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Abstract. We investigate the quality of security reductions for non-
interactive key exchange (NIKE) schemes. Unlike for many other crypto-
graphic building blocks (like public-key encryption, signatures, or zero-
knowledge proofs), all known NIKE security reductions to date are non-
tight, i.e., lose a factor of at least the number of users in the system. In
that sense, NIKE forms a particularly elusive target for tight security
reductions.
The main technical obstacle in achieving tightly secure NIKE schemes
are adaptive corruptions. Hence, in this work, we explore security notions
and schemes that lie between selective security and fully adaptive security.
Concretely:
We exhibit a tradeoff between key size and reduction loss. We

show that a tighter reduction can be bought by larger public and
secret NIKE keys. Concretely, we present a simple NIKE scheme
with a reduction loss of O(N2 log(ν)/ν2), and public and secret keys
of O(ν) group elements, where N denotes the overall number of users
in the system, and ν is a freely adjustable scheme parameter.
Our scheme achieves full adaptive security even against multiple “test
queries” (i.e., adversarial challenges), but requires keys of size O(N)
to achieve (almost) tight security under the matrix Diffie-Hellman
assumption. Still, already this simple scheme circumvents existing
lower bounds.

We show that this tradeoff is inherent. We contrast the security of
our simple scheme with a lower bound for all NIKE schemes in which
shared keys can be expressed as an “inner product in the exponent”.
This result covers the original Diffie-Hellman NIKE scheme, as well
as a large class of its variants, and in particular our simple scheme.
Our lower bound gives a tradeoff between the “dimension” of any
such scheme (which directly corresponds to key sizes in existing
schemes), and the reduction quality. For ν = O(N), this shows our
simple scheme and reduction optimal (up to a logarithmic factor).

We exhibit a tradeoff between security and key size for tight
reductions. We show that it is possible to circumvent the inherent
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tradeoff above by relaxing the desired security notion. Concretely,
we consider the natural notion of semi-adaptive security, where the
adversary has to commit to a single test query after seeing all public
keys. As a feasibility result, we bring forward the first scheme that
enjoys compact public keys and tight semi-adaptive security under
the conjunction of the matrix Diffie-Hellman and learning with errors
assumptions.
We believe that our results shed a new light on the role of adaptivity
in NIKE security, and also illustrate the special role of NIKE when
it comes to tight security reductions.
Keywords. Tight reductions, non-interactive key exchange, pairings,
learning with errors.

1 Introduction

Non-interactive key exchange (NIKE). A non-interactive key exchange
(NIKE) scheme assigns any two users Pi, Pj in a system a common shared key
Ki,j . This assignment should happen without any communication, and be based
only on a setup like a public-key infrastructure. A well-known example of a NIKE
is the original Diffie-Hellman key exchange scheme [14], in which any party has a
public key gxi with associated secret key xi, and the shared key for parties with
public keys gxi , gxj is computed as Ki,j = gxixj . For security, we would like that
Ki,j remains hidden to an outsider, i.e., without knowing any of the two involved
secret keys.

NIKE schemes have been studied as an explicit cryptographic building block by
Cash, Kiltz, and Shoup [9], followed by a more in-depth study of NIKE security
notions and corresponding schemes by Freire, Hofheinz, Kiltz, and Paterson
[19]. There are a variety of different NIKE schemes from various computational
assumptions (e.g., [14, 9, 19, 5, 35, 25, 24]), and a number of NIKE applications
including wireless networks [8], deniable authentication [15], and interactive key
exchange [6].4

NIKE and tight security. One interesting particularity of NIKE schemes
is the fact that it seems difficult to tightly reduce their security to a standard
computational assumption. All known security reductions for NIKE schemes
(against adaptive corruptions and to non-interactive assumptions in the standard
model) lose a factor of at least N , the overall number of users in the system.5
In fact, two works by Bader, Jager, Li, and Schäge [2] and Hesse, Hofheinz, and
Kohl [25] give lower bounds (of O(N2), resp. O(N)) on the reduction loss of
large classes of NIKE schemes and reductions.
4 In this work, we focus on the public-key setting, i.e., we assume a public-key infras-

tructure. We note, however, that NIKE has also been considered in the identity-based
setting [38, 17, 33].

5 This means that we can currently only map NIKE adversaries with success probability
ε and runtime t to adversaries on a suitable computational assumption with runtime
t′ ≈ t but success probability no more than ε′ ≈ ε/N .
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This is quite remarkable, since for most other cryptographic building blocks
(such as public-key encryption and digital signatures [26], zero-knowledge proofs
[23], or interactive key exchange [1]), tight security proofs are known even in a
multi-user setting. But apart from being a theoretical curiosity, this also means
that currently, NIKE keysizes should be chosen rather conservatively, in order to
account for a potential security loss in scenarios with a large number of users.

Meta-reductions, and what makes tight NIKE security particularly
hard to achieve. The mentioned works [2, 25] already give an indication of what
the main technical obstacle to a tight NIKE reduction is. Namely, they employ a
meta-reduction [4] that turns any reduction that is “too successful” (i.e., suffers
only from a low reduction loss) into a stand-alone problem solver. We give more
details on this technique in our technical overview below. This meta-reduction
technique has been applied also to other settings (like digital signatures [10], key
encapsulation [2], and hierarchical identity-based encryption [30]), but it always
hinges on one crucial requirement on the investigated scheme and reduction.

To explain this crucial requirement, assume for concreteness a given NIKE
security reduction Λ that is “too successful”. A meta-reduction requires that Λ is
of a special form, namely that Λ essentially simulates the whole NIKE security
experiment (including corruptions) for any NIKE adversary that is given in a
black-box way. Furthermore, in this simulation, Λ must be “committed” early
on to the secret state of this simulation, and in particular to all NIKE shared
keys, even if these shared keys are not revealed during the simulation. The reason
for this “committed” requirement will become clearer below, but intuitively it
enables a “rewinding attack” on the reduction Λ itself.6

Now NIKE and other cryptographic primitives differ in this technical re-
quirement for the applicability of meta-reductions. Namely, for primitives like
public-key encryption (PKE), it is relatively easy to construct a reduction that
is not committed to its secret state in the above sense. To see why this is the
case, observe that in a PKE setting, different user secret keys or ciphertexts
are not correlated: corrupting one user (or decrypting one ciphertext) gives no
information about other users’ secret keys (or the decryption of other ciphertexts).
Hence, a reduction that answers corruption or decryption queries does not commit
itself to, e.g., decryption of a challenge ciphertext in any way.

On the other hand, corrupting one party Pi in a NIKE scheme immediately
reveals all shared keys Ki,j that Pi has with other (yet-uncorrupted) parties
Pj . This also determines the secret keys of such Pj to the extent that the Ki,j

computed with these not-yet-revealed keys are fixed. Hence, corrupting parties
will gradually determine the secret state of a simulation in a NIKE reduction
(i.e., the functionality of secret keys of yet-uncorrupted parties). This problem
does not appear in, say, PKE or signature schemes, and circumventing this

6 In a nutshell, the meta-reduction extracts enough shared keys from Λ to take the
role of a successful adversary in a rewound Λ-instance. If Λ is “too successful”, this
causes Λ to solve the underlying computational problem with these extracted keys.
Hence, Λ solves the underlying problem essentially by interacting with itself.
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“committing” property in NIKE schemes currently seems to be out of reach of
known techniques.

This work: beyond linear security loss. Motivated by this difficulty, in
this work we examine this “committing” property closer for a general class of
group-based NIKE schemes and slightly relaxed security notions. Specifically, for
N again denoting the overall number of parties in the system we ask:

For which security notions can we obtain NIKE schemes with a security
reduction to a standard assumption with a sublinear loss of o(N)?

We obtain positive and negative results:

– We start off with a simple and intuitive “inner-product-based” NIKE scheme
NIKEip that enjoys full adaptive security and offers an interesting tradeoff
between security loss and key sizes. Specifically, NIKEip is parameterized by
ν > 0, has public and secret keys that comprise O(ν) group elements, and
a reduction loss of O(N2 log(ν)/ν2) to the matrix Diffie-Hellman assump-
tion [18] (a relaxation of the decision linear assumption) in pairing-friendly
groups. In particular, it is possible to set ν = N to obtain a scheme with an
(almost) tight reduction to a standard computational assumption, but which
also suffers from large keys.
While the scheme itself is not very efficient for large ν, it shows a conceptually
simple way to conduct a “non-committing” reduction. Essentially, our reduc-
tion does not have the problematic “committing” property discussed above
because each secret key contains enough entropy to be not quite determined
by up to ν corruptions of arbitrary other users. This means that previous
lower bounds [2, 25] do not apply to this scheme.
We also note that our NIKEip is the first to obtain tight security against mul-
tiple (i.e., up to ν) “test queries”, i.e., adversarial challenges. This essentially
means that the scheme guarantees the security of not only a single, but many
shared keys even after a number of adaptive corruptions. While this property
is implied with polynomial loss by security with respect to a single test query,
previous reductions (including the previously “most tightly” secure scheme
from [25]) did not consider multiple test queries.
One can view our result also as a feasibility result about the possibility of
tight bounded security (much like the notion of bounded chosen-ciphertext
security for PKE schemes [12]) for NIKE schemes.

