffie-Helman
(DDH) assumption, even if the attacker later learns the long-term signing keys,
as long as the no-longer-needed ephemeral secrets a and b were erased before this
compromise.

In the symmetric-key world, forward security is also easy using a pseudoran-
dom generator (PRG) G, provided the sender and the receiver can stay synchro-
nized [12]. Given the current state s, the sender can produce (r, s′)← G(s) to
get the one-time symmetric key r, and the next state s′, so that compromising s′
does not affect the security of the one-time key r. One way to think about this is
that PRGs allow one to produce an initial state s0 that defines a “one-way chain”
of pseudorandom states s0 → s1 → s2 → . . ., which can only be traversed in the
forward direction.
Forward-Secure PKE. Coming back to the public-key world, achieving FS for
(non-interactive) Public-Key Encryption (PKE) turned out to be noticeably more
complicated. The initial paper of Canetti et al. [24], — which up to this day is
still essentially the state-of-the-art in the area, — defined FS-PKE as follows.
The key generation outputs initial keys (pk0, sk0), which implicitly defined two
synchronized chains pk0 → pk1 → pk2 → . . . and sk0 → sk1 → sk2 → . . . which
can be independently produced by multiple senders and a single receiver. The
chains should be consistent in the sense that messages encrypted under pki should
be decryptable by ski, and the secret-key chain should have the “one-wayness”
property we want: exposing ski should not compromise the privacy of messages
encrypted under prior public keys pkj , for j < i.3

Canetti et al. [24] also showed how to build FS-PKE from any Hierarchical
Identity-Based Encryption (HIBE) [35,34] scheme. As a result, as more HIBE
schemes got built [14,25,15,31,30,22], we also get more FS-PKE schemes, even in-
cluding purely theoretical schemes from very basic assumptions, like DDH/CDH,
factoring, and super-low-noise LPN [31,30,22]. However, most of these schemes
are quite complicated and inefficient (or rely on pairings/strong assumptions ??),
at least compared to many simple PKE schemes that are available today. Un-
fortunately, closing the efficiency/complexity gap between FS-PKE and PKE
remains open until this day.

Updatable PKE. As a step towards closing this gap, and motivated by inde-
pendently interesting applications in the area of secure messaging schemes, two

3For efficiency reasons, [24] also insisted that pki = (pk0, i), meaning one can quickly
go from pk0 to pki, but this point will not be important for our discussion.

2

recent works of Jost et al. [38] and Alwen et al. [5] defined a relaxed notion of
forward-secure PKE, called updatable PKE (UPKE). In this setting, any sender
can initiate a “key update” by sending a special update ciphertext.4 This cipher-
text updates the receiver’s public key and also, once processed by the receiver,
will update their secret key. A malicious sender cannot harm security by sending a
malicious key update generated with bad randomness. However, an honest sender
is assured that, once the receiver processes an honestly generated key update, all
ciphertexts produced in the past will remain secure even if the receiver’s secret
key is compromised in the future.

Note that in the setting of updatable PKE, we implicitly assume that there
is an ordered sequence of update ciphertexts which will be decrypted by the
receiver and that each sender can see this sequence and figure out the current
public key at any time. For example, this holds if all the ciphertexts are sent by
the same sender [38] (similar to the symmetric-key setting), or the ciphertexts
could be sent by multiple senders, but there is some outside mechanism that will
anyway serialize all these ciphertexts [5].

In the extreme cases, such as a secure group messaging application of [38],
every sender S will initiate a key update after each ciphertext that it sends to
the receiver R.5 In particular, since S “trusts itself”, S can be sure that the
information in this ciphertext will be secure forever, the moment that R decrypts
it (and moves its secret key forward), even if R gets corrupted later on. And this
is true even if other senders S′ that sent messages in the past were more careless,
and might not have properly generated/erased the randomness of their updates,
which were used to determine the public key under which S encrypted its message.
In this sense, UPKE with key updates following every encryption provides a
natural public-key analog of stream ciphers extensively used in symmetric-key
cryptography, despite having multiple senders who do not necessarily trust each
other’s randomness. To put it differently, the security of each sender only depends
on the quality/secrecy of its own randomness, while the correctness relies on the
serialization of update ciphertexts sent by all the senders.

UPKE Syntax and Prior Constructions. A bit more precisely,6 in addition to
standard key generation, encryption, and decryption algorithms, the UPKE
schemes have two special algorithms Upd-Pk and Upd-Sk. Any sender can run

4Of course, FS is trivial to achieve if the receiver can initiate the key update. Indeed,
this type of key update is also happening in the secure messaging applications of [38,5],
trivially achieving FS when the receiver “speaks” and updates its key. However, we
could also be in the scenario where the receiver is non-communicating for a long period
of time, while many messages are being sent to and processed by the receiver. For
example, the receiver could be part of a large secure messaging group [5] who only reads
messages, but almost never posts messages. UPKE is precisely useful in this scenario.

5For the sake of generality, we will not necessarily insist on updating the public key
after each ciphertext, but such extreme use is certainly an option for getting higher
security.

6We use slightly different syntax than [38,5], but all our schemes are easily converted
to meet the syntax of [38,5].

3

Upd-Pk on the current public-key pki−1 to produce update ciphertext upi and a
new public key pki. In turn, the receiver will run Upd-Sk on the current secret
key ski−1 and update ciphertext upi, to produce the new secret-key ski.

In terms of forward security, we require that exposure of any key ski should
not compromise the privacy of messages encrypted under prior public keys pkj ,
for j < i, provided at least one “good” update happened from period j to i. Hereby
“good update” we mean that the randomness used by the sender to generate this
update was not compromised by the attacker. Indeed, in the secure messaging
applications of [38,5], all senders were assumed to be honest, although some of
their local randomnesses could be compromised by the attacker. Following [5],
our definition will actually be slightly stronger in that we will allow malicious
randomness for the “bad updates”. See Section 3.

To validate the usefulness of this relaxation, the works of [38,5] also gave
an extremely fast and simple construction, which is orders of magnitude faster
than HIBE-based FS-PKE schemes and is based on the CDH assumption in
the random oracle model (ROM). The encryption scheme is just the standard
hashed ElGamal encryption scheme: given public key h = gs, encryption of m
computes (gr, Hash(hr)⊕m), while decryption of (c, w) outputs w ⊕Hash(cs).
To update the public/secret key, the sender chooses a random exponent δ, and
simply encrypts it using the standard encryption algorithm. The new public key
is h′ = hgδ, and new secret key is s′ = s+ δ. We notice, however, the random
oracle model is critically used to break the circularity between encrypting the
value δ, and later leaking the value s′ = s+ δ which depends on the secret key.

Our Main Contribution. In this work we build two efficient UPKE schemes in
the standard model. Our first scheme is based on the DDH assumption and is ap-
proximately “security parameter less efficient” compared to the Hashed ElGamal
UPKE scheme described above. Our second construction is also quite efficient
and is based on the Learning-With-Errors (LWE) assumption. In particular, it
gives the first efficient UPKE based on an assumption that is believed to be
post-quantum secure. This was not known even in the random oracle model.

A rough summary of efficiency, security, usability, and assumptions trade-off
for our schemes when compared to previous PKE, UPKE, and FS-PKE schemes
is given in Table 1. It is clear from the table that our efficiency falls between that
of PKE and FS-PKE (much closer to the former), we achieve the same (resp.
much stronger) forward security as FS-PKE (resp. PKE), but we do require a
stronger synchronization assumption than FS-PKE.

1.1 Our Technique: Using Circular Security and Leakage-Resilience

Looking at the random-oracle-based UPKE scheme of [38,5], we observe that
the attacker learns the value s′ = s+ δ, but also an encryption of δ. Namely, the
attacker simultaneously gets: (a) encryption of (some function of the) secret-key,
and (b) some leakage s′ on the secret-key s. Of course, in that particular scheme,
the leakage in (b) was trivial, since δ was completely random and therefore s′ is

4

Table 1. Comparison of Different Primitives. (κ is security parameter.)

Factors PKE UPKE [38,5]
RO Model

UPKE (this work)
Standard Model FS-PKE

Efficiency Very Efficient ≈ PKE ≈ PKE · κ Inefficient compared to PKE 7

(from HIBE)

Assumptions DDH/CDH,
Factoring, LWE CDH DDH, LWE DDH/CDH,

Factoring, LWE
Forward
Security? No Yes Yes Yes

Synchronization None Strong
(Updates)

Strong
(Updates)

Weak
(Time Periods)

completely independent of s, while (so-called) key-dependent-message (KDM)
security [13] in (a) was easily handled by the random oracle.

Nevertheless, we will find the abstractions in (a)+(b) useful when going to
the standard model. In particular, we will follow the same template, but rely
on circular-secure encryption schemes in the standard model under DDH/LWE
(e.g., [17,8]) where the key s and/or the updates δ must consist of “small” values
in some larger group Zp and hence the leakage s′ = s + δ in part (b) will no
longer be trivial.8 Luckily, these schemes are also leakage resilient and hence this
non-trivial leakage does not hurt security.

Indeed, modulo several important technicalities,9 both of our standard model
constructions will effectively build UPKE from a regular PKE, which satisfies
the following three properties simultaneously:
1. Circular-secure and leakage-resilient (CS+LR): Given encryption of the secret

key s and any bounded-entropy leakage on s, the scheme is still semantically
secure. See Section 4 for the precise definition.

2. Key-Homomorphic: Given a public key and a ciphertext pair that corresponds
to some secret key s, together with some offset δ, we can convert them into a
public key and a ciphertext pair that corresponds to the secret key s′ = s+ δ
while preserving the encrypted message.

