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Abstract. Consider a coin tossing protocol in which n processors P1, . . . , Pn

agree on a random bit b in n rounds, where in round i Pi sends a single message
wi. Imagine a full-information adversary who prefers the output 1, and in every
round i it knows all the finalized messages w1, . . . , wi−1 so far as well as the
prepared message wi. A k-replacing attack will have a chance to replace the
prepared wi with its own choice w′i 6= wi in up to k rounds. Taking majority
protocol over uniformly random bits wi = bi is robust in the following strong
sense. Any k-replacing adversary can only increase the probability of outputting
1 by at most O(k/

√
n). In this work, we ask if the above simple protocol is tight.

For the same setting, but restricted to uniformly random bit messages, Lichten-
stein, Linial, and Saks [Combinatorica’89] showed how to achieve biasΩ(k/

√
n)

for any k ∈ [n]. Kalai, Komargodski, and Raz [DISC’18, Combinatorica’21]
gave an alternative polynomial-time attack when k ≥ Θ(

√
n). Etesami, Mahlou-

jifar, and Mahmoody [ALT’19, SODA’20] extended the result of KKR18 to arbi-
trary long messages. It hence remained open to find any attacks of biasΩ(k/

√
n)

in the few-corruption regime k = o(
√
n) when the messages are of arbitrary

length, and to find such polynomial-time (and perhaps tight) attacks when mes-
sages are uniformly random bits. In this work, we resolve both of these problems.

– For arbitrary length messages, we show that k-replacing polynomial-time
attacks can indeed increase the probability of outputting 1 by Ω(k/

√
n) for

any k, which is optimal up to a constant factor. By plugging in our attack into
the framework of Mahloujifar Mahmoody [TCC’17] we obtain similar data
poisoning attacks against deterministic learners when adversary is limited to
changing k = o(

√
n) of the n training examples.

– For uniformly random bits b1, . . . , bn, we show that whenever Pr[b = 1] =

Pr[
∑
bi ≥ t] = β

(t)
n for t ∈ [n] is the probability of a Hamming ball,

then online polynomial-time k-replacing attacks can increase Pr[b = 1] from
β
(t)
n to β(t−k)

n , which is optimal due to the majority protocol. In comparison,
the (information-theoretic) attack of LLS89 increased Pr[b = 1] to β(t−k)

n−k ,
which is optimal for adaptive adversaries who cannot see the message before
changing it. Thus, we obtain a computational variant of Harper’s celebrated
vertex isoperimetric inequality.
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1 Introduction

Collective coin tossing [6] is a fundamental problem in cryptography in which a set
of n parties aim to jointly produce a random bit b that remains (close to) random
even if an adversary controls a subset of these parties. The simple majority protocol
maj(b1, . . . , bn), when n is odd and each bit bi is broadcast by party Pi, is robust in
the following strong sense: Any adversary who even gets to see all the messages and
then replaces at most k ∈ [n] of the them can only bias the output bit by at most by
O(k/

√
n) [4]. In a nutshell, in this work we ask how optimal is the majority protocol

against such attacks? We study this question from various angels as explained below.

Problem setting. Suppose Π is an n-round coin-tossing protocol between n parties,
where party Pi sends a single message wi in round i that could depend on all the pre-
vious messages, and the final bit b is a deterministic function of all messages.4 Now,
suppose an adversary aims to increase the probability of Pr[b = 1]. We call this a tar-
geted attack, as adversary can choose the target direction of the bias.5 We deal with
k-replacing adversaries who can replace k of the messages as follows. Suppose mes-
sages w1, . . . , wi−1 are already finalized and party Pi is about to send wi in round i.
The adversary will have a chance to replace wi, based on the knowledge of wi.6 Equiv-
alently, we will think of the protocol as a random process (w1, . . . , wn) with n steps,
and a k-replacing adversary will be allowed to override the content of k of the steps,
in which case the rest of the random process will depend on the new values. The goal
of the adversary is to increase the probability of Pr[b = 1] for a Boolean function
f(w1, . . . , wn) = b ∈ {0, 1}. Informally speaking, we would like to know what are the
most robust random processes in this setting.