– Next, we demonstrate that this tradeoff between reduction loss and key sizes
is to some extent inherent when trying to achieve adaptive NIKE security.
Concretely, we show that a large class of group-based NIKE schemes (that
includes the original Diffie-Hellman scheme, as well as variations such as the
scheme from [25] and our NIKEip) must become “committed enough” after ν
corruptions whenever keys are of size o(ν) group elements.
Our result manifests the tradeoff between key sizes and reduction loss of
NIKEip, and in fact for a large and natural class of NIKE schemes. We stress
that the previous lower NIKE bounds [2, 25] do not offer similar tradeoffs,
since they did not consider key sizes at all.
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– Finally, motivated by the previous tradeoff, we investigate ways to achieve
tight security with (asymptotically) compact keys by relaxing the desired
security notion. We find a different tradeoff, and now trade security for
tightness. Namely, we construct a NIKE NIKEsa with keys whose size do not
depend on N , and with an (almost) tight security reduction that however
only achieves semi-adaptive security. By “semi-adaptive security”, we mean
that an adversary is restricted not in the type or number of corruptions,
but in the timing and number of test queries (i.e., challenges). Concretely,
an adversary may not ask any test query after a certain, a-priori bounded
number of ν corruptions (or queries for shared keys between honest parties)
have been made. Semi-adaptive security interpolates between a mild form of
selective security (in which an adversary has to commit in advance to the
parties whose shared keys it wants to be challenged on) and full adaptive
security.
Our semi-adaptively secure NIKEsa uses NIKEip above as a conceptually simple
building block, and additionally relies on FHE techniques. Its security can
be reduced (with logarithmic loss) to the conjunction of the matrix Diffie-
Hellman problem and the learning with errors (LWE) problem [36].
We believe that this result shows that even if we cannot achieve full adaptive
security with compact keys and tightly, we are not limited to merely selective
security. Due to lack of space, we present this contribution in full detail only
in the full version of this work.

1.1 Technical overview

Setting. Formally, a NIKE is a tuple of algorithms (Setup, KeyGen, SharedKey),
where Setup generates public parameters, KeyGen on input of the public parame-
ters returns a key pair (pk, sk), and SharedKey on input of the public parameters,
a public key pki and a secret key skj returns a shared key Ki,j . Correctness
requires that for all honestly generated key pairs we have Ki,j = Kj,i.

Security model. The simplest NIKE security notion to achieve is selective
security, where the adversary commits to the key pair of users to be challenged
(i.e. for which the adversary either receives the real shared key or a random
key) before seeing any public key. To model realistic attack scenarios, what we
would like to capture in the security notion is fully adaptive security (also called
CKS-heavy security [19] after the inventors Cash, Kiltz and Shoup of the notion
[9]). Here, the adversary can arbitrarily query oracles Oextr, OrevH and Otest. Oextr
models the adversary’s ability to corrupt a user and reveals the corresponding
secret key and OrevH models the ability of the adversary to observe shared keys in
the system and reveals the shared keys between two users. Finally, the purpose
of Otest is to model that an adversary should still not be able to distinguish the
(non-revealed) shared keys between any pair of uncorrupted users from random.
More precisely, Otest given a tuple of users either returns the real shared key
between the users or a random key (depending on an initially flipped bit). Giving
the adversary the power to ask corruption queries adaptively poses a challenge
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for the security reduction. Consider for example the Diffie-Hellman key exchange.
There, public key/ secret key tuples are of the form (gx, x) and a shared key
is computed as (gxi)xj = (gxj )xi . Thus, the reduction either knows x – and
therefore cannot make use of an adversary distinguishing shared keys involving x
from random – or does not know x, and can therefore not answer with the secret
key if the adversary decides to corrupt the user.

From selective to adaptive security with loss Ω(N2). This can be solved by
partitioning proofs, reducing the adaptive security to selective security. More
precisely, the reduction guesses the “test query” of the adversary (i.e., the parties
involved in the query that the adversary tries to distinguish from random) ahead
of time and embeds the underlying challenge only in the two corresponding
public keys. The problem of this approach is the security loss: With N overall
users in the system, this strategy will only be successful with probability 1/N2.
This means that the security guarantee decreases when the number of users
in the system grows, which one has to account for by choosing larger concrete
parameters (e.g. group sizes). Further, an upper bound on the number of users
might not be known at the time of setup. In this paper we therefore aim for
directly proving adaptive security.

Relaxing the security notion: Semi-adaptive security. We introduce the notion
of ν-semi-adaptive, which lies in between selective and adaptive security: Here,
the adversary has to ask all test queries within the first ν-corruptions (but can
ask arbitrary extract and reveal queries later), where any user involved in a
extract, reveal or test-query counts as one corruption. In the special case of
2-semi-adaptive security the adversary has to commit to a single test query after
seeing all public keys.

Security with dishonest key registration (DKR). The security experiments de-
scribed so far do not give the adversary the opportunity to register keys dishon-
estly, i.e., publish arbitrary public keys that are not necessarily in the image
of KeyGen. This can of course occur in realistic scenarios and is ultimately the
security notion to aim for. In this paper we restrict ourselves to security with
honest key registration as described above, since the difficulty of constructing
NIKEs with tight security occurs when going from selective to adaptive security,
rather than going from HKR to DKR security. In fact, using standard methods
one can tightly transform an HKR-secure NIKE into a DKR-secure one, basically
by adding a simulation-sound proof of knowledge of the secret key to the public
key (see e.g. [9, 25]).

Related work. We give a comparison of our result with previous work in
Tables 1 and 2. In order to explain the challenges when constructing tightly
secure NIKE, in the following we give a brief explanation of previous techniques
used to give upper and lower bounds on tightly secure NIKE.

We first recall the commitment problem that occurs when proving security
of the Diffie-Hellman NIKE. Namely, the reduction either knows a secret key
or does not know a secret key, since each group element has a unique discrete
logarithm. Building on the ideas put forward by Coron [11], Bader, Jager, Li,
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|pk| Sec. model O(Sec. loss) Assumption Pairing

Diffie–Hellman [14] 1×G HKR N2 DDH -
HPS-based [25] 3×G 1-HKR N DDH -
CKS08 [9] 2×G DKR N2 CDH (ROM) -
FHKP13 [19] 1× Zn DKR N2 Fact. (ROM) -
FHKP13 [19] 2×G + 1× Zp DKR N2 DBDH asymm.
HPS-based [25] 12×G 1-DKR N DLIN symm.

ν-dim NIKEip (Sec. 3) (ν + 2)×G HKR (N/ν)2 log ν DLIN symm.
N-dim NIKEip (Sec. 3) (N + 2)×G HKR log N DLIN symm.
ν-dim NIKEsa (fullv.) ν · poly ν-semi-ad. log N DLIN, LWE symm.
2-dim NIKEsa (fullv.) poly semi-ad. log N DLIN, LWE symm.

Table 1. Comparison of existing NIKE schemes. |pk| denotes the size of the public keys,
measured in numbers of group elements and exponents. HKR and DKR denote fully
adaptive security [19] with honest and dishonest key registrations (where 1-HKR/1-
DKR refers to the corresponding notion in the single-test-query setting). N denotes
the number of parties the adversary interacts with, 2 ≤ ν ≤ N is arbitrary and poly is
a polynomial independent of ν and N . Further, note that losses of the constructions
from [9] and [19] stem from applying a generic transformation to level the security
guarantees of compared schemes. DDH and CDH correspond to the decisional and
computational Diffie-Hellman assumption, ROM stands for random oracle model and
“Fact.” for Factoring. DBDH stands for decisional bilinear Diffie-Hellman, DLIN for
Decision Linear and LWE for Learning With Errors. Finally, note that in all cases DLIN
can be replaced by the 2-Matrix Decision Diffie-Hellman assumption (MDDH). More
generally, we can build on the k-MDDH assumption at the cost of increasing the public
key size and security loss by a factor of k.

Diffie-Hellman KE HPS-based KE [25] NIKEip (Sec. 3)

BJLS [2] Ω(N2) - -
HHK [25] Ω(N) Ω(N) -
This work (Sec. 4) Ω(N) Ω(N) Ω(N/ν)

Table 2. Lower bounds on the security loss of NIKE. Here, the public keys of NIKEip
are of size O(ν). Our lower bound only applies to the HPS-based NIKE [25] when
instantiated with the decisional Diffie-Hellman-based hash proof system [13]. We note
that (in settings where it applies) the lower bound of [25] gives better constants than
ours. We highlight the best known lower bound for each construction in green.
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and Schäge [2] presented a lower bound on the tightness of NIKE schemes for
which public keys are fully committing to their secret keys and therefore their
shared keys. Generally, the idea of a meta-reduction is to turn a “too successful”
reduction into a stand-alone problem solver for the underlying (non-interactive)
cryptographic assumption. The meta-reduction of Bader, Jager, Li, and Schäge
[2] systematically rewinds the reduction Λ to run with all N2 possible pairs of
challenge users, arguing that in any run the reduction either has to abort or indeed
return the unique secret key. Now, if the reduction does not abort with probability
larger than 1/N2 (i.e., the reduction does not abort on at least 2 out of the

(
N
2
)

possible runs), it follows that one can extract all secret keys from the reduction,
and thereby perfectly simulate an external “perfect” adversary. (Note that for
this to be true it is crucial that the reduction is limited to giving out unique
secret keys, and therefore the shared keys are also unique.) Altogether, this shows
that whenever the reduction is successful with probability larger than 1/N2, it
could have solved the underlying problem itself. Since this is a contradiction to
the hardness of the underlying assumption, it shows that the security loss of
Ω(N2) for Diffie-Hellman (and, more generally, NIKEs with “committing” public
keys) is inherent.