3. Message-Homomorphic: Given a ciphertext encrypting some value s, and
offset s′, we can convert it into a ciphertext encrypting s′ − s.

Note that, for correctness, the scheme may restrict the secret key or the encrypted
messages to be “small” values in a larger group over which the homomorphism
holds.

We can now build UPKE as follows. We start with the circular-secure and
leakage-resilient scheme and implement the updating mechanism by simply

7Here we compared to PKE based on the same assumption (DDH, LWE, etc.) to
make this an “apple-to-apple” comparison. However, there are HIBEs [14,15] which are
relatively efficient, but rely on pairings and use relatively strong assumptions.

8This is true for the DDH-based scheme of [17] since circular security requires
encrypting in the exponent and decryption involves solving discrete log; therefore the
encrypted values must be small. This is also true for the LWE-based scheme where the
secret key must be small for correctness.

9Which is why we present the schemes separately, and the abstraction we give below
is mainly for the intuition.

5

encrypting a random (small) offset δ and updating the public key appropriately
using the key-homomorphic property. The receiver decrypts δ and updates their
secret key s to s′ = s+ δ. Note that the original key s should still have entropy
when conditioned on the updated key s′, so that we can use the leakage resilience
of our scheme.

Reduction Idea. To get the intuition for our security proof, we first present the
simplest special case where the challenge ciphertext for UPKE is requested in
the very first time period, and there is a single honest update after the challenge,
followed by the reveal of the resulting secret key s′ to the attacker. As we will
see, in this case, we will not even need to use the key-homomorphic property, but
it is easy to see how key-homomorphic property will be needed for the general
case. In our reduction, we will now need to utilize our UPKE attacker A for this
simplest case, to build our CS+LR-attacker A′.
A′ will start with the challenge public key pk and will forward it to A.
A will select two message m0 and m1 and give them to A′.
A′ will use these messages as its own challenge and will choose a probabilistic

leakage function s′ = s + δ for a random (unknown!) offset δ, where s is the
original secret key of the CS+LR scheme.

Upon receiving this challenge ciphertext c∗ and the value s′ from its challenger,
A′ can simply forward c∗ to A, and also declare s′ as the final value of the secret
key after the update.

However, A′ also needs to properly simulate the update ciphertext e which
was supposed to encrypt the (unknown) value δ.

This is where A′ will use the encryption e′ of the secret key s, and the message-
homomorphic property of the encryption scheme, to produce an encryption e of
δ = s′ − s.

This completes the special case of the reduction. For the general case, where
several (untrusted) updates could happen before the challenge is issued, we will
also need to use the key-homomorphic property: both for

(a) converting the challenge ciphertext c∗ in period 1 into the ciphertext
encrypting the same message during the challenge period; as well as for

(b) converting the original encryption e′ of s in period 1 into correctly
distributed encryption e of δ during the exposure period.

While the high-level idea above will work for both of our DDH/LWE instantiations,
in both cases we need to overcome certain challenges due to the need to correctly
simulate various distributions in the above-sketched reduction.

Instantiating from DDH. We show that the BHHO cryptosystem [17] constructed
from the DDH assumption satisfies the properties we need. In that cryptosystem
the secret key is s ∈ Z`p. Circular security holds when each component of the
secret key is encrypted in the exponent, and decryption recovers the secret key by
taking the discrete log. For this reason, the BHHO scheme needs to use a “short”
s ∈ {0, 1}` ⊆ Z`p. In our setting, we will set the initial key to a uniformly random
s0 ∈ {0, 1}`. Each update will choose some random offset δi ∈ {0, 1}` and will

6

encrypt the value δi in the exponent; the updated key will be si+1 = si + δi
where the addition is performed over Zp. This scheme was shown to be circular
secure [17] and leakage-resilient [46]; we show that the two security properties
also hold simultaneously. It is also easy to see that the scheme is key and message
homomorphic. When we use this scheme as a UPKE, we rely on the fact that
when δ, s ∈ {0, 1}` are both chosen randomly then giving the sum δ + s (with
addition over Zp) only reduces the entropy of s by ` · log(4/3) ≤ `/2 bits.

Instantiating from LWE. We show that the dual-Regev cryptosystem [48,33]
constructed from the LWE assumption also satisfies the properties we need. The
proof of circular security and leakage resilience are analogous to those of BHHO.
One subtle issue that, while the dual-Regev scheme is key-homomorphic, when we
update the key, we no longer get the correct ciphertext distribution – in particular,
the “error term” distribution is perturbed. To fix this, we need to resort to the
‘noise flooding/smudging” technique, where we add some super-polynomial noise
to the ciphertext to hide small polynomial differences in the error term.

Follow Up Work. Following this work, the work of [28] defined an extension
of UPKE called fast-forwardable UPKE (FF-UPKE). FF-UPKE addresses the
problem that the UPKE receiver might be offline or otherwise miss many update
ciphertexts, resulting in a situation where its current secret key ski is considerably
behind the current public key pkj : i � j. Of course, such “stale” receiver can
still get to the current key skj , by downloading ∆ = (j − i) key update messages,
and performing ∆ sequential secret key updates to “catch up”. The goal of FF-
UPKE is to achieve such “catching up” much faster: say, but only downloading a
sub-linear (and, ideally, logarithmic) in ∆ number of update ciphertexts (and,
similarly, doing the sub-linear amount of work). [28] also built a generic FF-
UPKE from any UPKE which they call update-homomorphic. Interestingly, minor
modifications of our UPKE constructions turn out to be update-homomorphic. In
contrast, the ROM-based UPKE [38] does not appear to be update-homomorphic
and does not suffice for building FF-UPKE. Thus, as an unexpected application,
the homomorphic properties of our construction, — which were needed to argue
security of our scheme, but were not needed for the functionality, — turned out
to be useful in a setting where random oracle does not appear to help.

1.2 Additional Theoretical Contributions

In the full version of our paper, we also consider two natural strengthenings
of the basic chosen-plaintext attack (CPA) security of UPKE. First, we define
the chosen-ciphertext attack (CCA) variant, where the attacker also has oracle
access to the decryption oracle. Second, we consider extending the capability of
untrusted senders in the CPA/CCA security game to produce arbitrary tuple
of update ciphertext e and the corresponding new public key pk′, rather than
limiting their ability to selecting bad randomness r, and then honestly using r to
produce the tuple (e, pk′).

7

As initial feasibility results, for both variants, we show a generic way — using
appropriate [27] notion of non-interactive zero-knowledge (NIZK) proofs — to
extend the basic CPA notion of UPKE to meet the corresponding stronger
requirement. Using the existing feasibility of such NIZK proofs from DDH/LWE,
we get these stronger forms of UPKE can be met, under the corresponding
assumption, in the standard model. Unlike our CPA constructions described
above, here we do not give an efficient instantiation of the resulting schemes
from DDH/LWE, leaving those to future work.

1.3 Related Work

Hierarchical Identity-Based Encryption (HIBE). As mentioned, Canetti et al. [24]
also showed how to build FS-PKE (and therefore also UPKE) from any Hierar-
chical Identity-Based Encryption (HIBE) [35,34,14,25,15,31,30,22].

By plugging in prior constructions of HIBE from DDH/CDH [31,30,22], we
would get an alternate construction of UPKE from DDH/CDH in the standard
model. However, this construction is mainly of theoretical interest and is hugely
impractical. In particular, it relies on complex garbled circuits that perform public-
key operations. In more detail, if κ is the security parameter, the construction
relies on a chain of O(κ) garbled circuits, each of which outputs O(κ) special
ciphertexts (encrypted labels for next level garbled circuit), where each ciphertext
consists of at least O(κ) group elements; the fact that this is all computed inside
a garbled circuit then adds at least another O(κ) overhead on top. Lastly, going
from HIBE to FS-PKE/UPKE adds another O(κ) overhead, for a total complexity
of at least O(κ5). So the complexity is at least O(κ3) worse than our scheme,
even without getting into huge concrete overheads.

By plugging in prior constructions of HIBE from LWE [25,2], we would get an
alternate construction of UPKE from LWE in the standard model. The resulting
schemes could potentially be piratically efficient. However, our construction is
still significantly simpler and more efficient for several reasons: (1) We do not
rely on lattice trapdoors or GPV style pre-image sampling [33], which makes our
scheme both conceptually simpler and practically more efficient. (2) Our secret
key is a single lattice vector rather than an entire lattice basis. This makes our
secret keys roughly an O(κ) factor shorter. (3) We avoid the additional O(κ)
factor overhead in the transformation from HIBE to FS-PKE/UPKE.

Forward-secure Signatures. Forward-Secure Signatures [6] are similar to FS-
PKE, in that compromising the current signing key should not enable forgery of
messages for previous periods. In particular, the tree-based FS-signature scheme
of Bellare and Miner [11] was the inspiration for the HIBE-based FS-PKE of
[24]. The above work was later extended by Malkin et al. [43]. Forward-secure
signatures were also studied in the random oracle setting [1,36,41].

Other Key Evolving Encryption Schemes. The works of Jaeger and Stepanovs
[37] and Poettering and Rössler [47] proposed two related notions of key-updatable
PKE scheme, which provide an even stronger form of key-evolution than FS-PKE.

8

In these schemes, key updates can be labeled by arbitrary, possibly adversarially
chosen, strings. Unsurprisingly, the schemes in these works were also built from
HIBE.