Targeted aspect. Studying targeted attacks is important due to several reasons. Firstly,
targeted attacks allow modeling adversaries who have a particular output preferred in
mind. For example, the coin tossing model’s output might determine whether a con-
tract would be signed or not. Then, a party who prefers signing the contract wants to
increase the chance of outputting b = 1. Moreover, targeted attacks allow modeling at-
tacks on specific “undesired” properties like B defined over random processes; namely,
the adversary aims to increase the probability of B happening at the end. Below in the
introduction we further discuss applications such as targeted poisoning attacks in ad-
versarial machine learning and computational isoperimetry results. See the full version
of this paper for formalization of these results.

Robustness of threshold functions. For a setting where wi is a uniform random bit bi,
consider the threshold function f defined as f(b1, . . . , bn) = 1 whenever

∑
bi ≥ t and

let β(t)
n = Pr[

∑
bi ≥ t]. Then we get a robust protocol in the following sense. Any

k-replacing adversary will be limited to achieve Pr[b = 1] ≤ β
(t−k)
n , because all it can

do is to replace k ones with zeros. In particular, it can be shown that for the majority
function (for odd n) any k-replacing attack increase Pr[b = 1] by at most O(k/

√
n).

4 This is also called a single-turn protocol.
5 In contrast, untargeted adversaries can bias the output towards either of 0 or 1.
6 This is also called the strongly adaptive corruption model [13].
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In this work, we study the optimality of the simple threshold/majority protocols and ask
the following.

1. If Pr[b = 1] = 1/2 holds originally, can k-replacing adversaries increase
the probability of Pr[b = 1] by Ω(k/

√
n) in every n-step random process

with arbitrarily long messages?
2. For simpler models such as those with uniformly random bits, can we ob-

tain optimal attacks that prove the threshold protocols to be the best possi-
ble for all Pr[b = 1] = β

(t)
n ?

We answer both questions above affirmatively. Notably, we even obtain polynomial-
time attacks. Before describing our results in details, we briefly discuss what was known
before our work.

Previous work for uniform binary messages. Lichtenstein, Linial, and Saks [24] showed
that the threshold protocols are optimal when the messages are uniform random bits, but
under a weaker attack model where the adversary is supposed to corrupt parties before
seeing their message. In particular, they showed that if Pr[f(b1, . . . , bn) = 1] without
attack is the probability of the threshold function Pr[

∑
bi ≥ t] = β

(t)
n , then there is an

adaptive attack with budget k that achieves Pr[f(b1, . . . , bn) = 1] ≥ β(t−k)
n−k . However,

this attack was information theoretic and not polynomial time. It also remained open
whether k-replacing attacks can improve upon the bound of [24] and potentially match
the robustness of threshold functions. In other words, prior to our work, it was not
known whether threshold functions are optimal against k-replacing attacks.

Previous work on arbitrary length messages. Kalai, Komargodski, and Raz [21] showed
that in the “many-replacement” regime where k = Ω(

√
n), a different attack in the bi-

nary setting of [24] can be achieved in polynomial time.7 Building upon [21], Etesami,
Mahloujifar and Mahmoody [12,28] showed how to extend this result to arbitrary mes-
sage length and obtain (again targeted) attacks in polynomial time, but again only when
k ≥ Ω(

√
n). (See Section 1.1 for more discussions on why those proofs lead to many

replacements.) Finally, Khorasgani, Maji, Mukherjee, and Wang [22, 23] showed how
to get non-targeted attacks for large messages when k = 1.

Our results. Previous works left open our two main questions. In this work, we resolve
both of these questions and show that (1) when Pr[b = 1] = Θ(1), then majority is
optimal up to a constant factor against k-replacing adversaries for all adversary budget k
(including the “few corruption regime”), and (2) when messages are uniformly random
bits, for any initial probability of Hamming balls Pr[b = 1] = Pr[

∑
bi ≥ t], the

corresponding threshold function is optimal, even up to exact constants.

Theorem 1 (Main result 1 – arbitrary messages). LetΠ be any single-turn polynomial-
time coin-tossing protocol between n parties to obtain an output bit b in which, origi-
nally (before any attack) it holds that Pr[b = 1] = µ. For any k = O(

√
n), there is a

7 Interestingly, the main result of [21] focuses on non-targeted attacks and shows that the output
of any single-turn protocol can be attacked (only information theoretically) by a (standard)
adaptive non-targeted adversary replacing k = Ω(

√
n) parties. The recent breakthrough of

Haitner and Karidi-Heller [15] generalized the main result of [21] to any general, perhaps
multi-turn, protocol. Our focus in this work, however, is on single-turn protocols.
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k-replacing polynomial time attack that increases the probability of outputting b = 1
by a probability that can get arbitrarily close to:(

1−
(

1− µ√
n

)k)
·
(
1− e−2 − µ

)
.