Bypassing the commitment problem with semi-functional public keys. Hesse
et al. [25] showed how to bypass the lower bound by allowing to switch to
non-committing public keys. Essentially, their scheme allows to introduce “semi-
functional” public keys which are computationally indistinguishable from public
keys produced by KeyGen. This allows a reduction to escape the fully committed
setting by introducing semi-functional public keys that do not necessarily fix the
shared key with other (semi-functional or normal) public keys in the system. Their
construction still suffers from a security loss of Ω(N), since their semi-functional
public keys do not have secret keys and can thus be recognized upon corruption.
Since a reduction needs to plant at least one such public key in order to escape
full shared key commitment, a security loss of N is inherent. This lower bound on
the security loss was formally shown in [25] for all schemes where normal public
keys are committing and can be efficiently recognized given a corresponding
secret key.

Considering weaker NIKE security notions. By allowing an arbitrary number of
adaptive test queries but no corruptions, as was done e.g. in [9], tight security
turns out easy to achieve. In fact, even the standard Diffie-Hellman key exchange
can be shown (almost) tightly secure with respect to this notion, by simply
embedding the underlying challenge into all public keys. Tight security (with a
loss of factor O(log N)) then follows by the re-randomizability of the decisional
Diffie-Hellman assumption. However, going from test-query-only to adaptive
security with corruption introduces a security loss of Ω(N2). Since we are not
aware of a tighter reduction for the scheme of [9] in the setting of adaptive
security with corruptions, we do not consider their scheme tight in the sense of
our paper.

Hesse et al. [25] consider a restriction of the above described security notion
where the adversary is only allowed a single test query (but at any point of
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time). Since the generic reduction from the single-test-query setting to the multi-
test-query introduces an overhead of Ω(N2), in this paper we focus on the
multi-test-query setting.

Technical idea 1: Overcoming binding public keys

Our construction. In this work we overcome the limitation of [25] with a
NIKE scheme NIKEip where both normal and semi-functional public keys have
corresponding secret keys. Our construction is based on symmetric pairing groups.
Let g be a group generator of the source group. We write [x] for gx and for a
matrix M = (m)i,j we write [M] for ([m])i,j . The public parameters of our NIKE
are

pp := ([D], [MD]),

where D is a uniformly random (ν + 2)× 2 matrix and M is a uniformly random
symmetric (ν +2)×(ν +2) matrix. The parameter ν ∈ N≥2 will become important
in the security proof. An normal key pair is now generated as follows: We sample
a uniformly random 2-dimensional vector w and set

pk := [Dw] and sk := [MDw].

The shared key between two users is the inner product of one user’s public key
and the other user’s secret key, computed with the pairing. To see that correctness
holds, let (pk1 = [Dw1], sk1 = [MDw1]) and (pk2 = [Dw2], sk1 = [MDw2]) be
two honestly generated key pairs. Then

SharedKey(pp, pk1, sk2) = e([w⊤
1 D⊤], [MDw2]) = [w⊤

1 D⊤MDw2]T

= [w⊤
2 D⊤M⊤Dw1]T

(∗)= [w⊤
2 D⊤MDw1]T

= e([w⊤
2 D⊤], [MDw1]) = SharedKey(pp, pk2, sk1).

The equality (∗) uses the symmetry of M.
One can interpret the public parameters by setting (d1|d2) := D as two

exemplary key pairs

pp := ((pk1 = [d1], sk1 = [Md1]), (pk2 = [d2], sk2 = [Md2])).

The user-generated keys are then random linear combinations of these exemplary
key pairs. It is necessary to have at least two exemplary keys, because if the
honest user keys would be linear combinations of just one exemplary key, one
could use the pairing to check efficiently if a public key is in the subspace spanned
by the exemplary public key. This would make it impossible for our reduction to
use public keys that are not in the linear span of the exemplary public keys.

Semi-functional public keys with secret keys. To argue security, we have
to introduce semi-functional public and secret keys. A semi-functional public
key is [u] where u is chosen uniformly at random from the full space (instead
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of only the linear span of D’s column vectors). Accordingly, the corresponding
semi-functional secret key is [Mu].

The semi-functional key pairs are indistinguishable from the normal key
pairs by the matrix decisional Diffie-Hellman (MDDH) assumption. It states
that vectors (represented in a group) from a 2-dimensional subspace (i.e. our
normal keys) are indistinguishable from uniformly random vectors (i.e. our semi-
functional keys). The MDDH assumption is implied by the well-known 2-linear
assumption [18]. Due to the random self-reducibility of the MDDH assumptions,
this implication holds even for arbitrary many vectors with security loss only
O(log ν).

The semi-functional keys have the desired “less committing” property. Indeed,
note that with publishing the public parameters the reduction is not completely
committed to the matrix M, since MD contains only little information about
M. Now for each semi-functional public key u the corresponding semi-functional
secret key Mu leaks some new information about M and after ν secret keys
have been used, the reduction is completely committed to M. If we would apply
a suitable basis change transformation to M (such that the column vectors of
D, and the used semi-functional secret keys become unit vectors), each semi-
functional secret key corresponds to a row (due to the symmetry also a column)
of M and each shared key corresponds to one entry of the matrix, as depicted by
Figure 1.

pp

pp
sk of an involved user

Shared key of two involved users

Figure 1. The symmetric matrix M in the basis where the column vectors of D and
the semi-functional public keys of the involved users are the standard basis vectors. The
normal secret keys (and shared keys where at least one user has a normal public key)
live in the gray area. The pp can be seen as two key pairs and normal public and secret
keys are linear combinations of these public and secret keys.

Since in our scheme there are secret keys for the semi-functional public keys, it
circumvents the main bottleneck of the approach of [25]: Our reduction turns all
public keys into semi-functional ones, and does not have to rely on any guessing
argument. In contrast to [25], our semi-functional keys are committing with
respect to normal keys. But, since we turn all keys to semi-functional, it is
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completely sufficient that semi-functional keys are not committing with respect
to other semi-functional public keys. This approach is summarized in Table 3.

pkj normal pkj semi-functional

pki normal committed not committed
committed committed

pki semi-functional
not committed does not exist

committed Up to ν users involved: not committed
Beyond: committed

Table 3. Effect of all combinations of normal and semi-functional public keys on the
shared key Ki,j in the HPS-based NIKE [25] and our NIKEip .

Limiting the number of involved users. When ν semi-functional secret
keys have been leaked, (i.e., they have been leaked through an Oextr query or
used to answer an OrevH or Oextr query,) the reduction is completely committed
to M. In this situation we can still argue, that each test query leaked one entry
of the matrix M that was not revealed in any other query and therefore looks
uniformly random to the adversary. However, any further leakage of another
semi-functional secret key could potentially leak one of the test-query entries.
Thus we have to limit the adversary to involve at most ν users in the security
game, where a user counts as involved, when he appeared in at least one Oextr,
OrevH, or Otest query. (Users that have only been registered, i.e., only their public
key was revealed, do not count as involved.)

We call the security notion that works like the adaptive security, but where
the adversary is allowed to involve at most ν users, ν-bounded security. Even
though this security notion is not very realistic, it is a helpful tool because it
captures the level of adaptivity that NIKEip can achieve and it implies full adaptive
security with security loss only O((N/ν)2). Thus, in total NIKEip can be proven
adaptively secure with loss O((N/ν)2 log ν). This gives us a tradeoff between key
size and tightness. The smaller we select the parameter ν, the smaller the size
of the matrix M. This gives us smaller keys, but the semi-functional keys will
become committing earlier in the security game, leading to a larger security loss.

A curiosity of NIKEip is that the roles of the public key and secret key are
completely symmetric. That is, when all users swap their public and secret key,
NIKEip is still secure (and in the security proof we simply have to replace M by
M−1).

Our scheme bypasses the lower bound of [25], because their lower bound
requires, informally speaking, that whenever two key pairs look like valid to the
adversary, the shared key between them is already determined by the public keys.
This is not the case here: Two secret keys could differ by an entry of M that
is unknown to adversary (thus both look like corresponding secret keys for the
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same public key), but, with a suitable public key of another valid key pair, this
entry of M does not cancel out in the secret key computation and thus the two
secret keys yield different shared keys.