Circular and KDM Secure Encryption Schemes. Circular secure schemes allow the
attacker to see encryptions of the secret key of the scheme. A natural extension of
this notion studies a cycle of (ski, pki) pairs for i = 1, . . . , n where we encrypt ski
under pki mod n+1. This was defined as key-dependent message security (KDM)
by Black et al. [13] and as circular security by Camenisch and Lysyanskaya [23].
The first cryptosystem in the standard model with a proof of KDM-security
under a standard assumption was given by Boneh et al. [17]. Subsequently,
constructions from the learning with errors (LWE) [8] and quadratic residuosity
[20] assumptions were proposed. Construction for identity-based KDM-secure
encryption [4] was also proposed. While the construction of Boneh et al. [17] was
for affine functions, subsequent “KDM amplifications” transforms extended the
class of functions significantly [10,21,44,7].

Leakage-Resilient Encryption Schemes. Most of the security models do not
capture possible side-channel attacks. These attacks are designed to exploit
unintended leakage that often stems from the physical environment. Akavia et
al. [3] proposed a realistic framework that aimed to capture information about
the leakage. Subsequent work by Naor and Segev [46] analyzed the resilience of
public key cryptosystems to leakage. An important result was that they showed
the (even slightly optimized version of the) BHHO scheme [17] was resilient to
|sk|(1− o(1)) bits of leakage. Subsequent work [26] showed the leakage resilience
of both the BHHO scheme and the dual Regev encryption scheme [48,33] in the
auxiliary input model. Brakerski et al. [22] studied both the leakage resilience and
circular security of anonymous IBE. We point to the survey of leakage resilient
cryptography by Kalai and Reyzin [39] for additional work in this domain.

Different “Updatable” Encryption. With an unfortunate naming collision, there
has been a different kind of “updatable encryption schemes” considered in the
literature [18,32,42,40,19,16]. These are symmetric-key encryption schemes that
aim to accomplish key rotation in the cloud, specifically moving the ciphertexts
under the old key to the new key. In particular, these schemes produce multiple
encryptions of the same message under different keys and aim to produce update
tokens that allow the update of old ciphertexts, without leaking the message
content. In contrast, updatable schemes in this paper are public-key, encrypt
different messages, and aim to achieve forward security. Thus, the notions are
very different despite the partial naming collision.

2 Preliminaries

Notation. For a distribution X, we use x←$ X to denote that x is a random
sample drawn from the distribution X. For a set S we use x←$ S to denote that

9

x is chosen uniformly at random from the set S. We denote by Ud the uniform
distribution over {0, 1}d.

Information-Theoretic Notions. The prediction probability is

Pred(X) := max
x

P [X = x].

We can also denote

Pred(X|y) := max
x

P [X = x|Y = y] .

We define the conditional versions as

Pred(X|Y) := Ey←Y
[
Pred(X|y)

]
.

The (average-case) conditional min-entropy is H∞(X|Y) = − log(Pred(X|Y)).
The statistical distance of X and Y is SD(X,Y) = 1

2
∑
x |P [X = x]− P [Y = y]|.

Theorem 1 (Leftover Hash Lemma). Fix ε > 0. Let X be a random variable
on {0, 1}n with conditional min-entropy H∞(X|E) ≥ k. Let H = {Hn}n∈N where
Hn = {hs}s∈{0,1}d for all n, be a universal hash family with output length
m ≤ k − 2 log(1/ε). Then, (hUd

(X), Ud, E) ≈ε (Um, Ud, E)

Lemma 1 (Smudging Lemma [9]). Let B1 = B1(κ) and B2 = B2(κ) be pos-
itive integers and let e1 ∈ [−B1, B1] be a fixed integer. Let e2←$ [−B2, B2] be
chosen uniformly at random. Then the distribution of e2 is statistically indistin-
guishable from e1 + e2 as long as B1/B2 = negl(κ).

Definition 1 (The Decisional Diffie Hellman Assumption (DDH)). Let
G be a probabilistic polynomial-time “group generator” that, given as a parameter
1κ where κ is the security parameter, outputs the description of a group G that
has prime order p = p(κ). The decisional Diffie Hellman (DDH) assumption for
G says that the following two ensembles are computationally indistinguishable:

{(g1, g2, g
r
1, g

r
2) : gi ← G, r ← Zp} ≈c {(g1, g2, g

r1
1 , g

r2
2) : gi ← G, ri ← Zp}

A lemma of Naor and Reingold [45] generalizes the above assumption for m > 2
generators.

Lemma 2 ([45]). Under the DDH assumption on G,

{(g1, . . . , gm, g
r
1, . . . , g

r
m) : gi ← G, r ← Zp} ≈c {(g1, . . . , gm, g

r1
1 , . . . , g

rm
m) : gi ← G, ri ← Zp}

Definition 2 (Learning with Errors Assumption (LWE)). Consider in-
tegers n, m, q and a probability distribution χ on Zq, typically taken to be a
normal distribution that has been discretized. Then, the LWE assumption states
that the following two ensembles are computationally indistinguishable:

{A,ATx+e : A←$ Zn×mq ,x←$ Znq , e←$ χm} ≈c {A,v : A←$ Zn×mq ,v←$ Zmq }

10

3 Updatable Public Key Encryption (UPKE)

Jost et al. [38] introduced the notion of an Updatable Public Key Encryption
(UPKE). This definition was later modified by the work of Alwen et al. [5]. Below,
we present our variant of the UPKE.

Definition 3. An updatable public key encryption (UPKE) scheme is a set of five
polynomial-time algorithms UPKE = (U-PKEG,U-Enc,U-Dec,Upd-Pk,Upd-Sk)
with the following syntax:

- Key generation: U-PKEG takes as parameter 1κ where κ is the security
parameter and outputs a fresh secret key sk0 and a fresh initial public key
pk0.

- Encryption: U-Enc receives a public key pk and a message m to produce a
ciphertext c.

- Decryption: U-Dec receives a secret key sk and a ciphertext c to produce
message m.

- Update Public Key: Upd-Pk receives a public key pk to produce an update
ciphertext up and a new public key pk′.

- Update Secret Key: Upd-Sk receives an update ciphertext up and secret
key sk to produce a new secret key sk′.

Correctness. Let (sk0, pk0) be the output of U-PKEG. For any sequence of ran-
domness {ri}qi=1, define the sequence of public keys and secret keys {(pki, ski)}

q
i=1

as follows: (upi, pki)← Upd-Pk(pki−1; ri), ski ← Upd-Sk(ski−1, upi). Then, UPKE
is correct if for any message m and for any j ∈ [q],

P
[
U-Dec(skj ,U-Enc(pkj ,m)) = m

]
= 1 .

3.1 IND-CR-CPA Security of UPKE

In this section, we define the security game. We will called this the IND-CR-CPA Security
which is meant to capture INDistinguishibility under Chosen Randomness Chosen
Plaintext Attack. Largely similar to the CPA security game, this also additionally
allows the adversary to choose the randomness used to update the keys which is
modeled by the following oracle access:
– Oupd(·): A provides its choice of randomness ri. The Challenger increments

the time to i+ 1. It then performs the following actions:

(upi+1, pki+1)← Upd-Pk(pki; ri); ski+1 ← Upd-Sk(ski, upi+1) .

For any adversary A with running time t we consider the IND-CR-CPA security
game:
– Sample (sk0, pk0)← U-PKEG(1κ), b←$ {0, 1}.
– (m∗0,m∗1, state)←$AOupd(·)(pk0)

11

– Compute c∗←$ U-Enc(pkq′ ,m∗b) where q′ is the current time period.

– state←$AOupd(·)(c∗, state)
– Choose uniformly random r∗ and then compute

(up∗, pk∗)← Upd-Pk(pkq; r∗); sk∗ ← Upd-Sk(skq, up∗) .

where q is the current time period.
– b′←$A(pk∗, sk∗, up∗, state).
– A wins the game if b = b′. The advantage of A in winning the above game is

denoted by AdvUPKE
crcpa (A) = |P [b = b′]− 1

2 |.

Definition 4. An updatable public-key encryption scheme UPKE is IND-CR-CPA -
secure if for all PPT attackers A, its advantage AdvUPKE

crcpa (A) is negligible.

Remark 1 (Comparison of the Security Models.). The work of Jost et al. [38]
defined a notion which had an update procedure not specific to any public key.
This was designed to support multiple instances, i.e. multiple key pairs, and
where the offset generated by the public update could be applied to many public
keys. While we consider the simpler setting of only one instance, which is also
reflected in our syntax, we believe that our constructions trivially satisfy the
stronger security model proposed by [38]. Our model also allows for q 6= q′, i.e.,
for the adversary to issue a challenge in one time period and corrupt in another
time period. However, without loss of generality, we give the attacker the final
secret key sk∗ immediately following the honest post-challenge key update (at
period q′), as this gives the most amount of information to the attacker.

Our definition is a generalization of the model proposed by Alwen et al. [5]:
their notion forced an update of the keys after every encryption query, while ours
separates the two processes for more flexibility.

4 Key-Dependent-Message-Secure Encryption Scheme

Let us recall the definition of a public-key encryption scheme.
Definition 5. An encryption scheme is a set of three polynomial-time algorithms
E = (Gen,Enc,Dec) with the following syntax:

- Key generation: Gen receives 1κ where κ is the security parameter and
outputs a fresh secret sk and outputs a fresh public key pk.

- Encryption: Enc receives a public key pk and a message m to produce a
ciphertext c.

- Decryption: Dec receives a secret key sk and a ciphertext c to produce
message m.

Correctness. The correctness of an encryption scheme is such that (pk, sk) ←
Gen(1κ), ∀m ∈M,

P [Dec(sk,Enc(pk,m)) = m] = 1

12

CS+LR Security. For any PPT adversary A we consider the following security
game:
– Sample (sk, pk)←$ Gen(1κ), b←$ {0, 1}.
– L, f,m0,m1←$A(pk) where L is the leakage function chosen by A, m0,m1

are the challenge messages, and f is the function of the secret key that A
wants to receive as encryption. L defines the leakage resilience and f defines
the KDM security.