To prove Theorem 1, we use ideas from the attack of [28] (see Section 1.1). See The-
orems 14 for a formalization of the information theoretic variant. For the polynomial-
time variant of this theorem see the full version.

It can be shown that, as long as k = O(
√
n), the biasing bound of Theorem 1 is

Ω(k · µ/
√
n). Therefore, Theorem 1 resolves our first main question above; i.e., the

majority protocol of [3] is optimal, up to a constant factor, for targeted attacks on any
single-turn protocol when µ = Θ(1).

Our next result solves the problem completely for protocols with uniform random
bits, as long as the probability of outputting 1 is that of a threshold function.

Theorem 2 (Main result 2 – uniformly random bits). LetΠ be any single-turn polynomial-
time coin-tossing protocol between n parties to obtain an output bit b in which the par-
ties share uniformly random bits b1, . . . , bn. Suppose originally (before any attack) it
holds that Pr[b = 1] = Pr[

∑
bi ≥ t] = β

(t)
n for t ∈ [n]. Then, for any k ∈ [n], there

is a k-replacing attack that increases the probability of outputting b = 1 to β(t−k)
n .

Moreover, if it further holds that Pr[b = 1] ≥ 1/ poly(n) is non-negligible, then there
will be polynomial-time k-replacing attacks that can get arbitrarily close to the same
bound of β(t−k)

n .

To prove Theorem 2, we also use ideas from the recent work of [23]. See Theo-
rem 18 for a formal version of the information theoretic variant of Theorem 2. See the
full version of the paper for how our specific information theoretic attack can be adapted
minimally to run in polynomial time.

Note that Theorem 2 shows something perhaps surprising about the power of online
attacks against coin tossing protocols. It shows that online attacks are as powerful as
offline attacks, when we consider the most robust functions with Pr[b = 1] = β

(t)
n being

that of a Hamming ball. In fact, we present such attacks that run in polynomial time,
and this implies a new computational variant for the celebrated vertex isoperimetry
inequality of Harper [19]. Indeed, the vertex isoperimetric inequality in the Boolean
hypercube states that for any set S ⊆ {0, 1}n of probability Pr[(b1 . . . , bn) ∈ S] =

β
(t)
n , the probability of the set of points (inside or outside S) with a neighbor in S of

distance at most k is at least β(t−k)
n . Our Theorem 2 matches this bound exactly, and

even shows how to find such close neighbors (in S) in polynomial time and even in an
online manner for at least β(t−k)

n fraction of {0, 1}n.

Applications. We can directly apply the attacks of Theorems 1 and 2 to obtain the
applications below.

– Targeted data poisoning on learners. Theorem 1 can model any random process
(w1, . . . , wm) that generates an object h that might or might not belong to an (un-
desirable) set B with some probability µ. In that case, we can define the output of
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Targeted Poly-time Corruption model Budget k Messages Rounds
[24] X - Adaptive Any Uniform bits Any
[21] X X Adaptive Ω(

√
n) Uniform bits Any

This work X X Replacing Any Uniform bits Any
[12, 28] X X Replacing Ω(

√
n) Arbitrary Any

This work X X Replacing Any Arbitrary Any
[8] - - Replacing 1 Arbitrary Any
[13] - - Replacing Ω(

√
n) Arbitrary 1

[32, 36] - - Replacing Any Arbitrary 1
[15, 21] - - Adaptive Ω(

√
n) Arbitrary Any

[22] - - Replacing 1 Arbitrary Any
[23] - - Adaptive 1 Arbitrary Any

Table 1. Summary of related attacks on single-turn coin tossing protocols.

the process to be b = 1 if h ∈ B, and then an adversary can increase the proba-
bility of falling into S through a k-replacing attack. Now, suppose wi is a batch of
data provided by the ith party, and let h be a model that is deterministically trained
on the data set w1 ∪ · · · ∪ wn. Suppose there is an specific (efficiently testable)
property B defined over h that an adversary wants to increase its probability (e.g.,
h makes a specific decision on a particular test instance). Theorem 14 shows that
the adversary can always increase the probability of B from µ to µ + Ω(k/