Technical idea 2: Lower bound for large class of NIKEs

Inner-product NIKE and a new argument for committing reductions.
To extend the existing results on lower bounds, we need to further broaden the
class of NIKE schemes that the meta-reduction technique works for. The goal is to
allow potential reductions to introduce keys that are less “committing” than in the
previous bounds described above. Towards this goal, we observe that all DH-like
NIKE schemes in the literature, including our NIKEip described above, have the
following joint property: public and secret keys can be represented as Zd

q -vectors
x, y, and shared keys are computed as (an invertible function of) the inner product
⟨x, y′⟩. We call such NIKE schemes d-dimensional ip-NIKE. The Diffie-Hellman
key exchange, for example, allows for key pair (gx, x) to be written as tuple
(x, x) of the same one-dimensional vector x ∈ Zq. Shared keys between vector
tuples (xi, xi), (xj , xj) are computed as (gxi)xj = g⟨xi,xj⟩ = g⟨xj ,xi⟩ = (gxj )xi .
Intuitively, using only one-dimensional vectors as in DH-KE means that public
keys commit already to all shared keys. Vectors of higher dimensions, though,
allow a reduction to encode more information, and eventually escape a setting
where all shared keys are fixed. We can now formalize this intuition by exploiting
linearity of the inner product. Namely, for a d-dimensional inner-product NIKE, a
meta-reduction can create a fully committed setting in case vector dimensions are
smaller than the number of users. For this, assume unique7 public key vectors x1,
. . . , xm of m ≈ N corrupted users and public key vectors x, x′ for yet uncorrupted
pk, pk′. Let further y1, . . . , ym, y, y′ denote corresponding secret key vectors. We
stress that the meta-reduction is not able to compute any of these values, and
we only use them to argue that the reduction is committed. If d is smaller than
m, x lies in the span of the m other vectors with noticeable probability, yielding∑m

i=1 βixi = x for a Zm
q -vector β. This already determines the (exponent of the)

shared key ⟨x, y′⟩ between x and x′ as a linear combination of the (exponents
of) shared keys between each x1, . . . , xn and x′. To see this, we write

⟨x, y′⟩ = ⟨
m∑

i=1
βixi, y′⟩ =

m∑
i=1

βi⟨xi, y′⟩ =
m∑

i=1
βi⟨yi, x′⟩,

where the latter equality follows from the correctness of the NIKE. Since the
reduction already committed to the m shared key exponents ⟨yi, x′⟩i∈[m] through
corruptions of pk1, . . . , pkm, we can conclude that the secret key between pk and
pk′ is fixed through its exponent ⟨x, y′⟩. We refer the reader to the “uniqueness
lemma” (Lemma 5) for full details.
7 For our results we require uniqueness of a corresponding public key vector given the

public key, which holds for all DH-based schemes from the literature including our
first NIKE.
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A meta-reduction can exploit this committed setting by rewinding the reduc-
tion, a technique that was already used to prove the previous lower bounds [2,
25]. And indeed, we can show that any tight reduction must have key dimen-
sions close to N , in order to avoid the linear dependencies described above that
would result in commitment of all shared keys in the span. We now describe our
meta-reduction and resulting lower bound in detail.

Our new lower bound. We are now ready to explain our lower bound. The
general strategy of a meta-reduction is to first describe an inefficient “hypothetical”
adversary A with success probability εA, and then show that the hypothetical
adversary can be efficiently simulated by rewinding the reduction except when
some event “bad” occurs. Since the reduction has to work with the hypothetical
adversary, this means that – except with probability Pr[bad] – the reduction
must also work with the simulated adversary, i.e., without external help. Since
by assumption the reduction on its own cannot have more than negligible advan-
tage in solving the underlying problem, this essentially shows that the success
probability of the reduction can be upper bounded by Pr[bad] · εA + negl for
a negligible function negl, i.e. lose a factor of 1/ Pr[bad]. For arguing that the
simulated adversary perfectly simulates the hypothetical adversary we crucially
rely on the uniqueness lemma, which ensures that all shared keys are fixed after
the reduction gave out sufficiently many secret keys.

2-step-adaptive security. For proving our lower bound we introduce the 2-step-
adaptive security notion, where an adversary after receiving the public keys can
first ask the secret keys for an arbitrary large set D, and then has to commit to a
challenge tuple of public keys (outside D). The adversary wins if after receiving
the remaining secret keys (except the ones involved in the challenge tuple), it
returns the shared key between the challenge parties. It is straightforward to
see that adaptive security implies this weaker security notion, and therefore any
lower bound on 2-step-adaptive security readily carries over to adaptive security.

The hypothetical adversary. The idea of the hypothetical adversary is to enforce
uniqueness of the challenge shared key by choosing the set D in a suitable way.
By the uniqueness lemma this can be achieved by choosing D such that the
corresponding public key vectors span all public keys. (Note that if a NIKE is a
d-dimensional inner-product NIKE, there always exist such a set of size at most
d.) Once the shared key between the challenge key pairs is fixed, the adversary
can simply brute-force any tuple of secret keys corresponding to the challenge
public keys that are consistent with all secret keys in D, and use these to compute
the shared key. Since the shared key is unique, the hypothetical adversary will
always be successful.8

Simulating the hypothetical adversary. The problem in simulating the hypothetical
adversary is that the following cannot be done efficiently:
8 To capture adversaries with arbitrary success probability εA, the hypothetical adver-

sary can simply flip a biased coin and only output the shared key with probability
εA.
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(1) Extract the public key vectors to find a spanning subset D, and
(2) Obtain the secret keys by brute-force to compute the challenge shared key.

The strategy of the meta-reduction to is therefore to:

(1) Guess a set D (and hope it is spanning), and
(2) Obtain secret keys by rewinding the reduction to compute the challenge

shared key.

It turns out productive to choose |D| ≈ N/2. The reason for this is as follows:
On the one hand, for maximizing the probability that D is spanning, D should
be chosen as large as possible. On the other hand, for extracting the secret keys
from the reduction it is crucial that the reduction can be rewound while already
being committed to the secret keys in D (since otherwise, the reduction could
give out secret keys that are not consistent with the secret keys in D). In order to
argue that the reduction either has to return valid secret keys for each i ∈ [N ]\D
or abort with high probability, we have to choose [N ]\D large (essentially, the
success probability will scale with 1− 1/(N − |D|)).

Success probability of the simulated adversary. Finally, the meta-reduction can
compute the shared key with the help of this extracted secret keys. By the
uniqueness lemma we obtain that this shared key is unique if both strategies of
the meta-reduction are successful, i.e. if (1) D is indeed spanning, and (2) the
reduction returns valid and consistent secret keys for both public keys involved
in the challenge.9 We can show that the event bad that either of these is not
satisfied only occurs with probability in the order of d/N . This results in the
following informal theorem:

Theorem (Lower bound): Any simple reduction from a non-interactive com-
plexity assumption to the adaptive-security of a d-dimensional inner-product
NIKE has to lose a factor in the order of Ω(N/d).

Our lower bound thus yields that NIKEip, which is a ν-dimensional ip-NIKE
(see Definition 5 for the formal definition), with secret keys of size O(ν) has an
inherent security loss of at least Ω(N/ν). We contrast that with the security
loss of our security proof for the core NIKE, which is O((N/ν)2 log ν). Thus, for
ν = N the security reduction that we give in Section 3 is essentially optimal. We
give a comparison of our lower bound with others in Table 2.

Technical idea 3: Extension to “semi-adaptive” security

Motivation: controlling entropy leakage. The lower bound just pre-
sented appears to limit what we can prove about our first NIKE scheme NIKEip.
Specifically, it appears that we require a large setting of ν (i.e., large keys) for
9 Even though only one secret key is necessary to compute the shared key, we can only

be sure that the reduction is committed to the shared key when given both secret
keys, since the reduction could switch to a semi-functional public key (without valid
secret key).
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(almost) a tight security reduction. Taking a step back, the intuitive reason why
we cannot obtain a better reduction is the following: every secret key revealed
through a corruption query leaks entropy about the hidden matrix M. This is
intended, since in fact this fresh entropy is used to statistically blind shared keys.
However, since the entropy contained in M is limited, this argument guarantees
fresh entropy only for a bounded number of corruptions. After O(ν) corruptions,
M is fully determined, and any additional corruptions (or shared key or test
queries) will result in (jointly) non-uniform shared keys. In particular, the security
argument breaks down completely if more than O(ν) corruptions are made, even
if those are made after all shared key or test queries.

Our goal: ν-semi-adaptive security. We now set out to mitigate this
limitation, and better control the entropy released through secret keys. We
will unfortunately not be able to achieve full adaptive security with small keys.
Instead, our goal will be a NIKE scheme with small keys, but in which more
than O(ν) corruptions are possible only after all test queries have been made. To
be more concrete: we will achieve what we call ν-semi-adaptive security, which
denotes security against the following type of attacks. An adversary may request
up to ν corruptions, shared key, or test queries (in any combination). After that,
any number of corruption or shared key queries, but no test queries are allowed.
This notion is hence weaker than adaptive security, but also does allow for some
degree of (“early”) adaptivity. Like our basic scheme NIKEip, our ν-semi-adaptively
secure scheme NIKEsa will have keys of size O(ν) group elements, and its security
reduction will be (almost) tight, i.e., only lose a factor of O(log ν).

As discussed above, our result can also be seen as a tradeoff between security
and key size: the larger its keys are, the closer to (full) adaptive security the
achieved security notion is. We reach full adaptive security only with large keys
(of size O(N) group elements), but smaller keys still yield a less adaptively but
(almost) tightly secure scheme.