– Compute C←$ Enc(pk,mb), C ′←$ Enc(pk, f(sk))10.
– b′←$A(c0, c1, L(sk)).
– A wins the game if b = b′. The advantage of A in winning the above game is

denoted by AdvEKDM(A) = |P [b = b′]− 1
2 |.

Definition 6. A public-key encryption scheme E is λ-CS+LR-secure if for all
PPT attackers A, and leakage functions L such that H∞(sk|L(sk)) ≥ |sk| − λ, its
advantage AdvEcs+lr(A) is negligible.

5 DDH Based Construction

This section presents construction from the DDH Assumption. We begin by
presenting a slightly modified version of the PKE Scheme proposed by Boneh
et al. [17] in section 5.1. This scheme was shown to be independently circular
secure and leakage resilient. We also show that the scheme is CS+LR secure in
section 5.2. We then present our construction of a UPKE scheme (section 5.3),
extended from the PKE scheme. We finally prove that the UPKE scheme is
IND-CPA secure in section 5.4.

5.1 The BHHO Cryptosystem

In this section, we present a modified version of the original BHHO Cryptosystem.
This is presented as Construction 1.

Correctness. Let m ∈ G. Enc(pk,m) = (f1 = gr1, . . . , f` = gr` , c = hr · m).
Now, Dec(sk, f1, . . . , f`, c) outputs: c · (

∏`
i=1 f

si
i)−1 = hr · m(

∏`
i=1 f

si
i)−1 =

(
∏`
i=1 g

si
i)r ·m · (

∏`
i=1(gri)si)−1 = m.

5.2 CS+LR Security of BHHO Cryptosystem

In this section, we provide proof of the combined circular security and leakage
resilience of the BHHO Cryptosystem. Formally, we will prove the following
theorem:
Theorem 2. Under the DDH Assumption, Construction 1 is λ-CS+LR secure
for leakage λ = `− 2 log p− ω(log κ).

10In our security proofs, the function f will be applied to each bit of the secret key.

13

Protocol BHHO Cryptosystem

Gen(1κ)

Sample s = (s1, . . . , s`)←$ {0, 1} and
g1, . . . , g`←$ G.
Compute h =

∏`

i=1 g
si
i .

return sk = s ∈ Z`p, pk = (g1, . . . , g`, h) ∈ G`+1 .

Enc(pk,m ∈ G)

Parse pk = (g1, . . . , g`, h)
Sample r←$ Zp
for i = 1, . . . , ` do

Compute fi = gri
return C = (f1, . . . , f`, c = hr ·m) ∈ G`+1

Dec(sk, C)

Parse C = (f1, . . . , f`, c = hr ·m) and sk = s =
(s1, . . . , s`) ∈ Z`p

Compute m′ = c ·
(∏`

i=1 f
si
i

)−1

return m′

Construction 1. A modified version of the BHHO Cryptosystem where the bits of
the secret key are not encoded as group elements. Let κ be the the security parameter.
Let G be a probabilistic polynomial-time “group generator” that takes as input 1κ
and outputs the description of a group G with prime order p = p(κ) and g is a fixed
generator of G.

However, before we can prove the theorem, we will prove that there ex-
ists an algorithm Enc′(pk, i) such that (pk,Enc(pk, gsi), s) ≈c (pk,Enc′(pk, i), s).
Consider the following definition of Enc′:

Enc′(pk, i) = (f1 = gr1, . . . , fi−1 = gri−1, fi = gri /g, fi+1 = gri+1, . . . , f` = gr` , h
r)

We will first show that this ciphertext decrypts correctly to gsi .

Dec(s, f1, . . . , f`, c = hr) = hr ·

(∏̀
i=1

fsi
i

)−1

= hr

(∏̀
i=1

gi
si

)−r
gsi = hrh−rgsi = gsi

Lemma 3. Under the DDH Assumption, (pk,Enc(pk, gsi), s) ≈c (pk,Enc′(pk, i), s)
where (pk, s)←$ Gen(1κ)
Proof. We will prove the lemma through a sequence of hybrids, outlined in
Table 2.

Hybrid D0. This is when Enc is used to encrypt gsi . It corresponds to the
distribution:

(pk, gr1, . . . , gr` , hr · gsi , s : r←$ Zp)

Hybrid D1. This is same as Hybrid D0 where we replace hr by the steps of the
decryption algorithm. It corresponds to the distributionpk, f1 = gr1, . . . , f` = gr` ,

∏̀
j=1

f
sj

j · g
si , s : r←$ Zp


The distributions D0 and D1 are identical for the same value of r←$ Zp.

Therefore, there is no distinguishing advantage for any adversary A.

14

Table 2. Proof Outline for Lemma 3

Hybrid Hybrid Definition Security
D0 Enc is used to encrypt gsi

Identical
D1 D0 except hr · gsi replaced with

∏`

j=1 f
sj

j · g
si

DDH
D2 D1 except each fj ←$ G

Identical
D3 D2 except fi is replaced by fi/g where fi←$ G

DDH
D4 D3 except fj = grj where r←$ Zp

Identical
D5 Enc′ is used to encrypt gsi

Hybrid D2. In this case, we sample each fi←$ G. This corresponds to the
distribution: pk, f1, . . . , f`,

∏̀
j=1

f
sj

j · g
si , s : f1, . . . , f`←$ G


Claim. If DDH (as defined in Lemma 2) is hard for G, then for every PPT A,
the advantage in distinguishing Hybrids D1 and D2 is negligible.

Proof. We will use an adversary A capable of distinguishing between the two
distributions to create an adversary B that can win against the DDH Game. After
receiving input from the challenger (g1, . . . , g`, f1, . . . , f`), B generates (pk, sk = s)
and returns to A: (f1, . . . , f`,

∏`
j=1 f

sj

j · gsi , s). It is easy to see that B perfectly
simulates one of the hybrids based on the input it receives. This concludes the
proof that A has negligible advantage in distinguishing the two hybrids. ut

Hybrid D3. The same distribution as Hybrid 2, except that fi is replaced by
fi/g. pk, f1, . . . , fi−1, fi/g, fi+1, . . . , f`,

∏̀
j=1

f
sj

j · g
si , s : f1, . . . , f`←$ G


We know that for fixed g, fi/g is indistinguishable from fi where fi←$ G. There-
fore, the distributions are identical and A has no advantage in distinguishing the
two distributions.

Hybrid D4. This is corresponding to the distribution where fj = grj where
r←$ Zp. pk, gr1, . . . , gri−1, g

r
i /g, g

r
i+1, . . . , g

r
` ,
∏̀
j=1

f
sj

j · g
si , s : r←$ Zp


Claim. If DDH (as defined in Lemma 2) is hard for G, then for every PPT A,
the advantage in distinguishing Hybrids D3 and D4 is negligible.
The proof of this claim is similar to the proof of the earlier claim.

15

Table 3. Proof Outline for Theorem 2

Hybrid Hybrid Definition Security
D0 The Original CS+LR Security Game, Enc is used Corollary 1
D1 D0 except Enc′ is used

Identical
D2 D1 except except hr ·mb replaced with

∏`

j=1 f
sj

j ·mb

DDH
D3 D2 except each fi is replaced by fi←$ G

Leftover Hash Lemma
D4 D3 except

∏`

j=1 f
sj

j ·mb replaced by U ←$ G

Hybrid 5. This is corresponding to the distribution (Enc′(pk, i), s), fi = gri /g
where r←$ Zp.

(pk, f1 = gr1, . . . , fi−1 = gri−1, fi = gri /g, fi+1 = gri+1, . . . , f` = gr` , h
r, s : r←$ Zp)

It is clear that the input distribution in Hybrids D4 and D5 are identical for the
same r and A has no advantage in distinguishing the two distributions. This is
because:

∏`
j=1 f

sj

j · gsi =
∏
j 6=i g

rsj

j · grsi
i /gsi · gsi = (

∏`
j=1 g

sj

j)r = hr.
Therefore, we have shown that (Enc(pk, gsi), s) ≈c (Enc′(pk, i), s). ut

Further, note that each si is independently chosen. Additionally, each encryption/fake-
encryption chooses its own independent randomness r. Therefore, we can inde-
pendently replace each Enc(pk, gsi) with Enc′(pk, i), and the resulting encryption
of secret key is computationally indistinguishable from the one computed by Enc′.
This proof can be shown by a sequence of hybrids, replacing one encryption at a
time. Therefore, as a corollary we get that:

Corollary 1. Under the DDH Assumption,

(pk,Enc(pk, gs1), . . . ,Enc(pk, gs`), s) ≈c (pk,Enc′(pk, 1), . . . ,Enc(pk, `), s)

With this corollary, we can prove the original theorem:

Theorem 2. Under the DDH Assumption, Construction 1 is λ-CS+LR secure
for leakage λ = `− 2 log p− ω(log κ).

Proof. We will prove the same through a sequence of hybrids, summarized in
Table 3. Note that each of our hybrid distribution contains pk and L(sk = s) in
its definition. We drop these terms from the definition for simplicity and merely
focus on the two ciphertexts which undergo the bulk of the changes.