Building block: non-interactive tag exchange. We now explain the main
technical ideas of our semi-adaptively secure NIKEsa. In a nutshell, we use NIKEip
as a tag generator, or as what we call a “non-interactive tag exchange” (NITE)
scheme. A NITE is defined like a NIKE, except that (a) we call shared keys “tags”
now, and (b) we require “ν-programmability” instead of indistinguishability for
security. ν-programmability requires that there is a dedicated “programming
algorithm” that allows to semi-adaptively program tags in the following way:
given up to ν pairs of parties (Pi,1, Pi,2) and corresponding “target tags” Ti,
output corresponding secret keys that yield Ti as tag between Pi,1 and Pi,2. This
programming succeeds even after all public keys are fixed, and in an adaptive
way (such that the Ti can be fixed one at a time, depending on all public keys and
earlier Ti). For security, we require that this programming is not detectable, even
given all secret keys (programmed or not). We can interpret NIKEip as a NITE:
shared keys are interpreted as tags, and programming works by adjusting A
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adaptively so that the desired tag values are computed.10 Note that this process
works only for programming up to O(ν) tag values, since the entropy in A is
limited. On the other hand, the notion of programmability also captures the
security that NIKEip achieves when eventually all secret keys are revealed.

Leveraging NITE programmability. The security of a NITE scheme requires
programmable tags, but does not require “unopened” tags to remain hidden
in any way (e.g., in the sense of NIKE indistinguishability). Hence, we cannot
immediately use a NITE scheme as NIKE. Instead, our NIKEsa uses a NITE
scheme to generate common (but not necessarily secret) shared tags for any two
parties, who will then employ a “tag-based NIKE” (TNIKE) as a second stage to
compute the actual NIKE shared keys. Analogously to tag-based encryption [28],
a TNIKE is simply a NIKE in which shared key computation takes a tag as
additional input. For correctness of NIKEsa in the usual sense, this tag should of
course be the same for both parties.

Before describing a concrete TNIKE scheme, we describe its crucial abstract
property: our TNIKE scheme has “punctured” secret keys, i.e., secret keys that
allow to compute shared keys for all but one tag value. This puncturing point
(i.e., the tag upon which shared key computation fails) is uniformly random, but
not obvious from the corresponding public key. Similar puncturing techniques
have been used as a technical tool to achieve adaptive security in various contexts
before (e.g., [16, 32, 7, 34, 39, 27, 37]). In our security proof, we will program the
tags output by the NITE scheme such that all tags that refer to NIKE test queries
will be programmed to be exactly the puncturing points of the corresponding secret
keys.11 This programming is not detectable thanks to the NITE’s security, and
leads to a situation in which all test queries are randomized.

Our concrete construction. Armed with this intuition, we now give more
details on our actual TNIKE construction. To illustrate the main ideas, we only
describe a slightly simplified version of our construction for minimal ν, i.e., such
that it achieves only a small degree of semi-adaptivity. The construction is based
on the learning with errors (LWE) problem, and assumes public parameters
pp := A $← Zn×m

p . A public key contains

pk := (SA + E, V = AU + τG),

where S is a random matrix, E and U are a “noise” matrices with small entries,
G is the fixed “gadget matrix” of [31], and τ is the (uniformly random) tag at
which the corresponding secret key will be punctured. Note that V is actually
an encryption of τ under the fully homomorphic encryption (FHE) scheme of

10 This is a slight oversimplification. In fact, programming requires to also make public
keys semi-functional, as in the security proof of NIKEip sketched above. Our formal
programmability definition will allow for such adjustments during programming.

11 This is again an oversimplification: for a particular choice of tag, one involved party
Pi will not be able to compute the TNIKE shared key, while the other party Pj will
be able to compute a shared key that depends on entropy in Pj ’s secret key.
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Gentry, Sahai, and Waters [21].12 The corresponding secret key is of the form

sk := (S, U, τ).

To compute the shared key between two users, assume a public key pk as
above, a secret key sk′ = (S′, U′, τ ′) from another user, and a tag T . We first
homomorphically and deterministically compute an FHE encryption V⋆ = AU⋆ +
bG from V, where b ∈ {0, 1} with b = 1 iff τ = T . (Note that this really denotes
the punctured point τ encrypted in V, not the one from sk′. Hence, b is hidden at
this point.) The corresponding shared key K is a rounded version of S′V⋆, i.e.,

K = round(S′V⋆).

The other involved party, using pk′ = (S′A + E′, V′) and sk = (S, U, τ),
computes the same shared key differently: it uses U to obtain the encryption
random coins U⋆ with V⋆ = AU⋆ + bG (for b as above) and computes

K ′ = round((S′A + E′)U⋆) = round(S′AU⋆ + E′U⋆) (∗)= round(S′AU⋆),

where (∗) holds with high probability for a suitable rounding function, since E′

and U have small entries. Indeed, K = K ′ whenever T ̸= τ (so that b = 0 and
V⋆ = AU⋆). But for T = τ , the rounded value

S′V⋆ = S′U⋆ + S′G

in K contains the term S′G, which extracts randomness from S′ (that, using a
proper setup of A, does not appear in pk′). Hence, the tag T = τ is special, in
that K is randomized by entropy from S′ only for this T . Note that the value
K ′ does not contain this extra term, and so in fact does not satisfy K ′ = K
for T = τ . Of course, since in “normal operation”, tags are independently and
uniformly random values, T = τ happens only with negligible probability, and
this affects correctness of the scheme only negligibly.

Before going further, we note that this overview over our TNIKE scheme
neglects a few things: we did not discuss suitable dimensions, the rounding
function, or a suitable encoding of large tags τ . Besides, we did not discuss a
generalization to larger values of ν (which require programming more values τi

into each key). Finally, we did not discuss how both parties coordinate on their
role in the computation of K (i.e., on whose V is used as a basis of computation).
All of those questions have simple, albeit sometimes tedious technical answers,
and we will discuss all of these issues inside.

The security of our construction. We now briefly sketch the proof of
1-semi-adaptive security of NIKEsa, which is composed of our NITE and TNIKE
schemes. So assume a 1-semi-adaptive adversary A that obtains all public keys,
and then may ask a single test query. After this, and without loss of generality,
12 In this overview, we neglect the fact that τ should be a small scalar. Our full scheme

will actually encrypt τ bitwise.
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A obtains all secret keys of parties not involved in that test query. We need
to show that A’s success in distinguishing between real and random answers is
negligible, and, for a tight reduction, does not scale in the number of users. To
do so, consider the following short sequence of game hops:

Game 0 is the original 1-semi-adaptive NIKE security game with a test query
that is answered with the real shared key.

Game 1 changes how the tags for the test query are computed: here, the tag
for the test query is adaptively programmed to be the puncturing point
τ of the corresponding user. Note that the corresponding shared key can
still be computed for A in the same way that K is computed above. By
programmability of the NITE scheme, and using the security of the used
FHE scheme, this change goes unnoticed by A.13

Game 2 replaces the result of the test query with an independently chosen
random shared key. This change is statistical, and can be justified with the
observations above about hidden entropy in S′.

We give full details of the proof (and additional discussion) in the full version of
this paper.

2 Preliminaries

We use x $← S to denote the process of sampling an element x from a set S
uniformly at random. For a probability distribution D, we write x← D to denote
that the random variable x is distributed according to D. If A is a (probability)
algorithm then we write x $← A(b) to denote the random variable x outputted
by A on input b. We use Symn(Zq) (for n ∈ N, q prime) to denote the set of
symmetric n × n over Zq. Initially, all partial maps (denoted by f : A 99K B)
are totally undefined in our games. We write x[i] for the i-th bit of the binary
representation of x. We write (a, _) := (x, y) and (_, b) := (x, y) to define a := x
and b := y, respectively. T (A) denotes the running time of A.

2.1 Pairing group assumptions

Throughout this paper, SymGGen denotes a probabilistic polynomial-time (PPT)
algorithm that on input 1λ returns a description PG := (G,GT , q, g, e) of a
symmetric pairing group, where G and GT are cyclic groups of order q for a λ-bit
prime q. The group element g is a generator of G. The function e : G×G→ GT

is an efficient computable (non-degenerated) bilinear map (i.e., a pairing). Define
gT := e(g, g), which is a generator in GT .

We use the implicit representation of group elements as in [18]. For s ∈ {ϵ,
T} and a ∈ Zq define [a]s = ags ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Zn×m

q we define [A]s as the implicit
13 We note that to obtain tight security at this point, we will temporarily switch the

used FHE scheme into a lossy mode of encryption [3, 22].
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representation of A in Gs. Note that it is efficient to compute [AB]s given ([A]s,
B) or (A, [B]s) with matching dimensions. Furthermore, e([A], [B]) := [AB]T
can be efficiently computed given [A] and [B] with the pairing e.

Many assumptions in paring groups can be expressed as matrix decisional
Diffie-Hellman (MDDH) assumption [18]. For a definition of the (Q-fold) MDDH
assumption, see [18] or the full version of this paper.

We use the Q-fold uniform matrix distribution, because the uniform distribu-
tion allows us to give a tight reduction to the standard 1-fold version, as shown
by the following Lemma. Gay et al. already provided a tight reduction [20], but
their proof is flawed14 as pointed out by [29]. The proof can be found in the full
version.

Lemma 1 (Random self-reducibility of Uℓ,k-MDDH). For every ℓ > k and
every PPT adversary A there exists an adversary B with

Advmddh,Q
A,Uℓ,k,SymGGen,s(λ) ≤

⌈
log

(
ℓ

k

)⌉
k

(
Advmddh

B,Uk,SymGGen,s(λ) + 3
q − 1

)
,

where PG ← SymGGen(1λ) and T (B) ≈ T (A) + Q · poly(λ), where poly is a
polynomial independent of A.

2.2 Non-Interactive Key Exchange

Definition 1 (NIKE). A NIKE scheme with identity space IDS and key
space K consists of three polynomial-time algorithms (Setup, KeyGen, SharedKey),
where

– Setup is a randomized algorithm that takes the unary encoded security pa-
rameter 1λ and samples public parameters pp

– KeyGen is a randomized algorithm that takes the parameters pp and an identity
id ∈ IDS and samples a key pair (pk, sk)

– SharedKey is a deterministic algorithm that takes the parameters pp, an
identity id1 with its corresponding public key pk1 and another identity id2
with its corresponding secret key sk2 and outputs a shared key K

Definition 2 (Correctness). We say that a NIKE (Setup, KeyGen, SharedKey)
for identity space IDS is statistically correct, if the correctness error

sup
id1,id2∈IDS

Pr[SharedKey(pp, id1, pk1, id2, sk2) ̸= SharedKey(pp, id2, pk2, id1, sk1) |

pp← Setup(1λ), (pk1, sk1)← KeyGen(pp, id1), (pk2, sk2)← KeyGen(pp, id2)]

is negligible in λ. A NIKE is perfectly correct if its correctness error is zero.

14 They correctly prove that Uℓ,k-MDDH is tightly equivalent to Uk-MDDH, but the
proof can not show that Q-fold Uℓ,k-MDDH is tightly equivalent to Q-fold Uk-MDDH.
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The standard security notion for a NIKE is adaptive security. It is a real-
or-random notion that allows the adversary to register users, corrupt users,
reveal shared keys and get challenged adaptively and arbitrary often. One could
strengthen this security notion by giving the adversary an additional oracle that
allows him to learn the shared keys of a user and a self-generated public key
(dishonest key registration). This security notion can be achieved tightly with
little overhead using the generic transformation of [25].

Our first construction in Section 3 achieves a weaker security notion, that
we call ν-bounded security, for any ν ∈ N≥2 with keys that grow linearly in ν.
ν-bounded security is defined as adaptive security, but the adversary may only
use up to ν users for corruption, revealing shared keys, and challenges. It can
still register arbitrary many users and choose adaptively the subset of ν users
for the other queries. While this security notion is arguably too weak for most
realistic scenarios, it is useful because it implies adaptive security with security
loss only O((N/ν)2).

In the full version we show how to strengthen our result to achieve ν-semi-
adaptive security. This notion is defined like ν-bounded security, except that the
adversary can still make Oextr, OrevH (and OregH) queries after exceeding the limit
of ν involved users. Clearly, ν-semi-adaptive security tightly implies ν-bounded
security, but is a more realistic security notion.

Definition 3 (Adaptive, ν-bounded, and ν-semi-adaptive security). We
say that a NIKE NIKE = (Setup, KeyGen, SharedKey) is ν-bounded, ν-semi-
adaptively, or adaptively secure (for ν ≥ 2), if for all PPT adversaries A

AdvAxxx
NIKE (λ) := 2 Pr[Expxxx

A,NIKE(λ)⇒ 1]− 1

is negligible for xxx = ν-bounded, xxx = ν-semi-adaptive or xxx = adaptive,
respectively. The games Expxxx

A,NIKE(λ) are defined in Figure 2.

The following argument shows that ν-bounded security implies adaptive
security via a non-tight reduction. The reduction forwards the registration queries
of up to ν users to the ν-bounded experiment and generates all other keys itself.
Then the reduction can randomize the shared keys in the test queries between
two users when both of their registrations have been forwarded. Via a hybrid
argument, the reduction can randomize all test queries step by step. We defer
the formal proof to the full version.

Lemma 2. For every NIKE NIKE and every PPT adversary A against the
adaptive security of NIKE, there exists a PPT adversary B against the ν-bounded
security for any ν ∈ {2, . . . , N} with

Advadaptive
A,NIKE (λ) ≤ 1

2

⌈
N

⌊ν/2⌋ + 1
⌉2(

Advν-bounded
B,NIKE (λ) + (Nrev + Ntest)εNIKE(λ)

)
and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A, where
N is the maximum number of users that A registers, Nrev and Ntest are the
maximum number of A’s OrevH and Otest queries, respectively, and εNIKE(λ) is the
correctness error of NIKE.
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Expadaptive
A,NIKE (λ):

pp← Setup(1λ)
Qextr := ∅; Qrev := ∅; Qtest := ∅;

Qinv := ∅

pks : IDS 99K PK
sks : IDS 99K SK
b $← {0, 1}
b⋆ ← AOregH(·),Oextr(·),OrevH(·,·),Otest(·,·)(pp)
if Qrev ∩ Qtest = ∅ ∧ ∄A ∈ Qtest :
A ∩Qextr = ∅ ∧ |Qinv| ≤ ν then

return b
?= b⋆

else
return 0

OregH(id ∈ IDS):
if pks(id) ̸= ⊥ then return ⊥
(pk, sk)← KeyGen(pp, id)
pks(id) := pk; sks(id) := sk
return pk

Oextr(id ∈ IDS):
if sks(id) ̸= ⊥ then
Qextr := Qextr ∪ {id};

Qinv := Qinv ∪ {id}

return sks(id)
return ⊥

OrevH(id1 ∈ IDS, id2 ∈ IDS):
if pks(id1) ̸= ⊥ ∧ sks(id2) ̸= ⊥ then
Qrev := Qrev ∪ {{id1, id2}}

Qinv := Qinv ∪ {id1, id2}

pk1 := pks(id1); sk2 := sks(id2)
return SharedKey(pp, id1, pk1, id2,
sk2)

return ⊥

Otest(id⋆
1 ∈ IDS, id⋆

2 ∈ IDS):
if pks(id⋆

1) ̸= ⊥ ∧ sks(id⋆
2) ̸= ⊥ ∧ {id⋆

1,
id⋆

2} /∈ Qtest then
Qtest := Qtest ∪ {{id⋆

1, id⋆
2}}

Qinv := Qinv ∪ {id⋆
1, id⋆

2}

if |Qinv| > ν then return ⊥
pk1 := pks(id⋆

1); sk2 := sks(id⋆
2)

K⋆
0 ← SharedKey(pp, id⋆

1, pk1, id⋆
2, sk2)

K⋆
1

$← K
return K⋆

b

return ⊥

Figure 2. Experiment for adaptive security, ν-semi-adaptive security , and

ν-bounded security of a NIKE scheme NIKE with identity space IDS and shared
key space K. PK denotes the public key space and SK denotes the secret key space.
The partial maps pks and sks are initially totally undefined. The set Qinv keeps track of
all users involved in the game, that is, users that have been used in at least one Oextr,
OrevH or Otest query (users that have been only registered but not used since then are
not counted as involved users). In the ν-bounded experiment the adversary may involve
at most ν users. In the ν-semi-adaptive experiment the adversary may not ask Otest
queries any more after more than ν users have been involved.
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Exp2-step-adaptive
A=(A1,A2,A3),N,NIKE(λ):

pp $← NIKE.Setup(1λ)
for i ∈ {1, . . . , N} do
(pki, ski)← NIKE.KeyGen(pp)

(st1, D)← A1(pp, pk1, . . . , pkN )
(st2, {i⋆, j⋆})← A2(st1, (ski)i∈D)
K⋆ ← A3(st2, (ski)i∈[N ]\(D∪{i⋆,j⋆}))
if K⋆ = NIKE.SharedKey(pki⋆ , skj⋆ ) then
return 1

else
return 0

Figure 3. Experiment for 2-step-adaptive security of a NIKE scheme NIKE with shared
key space K, for any N ∈ N. If i⋆ ∈ D or j⋆ ∈ D, the experiment aborts.

For our lower bound on tightness of adaptive NIKE security reductions, we
define a relatively weak notion called 2-step-adaptive security. The experiment
is depicted in Figure 3. It allows the adversary to see n− 2 secret keys in two
loads, and commit to one challenge pair of public keys after seeing the first load.
Finally, 2-step-adaptive is the only notion in this paper which is computational,
meaning that the adversary has to provide the shared key of the challenge pair
in order to win the experiment. To ease presentation of our lower bound proof,
the adversary is split into three stateful algorithms A1,A2,A3.

Definition 4 (2-step-adaptive security). A NIKE NIKE = (Setup, KeyGen,
SharedKey) is 2-step-adaptively secure, if for all PPT adversaries (A1,A2,A3)

Adv2-step-adaptive
NIKE (A1,A2,A3) := Pr[Exp2-step-adaptive

A=(A1,A2,A3),N,NIKE(λ)→ 1]

is negligible. The experiment is defined in Figure 3.

It is straightforward to verify that 2-step-adaptive security is implied by
adaptive security. The relations between the security notions considered in this
paper are shown in Figure 4.