Hybrid D0. The original CS+LR Game. In this hybrid, A receives the following
distribution:

(C = (f1 = gr1, . . . , f` = gr` , h
r ·mb), C ′ = (Enc(pk, gs1), . . . ,Enc(pk, gs`)) : r←$ Zp)

16

Hybrid D1. The CS+LR Game but with C ′ consisting of the “fake encryption”
algorithm. This corresponds to the distribution:(
C = (f1 = gr1, . . . , f` = gr` , h

r ·mb), C ′ = (Enc′(pk, 1), . . . ,Enc′(pk, `)) : r←$ Zp
)

In Corollary 1 we showed that the two distribution were indistinguishable even
when conditioned on the secret key s. However, in the definition of D0, D1,
we only provide partial leakage L(s), and hence A has negligible advantage in
distinguishing the two distributions.

Hybrid D2. It is similar to hybrid D1, but with hr ·mb replaced by
∏`
j=1 f

sj

j ·mb.
This is the following distribution:C =

f1 = gr1, . . . , f` = gr` ,
∏̀
j=1

f
sj

j ·mb

 , C ′ : r←$ Zp


For the same r, the distributions from Hybrids D2 and D3 are identical. Therefore,
A has no advantage in distinguishing the two hybrids.

Hybrid D3. Similar to hybrid D2, except each fi←$ G. This is the following
distribution:C =

f1, . . . , f`,
∏̀
j=1

f
sj

j ·mb

 , C ′ : f1, . . . , f`←$ G


Claim. If DDH is hard for G, then for every PPT A, the advantage in distin-
guishing hybrids D2 and D3 is negligible.

Proof. We will use an adversary A capable of distinguishing hybrids D2 and
D3 to create B that can win against the DDH Game. B receives from the
DDH Challenger: (g1, . . . , g`, f1, . . . , f`). It chooses s←$ {0, 1}` and sets pk =
(g1, . . . , g`, h) where h =

∏`
i=1 g

si
i and sets sk = s. It then sends to A: (pk, L(sk =

s), C = (f1, . . . , f`,
∏`
j=1 f

sj

j ·mb), C ′ = (Enc′(pk, 1), . . . ,Enc′(pk, `))). It is easy
to see that B perfectly simulates the distributions of hybrids D2 and D3 based
on the input it receives. It merely forwards A’s guess as its own. This concludes
the proof that A has a negligible advantage in distinguishing hybrids D2 and
D3. ut

Hybrid D4. Replace
∏`
j=1 f

sj

j with a random value U ←$ G. This gives the
distribution:(
C = (f1, . . . , f`, U ·mb), C ′ = (Enc′(pk, 1), . . . ,Enc′(pk, `)) : U, f1, . . . , f`←$ G

)
Claim. Hybrids D3 and D4 are statistically indistinguishable .

17

Proof. We can represent fi←$ G as gri for random ri←$ Zp. Therefore, the term∏`
j=1 f

sj

j = g〈r,s〉 where r = (r1, . . . , r`). Now, note that distinguishing hybrids
D3 and D4 is at least as hard as distinguishing the following two ensembles:

(r1, . . . , r`, 〈r, s〉, C ′ : r1, . . . , r`←$ Zp); (r1, . . . , r`, u, C
′ : u, r1, . . . , r`←$ Zp)

If one could distinguish the second pair of distributions, then they can efficiently
calculate the value of gri and g〈r,s〉, thereby distinguishing the original pair of
distributions.

We will now complete the proof by showing that the second pair of distribu-
tions are statistically indistinguishable. To this end, we will use LHL, as defined
in Theorem 1. We have that

H∞(s|C ′, L(s), pk) = H∞(s|L(s), pk) ≥ H∞(s|L(s))− log p ≥ `− λ− log p.

This is because C ′ is independent of the sk conditioned on pk, the value pk’s
component of h comes from a domain of size p, and L was a leakage function that
satisfied H∞(s|L(s)) = `−λ. Now, consider, the hash function familyH consisting
of hr(s) = 〈r, s〉 mod p. The output length is m = log p. This is a universal hash
family. To apply LHL we need, m = k−2 log(1/ε). Here k = `−λ−log p. Therefore,
log p = ` − λ − log p − 2 log(1/ε). Or if λ ≤ ` − 2 log p − 2 log(1/ε), for some
negligible ε then the latter two distributions are statistically indistinguishable. ut

It follows from the above claim that A has a negligible advantage in distinguishing
hybrids D3 and D4. Further, in Hybrid 4, the message is masked by a random
value and therefore A has no advantage in Hybrid D4.

Combining the different hybrid arguments together, we get that any PPT
algorithm A has a negligible advantage in the CS+LR security game. ut

5.3 UPKE Construction

In this section, we present our construction of an updatable public key encryption
based on the BHHO Cryptosystem. This is presented in Construction 2.

Correctness. Informally, correctness requires that any message m encrypted by
an updated public key decrypts with the help of the corresponding updated secret
key to the same message m, always.
– Let (sk, pk) ← U-PKEG(1κ). Here, sk = s = (s1, . . . , s`)←$ {0, 1}`, and

sk = (g1, . . . , g`,
∏`
j=1 g

si
i).

– Let r be the randomness used for the Upd-Sk procedure. Let δ = (δ1, . . . , δ`)
be the first ` bits of r. We have (pk′, up) ← Upd-Pk(pk). Here, pk′ =
(g1, . . . , g`, h ·

∏`
j=1 g

δi
i). up = (gr1

1 , . . . , g
r1
` , h

r1 · gδ1), . . . , (gr`
1 , . . . , g

r`

` , h
r` ·

gδ`).
– We will look at Upd-Sk now. It is easy to verify that Upd-Sk correctly decrypts

each ciphertext in up to corresponding gδi . This is either 1 when δi = 0 or
non-identity if δ = 1. It then updates s′ = s+ δ. Interestingly, while s was
initialized to be a bit string, each element grows slowly over Zp.

18

Protocol DDH-Based UPKE

U-PKEG(1κ)

Sample s = (s1, . . . , s`)←$ {0, 1} and
g1, . . . , g`←$ G.
Compute h =

∏`

i=1 g
si
i .

return sk = s ∈ Z`p, pk = (g1, . . . , g`, h) ∈ G`+1 .

U-Enc(pk,m ∈ G)

Parse pk = (g1, . . . , g`, h)
Sample r←$ Zp
for i = 1, . . . , ` do

Compute fi = gri
return C = (f1, . . . , f`, c = hr ·m) ∈ G`+1

U-Dec(sk, C)

Parse C = (f1, . . . , f`, c = hr ·m) and sk = s =
(s1, . . . , s`) ∈ Z`p

Compute m′ = c ·
(∏`

i=1 f
si
i

)−1

return m′

Upd-Pk(pk)

Parse pk = (g1, . . . , g`, h)
Sample δ = (δ1, . . . , δm)←$ {0, 1}`

Compute h′ = h ·
(∏`

i=1 g
δi
i

)
Encrypt δ bit-by-bit, i.e., up =(
U-Enc(pk, gδ1), . . . ,U-Enc(pk, gδ`)

)
.

return (up, pk′ = (g1, . . . , g`, h
′))

Upd-Sk(sk, up)

Parse up = (c1, . . . , c`)
for i = 1, . . . , ` do

Compute ui = U-Dec(sk, ci)
if ui = 1 then

Set δi = 0
else

Set δi = 1
Compute s′ = s+δ where δ = (δ1, . . . , δ`) and addition
is element-by-element over Zp.
return sk′ = (s′)

Construction 2. DDH Based Construction. Let κ be the the security parameter. Let G
be a probabilistic polynomial-time “group generator” that takes as input 1κ and outputs
the description of a group G with prime order p = p(κ) and g is a fixed generator of G.
Set ` = d5 log pe.

– Consider U-Enc(pk′,m). The resulting ciphertext is (gu1 , . . . , gu` , h′u ·m) for
u←$ Zp.

– Consider U-Dec(sk′, gu1 , . . . , gu` , h′u ·m)). The decryption algorithm returns:

h′u ·m · (
∏̀
j=1

(guj)s
′
j)−1 = (h ·

∏̀
j=1

g
δj

j)u ·m · (
∏̀
j=1

(guj)s
′
j)−1

= (
∏̀
j=1

g
sj

j ·
∏̀
j=1

g
δj

j)u ·m · (
∏̀
j=1

(guj)sj+δj)−1 = m

– The same can be extended to additional updates. The key point to note is
that the algorithms do not need s to be a bit string and therefore can, and
indeed will grow.

5.4 Security of the UPKE Construction

Theorem 3. Under the DDH Assumption, Construction 2 is IND-CR-CPA secure
UPKE.

Proof. We proved in Theorem 2 that Construction 1 is CS+LR secure with
λ = `− 2 log p− ω(log κ), under the DDH Assumption. We will use this as the
starting point and use an adversary A against the IND-CPA game of the UPKE

19

construction to construct an adversary B against the CS+LR Security game of
the PKE Scheme.
– The reduction B receives from the challenger the public key pk0 corresponding

to some secret key s0.
– It has a time period counter t initialized to 0
– B provides pk0 to the adversary A.
– B responds as follows to the oracle queries to Oupd(·) as follows:

For each input invocation, it increments the counter t to i and records the δi
it receives as input.

– B then receives the challenge messages m∗0,m∗1.
– B then provides the randomized leakage function L(sk; δ∗) = s0 + δ∗ where

the addition is element-by-element over Zp. Looking ahead, δ∗ will correspond
to the randomness for the fresh update before the secret key is provided to
the A. It also sets m∗0,m∗1 as its challenge messages.

– B sends to its challenger the leakage function L,m∗0,m∗1. It also specifies the
function f to be the encryption of each bit of the secret key in the exponent.