3 An inner-product-based NIKE scheme

We present our NIKE NIKEip in Figure 5 that tightly achieves ν-bounded security
for arbitrary ν ≥ 2. However, this comes at the price of public and secret key
size O(ν). Together with Lemma 2, this gives an adaptively secure NIKE with a
trade-off between key size and security loss. The security can be based on any
MDDH assumption in symmetric pairing groups. Correctness follows from

SharedKey(pp, idi, pki, idj , skj) = e([(Dwi)⊤], [MDwj ]) = [w⊤
i D⊤MDwj ]T =

[w⊤
j D⊤MDwi]T = e([(Dwj)⊤], [MDwi]) = SharedKey(pp, idj , pkj , idi, ski).
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adaptive = N -semi-adaptive = N -bounded

(N − 1)-semi-adaptive

(N − 2)-semi-adaptive

ν-semi-adaptive

2-semi-adaptive

(N − 1)-bounded

(N − 2)-bounded

ν-bounded

2-bounded

2-step-adaptive

Lemma 2
O

((
N
ν

)2
)

Figure 4. Relations between NIKE security notions for ν ∈ {2, . . . , N − 2} used in
this paper. Dashed arrows mean “tightly implies” and solid arrows mean “implies with
specified loss”.

Setup(1λ):
G := (G,GT , q, g, e)← SymGGen

(
1λ

)
D← Uk+ν,k

M $← Symk+ν(Zq)
return pp := (G, [D], [MD])

SharedKey(pp, id1, pk1, id2, sk2):
return e(pk⊤

1 , sk2)

KeyGen(pp, id):
parse pp =: (G, [D], [MD])
w $← Zk

q

pk := [Dw]
sk := [MDw]
return (pk, sk)

Figure 5. Our inner-product-based NIKEip using symmetric pairing groups.
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G0 G1

Expν-bounded
A,NIKE (λ):
G := (G,GT , q, g, e)← SymGGen

(
1λ

)
D← Uk+ν,k

M $← Symk+ν(Zq)
pp := (G, [D], [MD])
Qextr := ∅; Qrev := ∅; Qtest := ∅
Qinv := ∅
pks : IDS 99K PK
sks : IDS 99K SK
b $← {0, 1}
b⋆←AOregH(·),Oextr(·),OrevH(·,·),Otest(·,·)(pp)
if Qrev ∩ Qtest = ∅ ∧ ∄A ∈ Qtest :
A ∩Qextr = ∅ ∧ |Qinv| ≤ ν then
return b

?= b⋆

else
return 0

OregH(id ∈ IDS):
if pks(idi) ̸= ⊥ then return ⊥
w $← Zk

q ; u := Dw
u $← Zk+ν

q

pk := [u]
sk := [Mu]
pks(idi) := pk; sks(idi) := sk
return pk

Oextr(id ∈ IDS):
if sks(id) ̸= ⊥ then
Qextr := Qextr ∪ {id}; Qinv := Qinv ∪ {id}
return sks(id)

return ⊥

OrevH(id1 ∈ IDS, id2 ∈ IDS):
if pks(id1) ̸= ⊥ ∧ sks(id2) ̸= ⊥ then
Qrev := Qrev ∪ {{id1, id2}}
Qinv := Qinv ∪ {id1, id2}
pk1 := pks(id1); sk2 := sks(id2)
return SharedKey(pp, id1, pk1, id2, sk2)

return ⊥

Otest(id⋆
1 ∈ IDS, id⋆

2 ∈ IDS):
if pks(id⋆

1) ̸= ⊥ ∧ sks(id⋆
2) ̸= ⊥ ∧ {id⋆

1,
id⋆

2} /∈ Qtest then
Qtest := Qtest ∪ {{id⋆

1, id⋆
2}}

Qinv := Qinv ∪ {id⋆
1, id⋆

2}
pk1 := pks(id⋆

1); sk2 := sks(id⋆
2)

K⋆
0 ← SharedKey(pp, id⋆

1, pk1, id⋆
2, sk2)

K⋆
1

$← K
return K⋆

b

return ⊥

Figure 6. Hybrids for the security proof of the NIKE from Figure 5. The partial maps
pks and sks are initially totally undefined.

Theorem 1 (Security). For every PPT adversary A against ν-bounded secu-
rity of NIKEip, there exists a PPT adversary B solving Uk-MDDH

Advν-bounded
A,NIKEip

(λ) ≤
⌈
log

(
1 + ν

k

)⌉
k

(
Advmddh

B,Uk,SymGGen,s(λ) + 1
q − 1

)
+ 1

q − 1

and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A.

The proof uses a hybrid argument with hybrids G0 and G1 given in Figure 6.
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Lemma 3 (G0 ⇝ G1). For every PPT adversary A there exists an PPT
adversary B such that∣∣Pr[GA

0 (λ)⇒ 1]− Pr[GA
1 (λ)⇒ 1]

∣∣ ≤ ⌈
log

(
1 + ν

k

)⌉
k

(
Advmddh

B,Uk,SymGGen,s(λ)

+ 1
q − 1

)
and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A.

Proof. The real game G0 uses normal keys (i.e. the public key is a chosen from the
linear span of D’s column vectors). In the game G1 all keys are semi-functional
(i.e. the public key is a chosen uniformly at random). Given an N -fold Uk-MDDH
challenge [D], ([ui])1≤i≤N one can simulate the games G0 and G1 efficiently when
A in known over Zq. If the vectors ui are sampled from the linear span of D
this yields the game G0 and if the vectors ui are sampled uniformly random,
this yields the game G1. By reducing the N -fold Uk-MDDH assumption to the
Uk-MDDH assumption with Lemma 1, the statement follows.
Lemma 4 (G1). For every PPT adversary A there exists an PPT adversary B
such that

|Pr[GA
1 (λ)⇒ 1]| ≤ 1

2 + 1
q − 1

and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A.

Proof. Without loss of generality, assume the adversary involves exactly ν users.
Let us assume, that the column vectors of D and the public keys of all involved
users (users with id ∈ Qinv at the end of the game) are linearly independent.
Since all the public keys are uniformly random vectors in G1, this happens with
probability at least 1− 1/(q − 1). Initially, the symmetric bilinear form B(v,
w) := v⊤Mw is uniformly random to the adversary. Now suppose the adversary
makes a Otest query with two users id⋆

1 and id⋆
2. Let [u⋆

1] and [u⋆
2] be the public

keys of id⋆
1 and id⋆

2, respectively and let [u1], . . . , [uν−2] be the public keys of all
other users. We show the shared key between the tested users, [B(u⋆

1, u⋆
2)]T , is

statistically independent of all the other information the adversary learns about
B during the game.

Assume all OrevH queries and other Otest queries involve at least one involved
user different to {id⋆

1, id⋆
2}, because if the adversary makes a OrevH query with id⋆

1
and id⋆

2 the adversary has lost trivially and a duplicated Otest query would only
return ⊥. Thus these queries can not reveal any information about B that is not
revealed by M(D|u1| · · · |uν−2). The public parameters only reveal MD and any
Oextr query only reveals Mui for an i ∈ {1, . . . , ν − 2}. In total the adversary
learns from all queries except the analyzed Otest query only M(D|u1| · · · |uν−2).
Since the column vectors of D together with {u1, . . . , uν−2, u⋆

1, u⋆
2} are assumed

to be a linear independent set, B(u⋆
1, u⋆

2) = (u⋆
1)⊤Mu⋆

2 is uniformly random given
M(D|u1| · · · |uν−2). We can apply the above argument to each of the adversaries
Otest queries. Consequently, the adversaries advantage in G1 is 0 under the stated
assumptions.
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Proof (of Theorem 1). Combining Lemmata 3 and 4 proves Theorem 1.

Corollary 1. The NIKE NIKEip is adaptively secure with a security loss of
O((N/ν)2 log ν) under the decision linear (DLIN) assumption.

Proof. The DLIN assumption implies the Uk-MDDH for k ≥ 2 [18], so we can
set k = 2. The NIKE then achieves ν-bounded security with loss O(log ν) by
Theorem 1. With Lemma 2 we can achieve adaptive security by increasing the
security loss by a factor of O((N/ν)2).

4 Lower bound

In this section, we show that for all NIKEs that follow a special structure,
there is an in some sense inherent trade-off between key sizes and quality of
the reduction. Compared to previous lower bounds on NIKE reductions [2,
25], we do not make the generic assumption that pairs of public keys already
determine the corresponding shared key. Instead, we leave room for a reduction
to adaptively determine secret keys upon corruptions, as long as they follow
the inner product structure we require. We use the notions of Non-Interactive
Complexity Assumption (NICA, [2], Def. 4 and 5) and Simple Reductions [2], Def.
6 and 7, where the latter is adapted to the reduction breaking our 2-step-adaptive
security in a straightforward way.

We now formalize the notion of inner-product NIKE. The intuition behind this
definition is as follows. Basically, we require an (inefficient) algorithms Extract
that can be used to extract the key vectors (x, y) from a valid pair of public and
secret keys, such that (x, y) can be used to compute the shared key as an inner
product. As we will see in the next section, this inner-product structure will
enforce uniqueness of the shared keys, as soon as sufficiently many secret keys
are fixed. The verification algorithm is necessary to ensure that the reduction can
only give out public and secret keys that satisfy some structural requirements (e.g.
be of the right form and dimension). The public extraction algorithm PExtract
together with the binding requirement is necessary to ensure that the public
keys are committing to the vector x, even before the secret keys are given out.
Finally, we therefore require the function f to be invertible, since it will be crucial
that there is a one-to-one correspondence between the inner product and the
shared key algorithm (note though that the inverse does not have to be efficiently
computable).

Definition 5 (Inner-product NIKE). Let p ∈ N a prime. We say a NIKE
NIKE = (Setup, KeyGen, SharedKey) is a d-dimensional inner-product NIKE
(ip-NIKE) over Zp, if there exists:

– a PPT algorithm Ver taking as input public parameters pp, and a key pair
(pk, sk) and returning a bit b ∈ {0, 1},

– an (inefficient) deterministic extractor Extract that takes as input public
parameters pp, and a key pair (pk, sk) and returns a tuple (x, y) ∈ Zd

p × Zd
p,
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– an (inefficient) deterministic extractor PExtract taking as input pp and pk
and returning a vector x ∈ Zd

p,
– and a function f taking as input public parameters pp and an element z ∈ Zp

and returning a element in the image of NIKE.SharedKey.

such that the following properties hold.
(i) Verifiable keys. For all (pk, sk) in the image of NIKE.KeyGen(pp) it holds

Ver(pp, pk, sk) = 1.
(ii) Ip-computable shared keys. For all public parameters pp, and all key pairs

(pk, sk), (pk′, sk′) with Ver(pp, pk, sk) = Ver(pp, pk′, sk′) = 1, for (x, y) ←
Extract(pp, pk, sk) and (x′, y′)← Extract(pp, pk′, sk′) it holds

SharedKey(pp, pk, sk′) = f(pp, ⟨x, y′⟩).

(iii) Binding public keys. For all (pk, sk) with Ver(pk, sk) = 1 for x ← PEx-
tract(pp, pk) and (x̃, ỹ)← Extract(pp, pk, sk) it holds x = x̃.

(iv) Invertibility of f . The induced function fpp = f(pp, ·) is injective with inverse
f−1

pp .

We call a key pair (pk, sk) with Ver(pp, pk, sk) = 1 valid. By the ip-dimension
of an inner-product NIKE NIKE, we denote the minimal dimension d, such that
NIKE satisfies the definition of d-dimensional inner-product NIKE.

4.1 Lower bound for inner-product NIKEs

In order to show our lower bound, we first prove that after giving out sufficiently
many public key/secret key pairs for a NIKE that satisfies the inner-product
form, the reduction is committed to all shared keys. More precisely, let {pki}i∈I

such that the corresponding vectors xi ← PExtract(pp, pki) span the whole
space Zd

p.15 We further fix secret keys for pki for all i ∈ I such that (pki, ski)
are all valid and consistent with each other, meaning that for all i, j, we have
SharedKey(pp, pki, skj) = SharedKey(pp, pkj , ski). We will show that such a set
of keys fix not only the shared keys between the public keys within {pki}i∈I , but
the shared keys between all possible valid public keys in the system. Therefore,
if d is significantly smaller than N , then with high probability, any large enough
random subset of key pairs will span the whole space of public keys and thereby
already fix all shared keys (computed as inner products) in the system. This
will be crucial in our meta reduction, where we use uniqueness of shared keys in
order to efficiently simulate a hypothetical perfect adversary, thereby essentially
showing that the reduction either has to abort with large probability or would
be able to solve the underlying problem itself.

Lemma 5 (Unique shared keys for ip-NIKEs). Let d, p, λ ∈ N and NIKE =
(Setup, KeyGen, SharedKey, Ver, Extract, PExtract) a d-dimensional ip-NIKE
over Zp. Let I ⊂ [N ]. Let pp ∈ {0, 1}⋆ and let {(pki, ski)}i∈I , (pk, sk), (pk′, sk′) be
such that:
15 For simplicity of this explanation we assume for now that such a set of keys exists,

but stress that our results do not rely on it.
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(a) All key pairs are valid: Ver(pp, pki, ski) = 1 for all i ∈ I and Ver(pp, (pk, sk))
= Ver(pp, pk′, sk′) = 1.

(b) The key pairs in I are pairwise consistent:
SharedKey(pp, pki, skj) = SharedKey(pp, pkj , ski) for all i, j ∈ I with i ̸= j.

(c) The key pairs (pk, sk) and (pk′, sk′) are consistent with the key pairs in
I: SharedKey(pp, pk, ski) = SharedKey(pp, pki, sk) and SharedKey(pp, pk′,
ski) = SharedKey(pp, pki, sk′) for all i ∈ I.

(d) The public keys pk, pk′ are “in the span” of {pki}i∈I : for xi ← PExtract(pp,
pki) and x ← PExtract(pp, pk), x′ ← PExtract(pp, pk′) it holds that x, x′

are in the span of {xi}i∈I .

Then it holds that SharedKey(pp, pk, sk′) = SharedKey(pp, pk′, sk). In other
words, the shared key between the users holding pk′ and pk is consistent.

Proof. Let (xi, yi) ← Extract(pp, pki, ski), (x, y) ← Extract(pp, pk, sk), and
x′ ← PExtract(pp, pk′). Note that x can be extracted from pk independently of
the corresponding secret key due to the “binding public keys” property Def. 5 (iii).
We can rely on the latter property since key pairs are valid because of condition
(a). Again because of (a), shared keys are ip-computable, and we have

SharedKey(pp, pk, sk′) = SharedKey(pp, pk′, sk)
Def. 5 (ii)⇐⇒ fpp(⟨x, y′⟩) = fpp(⟨x′, y⟩)

fpp invertible⇐⇒ ⟨x, y′⟩ = ⟨x′, y⟩,

and thus it suffices to show equality of these inner products. Due to validity of
all involved key pairs and condition (b), for all i, j ∈ I with i ̸= j, it holds:

⟨xi, yj⟩
Def. 5 (ii)= f−1

pp (SharedKey(pp, pki, skj))
Cond. (b)= f−1

pp (SharedKey(pp, pkj , ski))
Def. 5 (ii)= ⟨xj , yi⟩.

(1)

Analogously, by to validity of all involved key pairs and condition (c) for all
i ∈ I, we have:

⟨xi, y⟩=⟨x, yi⟩ and ⟨xi, y′⟩=⟨x′, yi⟩. (2)

By condition (d) from the lemma statement, we can find β, γ ∈ Z|I|
p with∑|I|

j=1 βjxj = x and
∑|I|

i=1 γixi = x′. First, note that for all i ∈ I we have

⟨xi,

|I|∑
j=1

βjyj⟩=
|I|∑

j=1
βj⟨xi, yj⟩

Eq. 1=
|I|∑

j=1
βj⟨xj , yi⟩ = ⟨x, yi⟩

Eq. 2= ⟨xi, y⟩. (3)

With this, it follows that

⟨x, y′⟩Cond. (d)= ⟨
|I|∑

j=1
βjxj , y′⟩ =

|I|∑
j=1

βj⟨xj , y′⟩ Eq. 2=
|I|∑

j=1
βj⟨x′, yj⟩ = ⟨x′,

|I|∑
j=1

βjyj⟩.
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Finally, we have

⟨x′,

|I|∑
j=1

βjyj⟩ =
|I|∑

i=1
γi⟨xi,

|I|∑
j=1

βjyj⟩
Eq. 3=

|I|∑
i=1

γi⟨xi, y⟩ = ⟨x′, y⟩,

which concludes the proof.
Note that this in particular implies that the shared key is independent of the

choice of secret keys sk, sk′ satisfying conditions (a) and (c).
Relying on the fact that after giving out sufficiently many secret keys, all

shared keys are uniquely determined, we are able to prove a trade-off between
the tightness of the reduction and the dimension of an inner-product NIKE. We
formalize this in the following theorem, which we prove in the full version, and
give an interpretation of our result below.

Theorem 2. Let N = (G, U, V ) be a non-interactive complexity assumption,
let N, d ∈ N with 4d + 6 < N , and let p ∈ N a prime. Let NIKE be a perfectly
correct 2-step-adaptively-secure d-dimensional ip-NIKE over Zp with shared key
space K, public key space PK and secret key space SK. Then, for any simple (εΛ,
εA)-reduction from breaking the NICA N to breaking the N -user 2-step-adaptive
security of NIKE, there exists a PPT adversary B on the NICA N , such that

εΛ ≤
4d + 6

N
· εA + Advnica

N ,B.

Interpretation. Theorem 2 says that if any reduction is successfully breaking
the underlying NICA N with probability noticeably larger than (4d + 6)/N , the
reduction can be turned into a standalone N solver, without help of an external
adversary. More precisely, assuming N is hard we obtain

εΛ ≤
4d + 6

N
· εA + negl

for a negligible function negl. This implies a security loss of at least N/(4d + 6).
We can thus conclude that any inner-product NIKE that satisfies 2-step-

adaptive security has to either have a significant loss, or ip-dimension proportional
to the number of users N . In particular, this gives strong evidence that a fully-
adaptive NIKEs with tight security only exist for an a priori fixed number of users,
but not for a dynamic setting where users continuously join or leave. Altogether,
using the relations between security notions depicted in Figure 4, we obtain the
following informal corollary:

Corollary 2. Any simple reduction from a non-interactive complexity assump-
tion N to the X-security of a d-dimensional ip-NIKE has to lose a factor in
the order of Y , where N is the number of public keys, N is assumed to be hard
and (X, Y ) ∈ {(2-step-adaptive, Ω(N/d)), (adaptive, Ω(N/d)), (ν-semi-adaptive,
Ω(ν2/(N · d))}.
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