– In response, B receives C which is an encryption of m∗b under pk0, C’ which
is a encryption of s0, bit-by-bit in the exponent, under pk0, and a leakage z
on s0 defined by z = s0 + δ∗ for unknown δ∗←$ {0, 1}`. More formally,

C = U-Enc(pk0,m
∗
b);C ′ = (U-Enc(pk0, g

s1), . . . ,U-Enc(pk0, g
s`))

– At this point, let the time period be q′. Now, A expects c∗ = U-Enc(pkq′ ,m∗b).
So B does the following to compute c∗:

• B has C = (U-Enc(pk0,m
∗
b)) or C = (f1, . . . , f`, c = hr ·m∗b).

• It computes ∆′ =
∑q′

i=1 δi. ∆ = (∆′1, . . . ,∆′`)
• To convert it into a public key corresponding to sq′ = s0 +∆′, we do

the following:

c∗ =

f1, . . . , f`, c ·
∏̀
j=1

f
∆′j
j


This is where we employ the key homomorphism property.

– B sends to A the value of c∗.
– B continues to respond to Oupd(·) queries as before. When A finally stops,

let q be the time period. Now, B does the following:

• To compute s∗:

∗ It sets ∆ =
∑q
i=1 δi. Again, the operation is element-by-element

addition over Zp.

20

Let ∆ = (∆1, . . . ,∆`).
∗ With the knowledge of z and ∆, B sets s∗ = sq+1 = z +∆. Recall

that z = s0 + δ∗ for random δ∗. In other words, B implicitly sets
δq+1 = δ∗, corresponding to the final secure update.

• To compute pk∗: With the knowledge of s∗ it is also easy to generate
the corresponding public key pk∗ by merely computing the value of
h∗ =

∏`
i=1 g

s∗i
i where s∗ = (s∗1, . . . , s∗`). Therefore, pk∗ = (g1, . . . , g`, h

∗)
• To compute up∗:

∗ Recall that up∗ =
(
U-Enc(pkq, gδ1), . . .U-Enc(pkq, gδ`

)
where δ∗ =

(δ1, . . . , δ`)).
∗ B has C ′ = (U-Enc(pk0, g

s1), . . . ,U-Enc(pk0, g
s`)) where s0 = (s1, . . . , s`))

∗ Note that for all i = 1, . . . , `, by definition, δi = zi − si ∈ Zp.
∗ Let cti = Enc(pk0, g

si) = (f1, . . . , f`, c = hr · gsi)
∗ For i = 1, . . . `, then we transform each cti into ct′i where

ct′i =

f ′1 = f−1
1 , . . . , f ′` = f−1

` , c′ =

c · g−zi ·
∏̀
j=1

f
−∆j

j

−1


Now, up∗ = (ct′1, . . . , ct′`)

– Send (pk∗, sk∗, up∗) to A.
– B forwards A’s guess as its own.

Analysis of Reduction. We first show that the leakage function defined here has
sufficiently small entropy loss.

Claim. H∞(s0|z) = `− λ where λ = `(1− log2(4/3))

Proof. First note that the components of z = (z1, . . . , z`) and s0 = (s1, . . . , s`)
are independent of each other so H∞(s0|z) =

∑
i H∞(si|zi). Now, the distribution

of zi is given by

P [zi = 0] = P [zi = 2] = 1/4,P [zi = 1] = 1/2

Further,

P [si = 0|zi = 0] = 1,P [si = 0|zi = 2] = 0,P [si = 0|zi = 1] = 1
2

Therefore, H∞(si|zi) = − log2(1 · P [zi = 0] + 1 · P [zi = 2] + 1
2 P [zi = 1]) =

− log(3/4) and H∞(s0|z) = ` · log2(4/3). ut

We now show that the distribution of ciphertext is correct. We will show it is
correct for any i. We have ci = (f1, . . . , f`, c = hr · gsi). First, we first transform

21

it into a cipher text of z − s0, under pk0. This is message homomorphism. We
then transform this ciphertext, under pk0 to a ciphertext encrypting the same
message under pkq. This is the property of key homomorphism.
– Multiplying c with g−zi gives us a valid encryption of gsi−zi . However, we

have that zi − si = di where δ∗ = (d1, . . . , d`).
– To obtain the encryption of gzi−si we merely take the inverse of all elements,

and then multiply the last element by gzi . Therefore,

c′i = (f ′1 = gr
′

1 = f−1
1 , . . . , f ′` = gr

′

` = f−1
` , c′ = c−1 · gzi = hr

′
· g−si · gzi)

with r′ = −r.
– Now, note that skq = sk0 +∆ = (s1 + ∆1, . . . , s` + ∆`). The public key is

therefore pkq = (g1, . . . , g`, hq) where hq = h·
∏`
j=1 g

∆j

j . In order to transform
a ciphertext c′i = (f ′1, . . . , f ′`, c′) under pk0 to a ciphertext under pkq we modify
the last component, c′ as c′ ·

∏`
j=1 f

′∆j

j = (c · g−zi ·
∏`
j=1 f

∆j

j)−1.
Under this reduction, it is easy to see that B perfectly simulates the IND-CR-CPA game
for A. The advantage of A against the IND-CR-CPA is the same as the advantage
of B. ut

Choice of Parameters. We have from Theorem 2 that λ ≤ `− 2 log p− ω(log κ).
We have also shown that our reduction needs `− λ = ` · log2(4/3). Therefore, we
have that ` ≥ 2

log2(4/3) log p+ ω(log κ). Or, ` = d5 log pe.

6 Constructions based on LWE

This section presents construction from the LWE Assumption. We begin by
presenting a slightly modified version of the dual-Regev PKE Scheme [48,33] in
section 6.1. We show that the scheme is CS+LR secure in section 6.2. We then
present our construction of a UPKE scheme (section 6.3), extended from the
PKE scheme. We finally prove that the UPKE scheme is IND-CR-CPA secure in
section 6.4.

6.1 The Dual Regev or GPV Cryptosystem

The construction is presented as Construction 3.

Correctness. We show that the decryption algorithm is correct with overwhelming
probability (over the choice of the randomness of Gen,Enc). The decryption
algorithm computes:

〈r, t〉 = 〈r,ATx+ e〉 = 〈r,ATx〉+ 〈r, e〉 = 〈x,u〉+ 〈r, e〉

pad− 〈r, t〉 = 〈x,u〉+ e′ + b

⌊
p

2

⌋
− 〈r, t〉 = b

⌊
p

2

⌋
+ (e′ − 〈e, r〉)

Now, note that e′ − 〈e, r〉 is small in comparison to p. Therefore, the computed
value is closer to bp/2c when b = 0 and the opposite when b = 1.

22

Protocol Dual Regev or GPV Cryptosystem

Gen(1κ)

Sample A←$ Zn×mp

Sample r←$ {0, 1}m
Compute u = Ar
return (pk = (A,u), sk = (r))

Enc(pk, b ∈ {0, 1})

Parse pk = (A,u)
Sample x←$ Znp , e←$ χm, e′ ← χ′

Compute t = ATx+ e
Compute pad = 〈x,u〉+ e′ + bbp/2c
return c = (t, pad)

Dec(sk, c)

Parse c = (t, pad) and sk = r
Compute b′ = (pad− 〈r, t〉) ∈ Zp
return 0 if m′ is closer to 0 than to bp/2c and 1
otherwise.

Construction 3. The Dual Regev or GPV Cryptosystem. Let n,m, p be integer pa-
rameters of the scheme. We will assume that LWE holds where p is super-polynomial
and χ is polynomially bounded. Then, we set χ′ to be uniformly random over (say)
[−p/8, p/8].

6.2 CS+LR Security of the dual-Regev Cryptosystem

In this section, we provide proof of the combined circular security and leakage
resilience of the dual-Regev Cryptosystem. Formally, we will prove the following
theorem:

Theorem 4. Under the LWE Assumption, Construction 3 is λ-CS+LR secure
with leakage λ = m− (n+ 1) log p− ω(log κ).

Before we can prove the above theorem, we show the existence of an encryption
algorithm Enc′ such that

(Enc′(pk, i), sk) ≈c (Enc(pk, ri), sk).

Consider: Enc′(pk, i) := (t′, pad′) where:
– Let x←$ Znp , e←$ χm and d = (d1 = 0, . . . , di−1 = 0, di = −bp/2c, di+1 =

0, . . . , dm = 0). Then, t′ = ATx+ e+ d.
– pad′ = 〈x,u〉+ e′ where e′ is chosen from a distribution χ′ such that e′ +B

is statistically indistinguishable from e′ where B ∈ Zp.

Lemma 4. Under the LWE Assumption, (pk,Enc′(pk, i), sk) ≈c (pk,Enc(pk, ri), sk).
where (pk, sk)←$ Gen(1κ)

Proof Sketch. We will prove through a sequence of hybrids, summarized in Table 4.
The complete proof of this Lemma can be found in the full version of the paper
[29].

23

Table 4. Proof Outline for Lemma 4

Hybrid Hybrid Definition Security
D0 Enc is used to encrypt ri Lemma 1
D1 D0 except 〈x,u〉 replaced with 〈r, t〉

LWE
D2 D1 except t = ATx+ e replaced with t←$ Znp

Identical
D3 D2 except t replaced with t+ d where d = (0, . . . , 0, di = −bp/2c, 0, . . . , 0)

LWE
D4 D3 except t = ATx+ e where x←$ Znp , e←$ χm

Lemma 1
D5 Enc′ is used to encrypt ri

Further, note that r is independently chosen, bit by bit. In addition, each
Enc, Enc′ has independently chosen randomness. Therefore, as a corollary we get
that:

Corollary 2. Under the LWE Assumption,

(pk,Enc(pk, r1), . . . ,Enc(pk, rm), sk) ≈c (pk,Enc′(pk, 1), . . . ,Enc′(pk,m), sk)

We can now prove the original theorem:

Theorem 4. Under the LWE Assumption, Construction 3 is λ-CS+LR secure
with leakage λ = m− (n+ 1) log p− ω(log κ).

Proof Sketch. We prove this similar to the proof of Theorem 2. This is done
through a sequence of hybrids, summarized in Table 5. The complete proof of
this Theorem can be found in the full version of the paper [29].

Table 5. Proof Outline for Theorem 4

Hybrid Hybrid Definition Security
D0 The Original CS+LR Security Game, Enc is used Corollary 2
D1 D0 except Enc′ is used

Identical
D2 D1 except 〈x,u〉 replaced with 〈r, t〉

LWE
D3 D2 except t = ATx+ e replaced with t←$ Znp .

Leftover Hash Lemma
D4 D3 except 〈r, t〉 replaced with U ← Zp

6.3 UPKE Construction

In this section, we present our construction of an updatable public key encryption
based on the dual-Regev cryptosystem. This is presented in Construction 4.

24

Protocol LWE-Based UPKE

U-PKEG(1κ)

Sample A←$ Zn×mp

Sample r←$ {0, 1}m
Compute u = Ar
return (pk = (A,u), sk = (r))

U-Enc(pk, b ∈ {0, 1})

Parse pk = (A,u)
Sample x←$ Znp , e←$ χm, e′ ← χ′

Compute t = ATx+ e, pad = 〈x,u〉+ e′ + bbp/2c
return c = (t, pad)

U-Dec(sk, c)

Parse c = (t, pad) and sk = r
Compute b′ = (pad− 〈r, t〉) ∈ Zp
return 0 if m′ is closer to 0 than to bp/2c and 1
otherwise.

Upd-Pk(pk)

Parse pk = (A,u)
Sample δ = (δ1, . . . , δm)←$ {0, 1}m
Compute u′ = u+Aδ
Encrypt δ bit-by-bit, i.e., up =
(U-Enc(pk, δ1), . . . ,U-Enc(pk, δm)).
return (up, pk′ = (A,u′))

Upd-Sk(sk, up)

Parse up = (c1, . . . , cm)
for i = 1, . . . ,m do

δi = U-Dec(sk, ci)
Compute r′ = r + δ where δ = (δ1, . . . , δm)
return sk′ = (r′)

Construction 4. LWE Based Construction. Let n,m, p be integer parameters of the
scheme. We will assume that LWE holds where p is super-polynomial and χ is polynomi-
ally bounded. Then, we set χ′ to be uniformly random over (say) [−p/8, p/8]. Further,
we have that m ≥ (n+1)

log2(4/3) log p+ ω(log κ).

Correctness. The property of correctness of UPKE requires that a bit b encrypted
by an updated public key decrypts to the same bit b when the corresponding
updated secret key is used.
– (pk = (A,u = Ar), sk = r)← U-PKEG(1κ)
– We have the update bit δ←$ {0, 1}m. We have the updated public key

pk′ = (A,u′) where u′ = u+Aδ. We also have sk′ = r′ = r + δ
– Let us look at U-Enc(pk′, b). It produces ciphertext (t, pad) where t = ATx+e,
pad = 〈x,u′〉+ e′ + bbp/2c.

– Now, let us look at U-Dec(r′, (t, pad)). It computes

pad− 〈r′, t〉 = 〈x,u′〉+ e′ + bbp/2c − 〈r + δ,ATx+ e〉
= 〈x,Ar +Aδ〉+ e′ + bbp/2c − 〈r + δ,ATx+ e〉
= 〈x,A(r + δ)〉 − 〈r + δ,AT ,x〉+ e′ − 〈e, r〉+ bbp/2c
= e′ − 〈e, r〉+ bbp/2c

– Now, note that e′−〈e, r〉 is small in comparison to p. Therefore, the computed
value is closer to bp/2c when b = 0 and the opposite when b = 1.

6.4 Security of the UPKE Construction

Theorem 5. Under the LWE Assumption, Construction 4 is IND-CR-CPA secure
UPKE.

25

Proof. The proof is very similar to the proof of Theorem 3. We proved in
Theorem 4 that the PKE scheme was CS+LR secure with λ ≤ m− (n+ 1) log p−
ω(log κ), under the LWE assumption. We will use this to construct B against the
CS+LR game by using A against the IND-CPA Game.

– The reduction B receives from the challenger the public key pk0 corresponding
to some secret key s0.

– It has a time period counter t initialized to 0
– B provides pk0 to the adversary A.
– B responds as follows to the oracle queries to Oupd(·) as follows:

For each input invocation, it increments the counter t to i and records the δi
it receives as input.

– B then receives the challenge messages m∗0,m∗1.
– B then provides the randomized leakage function L(sk; δ∗) = s0 + δ∗ where

the addition is element-by-element over Zp. Looking ahead, δ∗ will correspond
to the randomness for the fresh update before the secret key is provided to
the A. It also sets m∗0,m∗1 as its challenge messages.

– B sends to its challenger the leakage function L,m∗0,m∗1. It also specifies the
function f to be the encryption of each bit of the secret key.

– In response, B receives C which is an encryption of m∗b under pk0, C’ which
is a encryption of s0, bit-by-bit, under pk0, and a leakage z on r0 defined by
z = r0 + δ∗ for unknown δ∗←$ {0, 1}m. More formally,

C = U-Enc(pk0,m
∗
b);C ′ = (U-Enc(pk0, r1), . . . ,U-Enc(pk0, rm))

– At this point, let the time period be q′. Now, A expects c∗ = U-Enc(pkq′ ,m∗b).
So B does the following to compute c∗:

• B has C = U-Enc(pk0,m
∗
b) or C =

(
t = ATx+ e, pad = 〈x,u〉+ e′ +m∗bbp/2c

)
.

• It computes ∆′ =
∑q′

i=1 δi.
• It computes pad∗ = pad+ 〈∆′, t〉 and sets t∗ = t.
• Now, c∗ = (t∗, pad∗)

– B sends to A the value of c∗.
– B continues to respond to Oupd(·) queries as before. When A finally stops,

let q be the time period. Now, B does the following:

• To compute sk∗ = r∗:

∗ Set ∆ =
∑q
i=1 δi.

∗ With the knowledge of z,∆, B sets r∗ = rq+1 = z +∆.

26

• To compute pk∗: With the knowledge of A, r∗, B computes u∗ = Ar∗.
It sets pk∗ = (A,u∗).

• To compute up∗: B has bit-by-bit encryption of r0. It needs to compute
the bit-by-bit encryption of δ∗ = z − r0. For simplicity, assume that z is
a trit, i.e., taking value 0, 1, 2. Let r0 = (r1, . . . , rm), δ∗ = (d1, . . . , dm)
and z = (z1, . . . , zm). Recall that ri, di ∈ {0, 1} while zi ∈ {0, 1, 2}.
We will first look at how to transform U-Enc(pk0, ri) to U-Enc(pk0, di).

∗ If zi = 2, then we have that ri = di = 1. Therefore, U-Enc(pk0, ri) =
U-Enc(pk0, di) and we do not need to do anything.

∗ Similarly if zi = 0, then we have that ri = di = 0. Once again,
U-Enc(pk0, ri) = U-Enc(pk0, di) and we do not need to do anything.

∗ If zi = 1, then we merely need U-Enc(pk0, ri) to be modified to
U-Enc(pk0, 1− ri). To achieve this we merely add bp/2c to the second
term in the ciphertext.

To convert U-Enc(pk0, di) to U-Enc(pkq, di) we do the following:

∗ Note that U-Enc(pk0, di) = (t0, pad0) where t0 = ATx + e and
pad0 = 〈x,u0〉+ e′ + bbp/2c. Further, uq = u0 +A∆

∗ Let tq = t0, then padq = pad0 + 〈∆, t0〉. with the choice

– Send (pk∗, sk∗, up∗) to A.
– B forwards A’s guess as its own.

Analysis of the Reduction. We first show that the leakage function has sufficiently
small entropy loss.
Claim. H∞(r0|z) = m− λ, where λ = m(1− log2(4/3))
The above is identical to Claim 5.4 in the proof of Theorem 3.

We then need to show that the distribution of ciphertext is correct. Specifically,
the distribution of the update ciphertext. We have t0 = tq. We will show that padq
is correctly distributed. By definition we have that: padq = 〈x,uq〉+ e′ + bbp/2c.
Here, we compute padq as follows:

padq = pad0 + 〈∆, t0〉 = 〈x,u0〉+ e′ + bbp/2c+ 〈∆, t0〉
= 〈x,u0〉+ e′ + bbp/2c+ 〈∆,ATx+ e〉
= 〈x,u0〉+ 〈A∆,x〉+ e′ + 〈∆, e〉+ bbp/2c
= 〈x,uq〉+ e′ + 〈∆, e〉+ bbp/2c

We can now use the definition of distribution e′ and Lemma 1 to show that the
computed distribution is statistically indistinguishable from the actual distribu-
tion.

Under this reduction, it is easy to see that B perfectly simulates the IND-
CPA game for A. The advantage of A against the IND-CPA is the same as the
advantage of B. ut

27

Choice of Parameters. From Theorem 4, we have that m− λ ≥ (n+ 1) log p+
ω(log κ). Further, we have from the above claim that m − λ = m log2(4/3).
Putting the two together, we get m ≥ n+1

log2(4/3) log p+ ω(log κ).

7 Towards Stronger Security

In this section, we begin by presenting the CCA extension of the CPA security
game presented in Section 3. We later extend the CPA and CCA security to a
stronger definition. Due to space constraints, we invite the readers to refer to the
full version of this paper [29] for constructions that satisfy these definitions and
proofs of security.

IND-CR-CCA Security of UPKE. In Section 3, we defined a CPA based security
for an updatable public-key encryption. However, a natural extension is to
consider CCA based security of the UPKE. We will call this IND-CR-CCA which
is the abbreviation of INDistinguishability under Chosen Randomness Chosen
Ciphertext Attack. In this setting, the adversary is given access to also the
decryption oracle where the adversary can ask for decryption of a ciphertext
under the current secret key on a ciphertext of its choice or creation. To model
this access, we define two oracles:
– Oupd(·): The challenger on receiving the randomness ri from the adversary

does the following:

(upi, pki)← Upd-Pk(pki−1; ri); ski ← Upd-Sk(ski−1, upi) .

– D(·): The challenger on receiving ciphertext c as input, returns U-Dec(ski, c)
where i is the current epoch and ski is the secret key of the current epoch.

IND-CR-CCA Security. For any adversary A with running time t and we consider
the
IND-CR-CCA security game:

- Sample (sk0, pk0)← U-PKEG(1κ), b←$ {0, 1}.
- (m∗0,m∗1, state)←$AOupd(·),Odec(·)(pk0)
- Compute c∗←$ U-Enc(pkq′ ,m∗b) where q′ is the current time period.

- Compute state←$AOupd(·),Odec(·)(c∗, state).

• Here A is not allowed to query its Odec(·) oracle on the challenge ci-
phertext c∗ until A makes at least one (arbitrary) query to its Oupd(·)
oracle.

- Choose uniformly random r∗ and then compute

(up∗, pk∗)← Upd-Pk(pkq; r∗); sk∗ ← Upd-Sk(skq, up∗) .

where q is the current time period.

28

- b′←$A(pk∗, sk∗, up∗, state). Note that the adversary is not given access to
the decryption query as with knowledge of sk∗, it can perform the decryption
on its own.

- A wins the game if b = b′. The advantage of A in winning the above game is
denoted by AdvUPKE

crcca (A) = |P [b = b′]− 1
2 |.

Definition 7. An updatable public-key encryption scheme UPKE is IND-CR-CCA -
secure if for all PPT attackers A, its advantage AdvUPKE

crcca (A) is negligible.

Stronger CPA, CCA Security. In the definition of both the IND-CR-CPA and
the IND-CR-CCA security, we allowed the adversary to provide bad randomness
and the challenger honestly updated the public key based on this bad randomness.
However, one can consider a stronger attack where the attacker could provide an
arbitrary update ciphertext up and the new public key pk′. In other words, the
adversary chooses the full output (up, pk′) of the public key update algorithm
Upd-Pk, rather than its input r. The challenger will then check — using a special
new algorithm (see below) Verify-Upd(pk, up, pk′) — that the supplied values are
“consistent”. If so, it will update the secret key using sk ← Upd-Sk(sk, up), as
before. Otherwise, it will ignore this query of the attacker. With this intuition in
mind, we formalize the changes in the syntax and security of UPKE.

Syntactic Changes. We introduce a new algorithm Verify-Upd(pk, up, pk′) where
pk is the old public key, up is the update ciphertext and pk′ is the updated public
key. This algorithm outputs 1 iff pk′ is consistently produced by up and pk.

Security Game Changes. We also change the definition of Oupd(·). The new
definition is as follows:
– Oupd(·, ·): This takes as input two values up and pk′. It then runs τ ←

Verify-Upd(pk, up, pk′). If τ = 1, it runs sk′ ← Upd-Sk(sk, up), else it returns
⊥.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (Dec 2000). https://doi.org/10.1007/3-540-44448-3˙10

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-5˙28

3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore
bits and cryptography against memory attacks. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (Mar 2009).
https://doi.org/10.1007/978-3-642-00457-5˙28

4. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based encryp-
tion. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 334–352. Springer, Heidelberg (May 2012). https://doi.org/10.1007/978-3-642-
30057-8˙20

29

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20

5. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improvements
for the IETF MLS standard for group messaging. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer, Heidelberg
(Aug 2020). https://doi.org/10.1007/978-3-030-56784-2˙9

6. Anderson, R.: Invited lecture. Fourth Annual Conference on Computer and Com-
munications Security, ACM (1997)

7. Applebaum, B.: Key-dependent message security: Generic amplification
and completeness. Journal of Cryptology 27(3), 429–451 (Jul 2014).
https://doi.org/10.1007/s00145-013-9149-6

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (Aug 2009).
https://doi.org/10.1007/978-3-642-03356-8˙35

9. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs,
D.: Multiparty computation with low communication, computation and inter-
action via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (Apr 2012).
https://doi.org/10.1007/978-3-642-29011-4˙29

10. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-
5˙22

11. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener,
M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (Aug
1999). https://doi.org/10.1007/3-540-48405-1˙28

12. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (Apr 2003).
https://doi.org/10.1007/3-540-36563-X˙1

13. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/3-
540-36492-7˙6

14. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3˙14

15. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (May 2005). https://doi.org/10.1007/11426639˙26

16. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security in
updatable encryption schemes (2020), to appear in Asiacrypt 2020

17. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 108–125. Springer, Heidelberg (Aug 2008). https://doi.org/10.1007/978-3-540-
85174-5˙7

18. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (Aug 2013).
https://doi.org/10.1007/978-3-642-40041-4˙23

30

https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/s00145-013-9149-6
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-40041-4_23

19. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol.
12170, pp. 464–493. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-
3-030-56784-2˙16

20. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(Aug 2010). https://doi.org/10.1007/978-3-642-14623-7˙1

21. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218.
Springer, Heidelberg (Mar 2011). https://doi.org/10.1007/978-3-642-19571-6˙13

22. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-3-319-78381-
9˙20

23. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May 2001).
https://doi.org/10.1007/3-540-44987-6˙7

24. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9˙16

25. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. Journal of Cryptology 25(4), 601–639 (Oct 2012).
https://doi.org/10.1007/s00145-011-9105-2

26. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (Feb 2010).
https://doi.org/10.1007/978-3-642-11799-2˙22

27. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-
key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (Dec 2010).
https://doi.org/10.1007/978-3-642-17373-8˙35

28. Dodis, Y., Jost, D., Karthikeyan, H.: Forward-secure encryption with fast forwarding.
Manuscript (2021)

29. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. https://cs.nyu.edu/˜dodis/ps/upke.pdf (2021)

30. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 372–408. Springer,
Heidelberg (Nov 2017). https://doi.org/10.1007/978-3-319-70500-2˙13

31. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401,
pp. 537–569. Springer, Heidelberg (Aug 2017). https://doi.org/10.1007/978-3-319-
63688-7˙18

32. Everspaugh, A., Paterson, K.G., Ristenpart, T., Scott, S.: Key rotation for
authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 98–129. Springer, Heidelberg (Aug 2017).
https://doi.org/10.1007/978-3-319-63697-9˙4

31

https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-19571-6_13
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-17373-8_35
 https://cs.nyu.edu/~dodis/ps/upke.pdf
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63697-9_4

33. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC.
pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/1374376.1374407

34. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (Dec 2002).
https://doi.org/10.1007/3-540-36178-2˙34

35. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(Apr / May 2002). https://doi.org/10.1007/3-540-46035-7˙31

36. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (Aug 2001). https://doi.org/10.1007/3-540-44647-8˙20

37. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state
compromise: The safety of messaging. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer, Heidelberg (Aug
2018). https://doi.org/10.1007/978-3-319-96884-1˙2

38. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159–188. Springer, Heidelberg (May 2019).
https://doi.org/10.1007/978-3-030-17653-2˙6

39. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. Cryptology
ePrint Archive, Report 2019/302 (2019), https://eprint.iacr.org/2019/302

40. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with in-
tegrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS,
vol. 11476, pp. 68–99. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-
3-030-17653-2˙3

41. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato,
S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS, vol. 2576, pp. 241–256. Springer,
Heidelberg (Sep 2003). https://doi.org/10.1007/3-540-36413-7˙18

42. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 685–716. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/978-
3-319-78372-7˙22

43. Malkin, T., Micciancio, D., Miner, S.K.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (Apr / May
2002). https://doi.org/10.1007/3-540-46035-7˙27

44. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent pub-
lic key encryption with KDM security. In: Paterson, K.G. (ed.) EURO-
CRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (May 2011).
https://doi.org/10.1007/978-3-642-20465-4˙28

45. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS. pp. 458–467. IEEE Computer Society Press (Oct 1997).
https://doi.org/10.1109/SFCS.1997.646134

46. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (Aug
2009). https://doi.org/10.1007/978-3-642-03356-8˙2

47. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
3–32. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-1˙1

32

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://eprint.iacr.org/2019/302
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/978-3-030-17653-2_3
https://doi.org/10.1007/3-540-36413-7_18
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1109/SFCS.1997.646134
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-319-96884-1_1

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC. pp. 84–93. ACM Press (May
2005). https://doi.org/10.1145/1060590.1060603

33

https://doi.org/10.1145/1060590.1060603

	Updatable Public Key Encryption in the Standard Model
	Introduction
	Our Technique: Using Circular Security and Leakage-Resilience
	Additional Theoretical Contributions
	Related Work

	Preliminaries
	Updatable Public Key Encryption (UPKE)
	IND-CR-CPA Security of UPKE

	Key-Dependent-Message-Secure Encryption Scheme
	DDH Based Construction
	The BHHO Cryptosystem
	CS+LR Security of BHHO Cryptosystem
	UPKE Construction
	Security of the UPKE Construction

	Constructions based on LWE
	The Dual Regev or GPV Cryptosystem
	CS+LR Security of the dual-Regev Cryptosystem
	UPKE Construction
	Security of the UPKE Construction

	Towards Stronger Security