√
n)

by changing only k of the training batches. Previously, Etesami, Mahloujifar, and
Mahmoody [12, 28] proved such results only for when k ≥ Ω(

√
n) and Diochnos,

Mahloujifar, and Mahmoody [25, 26, 29] proved a weaker bound of µ+Ω(k/n) .
– Computational isoperimetry in product spaces. Let w≤n ≡ (w1 × · · · × wn)

be a product distribution of dimension n, and let HD be the Hamming distance
HD(w≤n, w

′
≤n) = | {i | wi 6= w′i} |. Then, a basic question in functional analysis

is how quickly noticeable events expand under Hamming distance. It is known, e.g.,
by results implicit in [1, 33] and explicit in [32, 36]8 that if a set S has measure µ,
the k-expansion of it (i.e., the set of points with a neighbor in S of distance at most
k) will have have measure at least µ+Ω(k · µ/

√
n) for k = O(

√
n). The previous

works of [12, 28] introduced an algorithmic variant of the measure concentration
phenomenon and showed how to obtain polynomial time algorithms that achieve
the following. Given a random point w≤n ∈ w, we can find a neighbor of distance
at most k in S with probability µ+Ω(k · µ/

√
n).

Their result above only apply to the setting where k ≥ Ω(
√
n), and it remained

open to obtain such computational concentration for any small k = o(
√
n). For

such small k, the problem is more suitable to be called an isoperimetric problem,
due to historic reasons. By applying our Theorem 1 we directly get computational
concentration/isoperimetry results for any k = o(

√
n) in any product space. For the

case of uniform random bits and probabilities corresponding to Hamming balls, our
Theorem 2 shows how to obtain results that match the corresponding lower bound

8 A weaker version for uniform bits is known as the blowing-up lemma [31].
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on the vertex isoperimetry [19], and we do so by using polynomial time algorithms.
See the full version for the details of the polynomial time extension.

1.1 Technical overview

Here, we describe the key ideas behind our main results of Theorems 1 and 2 at a
high level. We prove Theorem 1 by giving a novel inductive analysis (over adversary’s
budget k) for a variant of the attack of [28]. Interestingly, even though the attack of [12]
improves [28] for many-replacing regime, we are not able to build our few-replacing
attacks on that of [12]! We also do a modification to the [28] (by always looking at
a message before changing or not changing it) that allows us to significantly improve
the exact bound. Our modification of the attack of [28] makes the attack’s description
simpler and allows for sharper analysis (even in the many-replacing regime of [28], but
that is not our focus here). In fact, that change is crucial to obtain our Theorem 2 which
gives an optimal bounds for uniform binary messages.

Our proof of Theorem 2 is inspired by the recent work of Khorasgani et al. [23]
who studied 1-replacing information-theoretic non-targeted attacks, but we still use
ideas from their work in our setting. In particular, we use a concave function as the
lower bound of the success probability of our attack and use induction over the number
of bits n. The exact attack and the details of our inductive proof, however, are quite
different from the work of Khorasgani et al. [23].

Outline. We first describe our ideas for Theorem 1 and then will do so for Theorem 2.
For Theorem 1, we will first sketch the proofs of [12, 21, 28]9 and explain why they
require k = Ω(k) replacements to give a meaningful bound. Then, we explain our new
ideas that allow bypassing the barrier of k = Ω(k).

In the following, we explain our new ideas behind the proof of Theorems 1 and 2.

Why the attacks of [12, 21, 28] need k = Ω(
√
n) corruptions. The targeted attacks

of [12, 21, 28] have a similar core that make them rely on many k = Ω(
√
n) number

of corruptions to achieve bias towards 1. These attacks first show that certain specific
attacks with unlimited budget can significantly bias the output of the function towards 1.
Then, in the second step, they show that the number of corruptions of such∞-replacing
attacks will not be more than O(

√
n). To contrast our approach, the analysis of our

attack for proving Theorem 1 starts from k = 1 and increases k, while those of [12, 21,
28] start from k =∞ and show that it does not have to be more than k = Θ(

√
n).

Notation. Let wi be the i’th message sent by the i’th party, and let vi be the possible
modified version (vi 6= wi if the adversary corrupts the ith party and changes its mes-
sage). We let w≤i = (w1, . . . , wi) and v≤i is defined similarly. Let f(v1, . . . , vn) = b
be the Boolean function that determines the final output bit b. Also µ = Pr[b = 1] holds
in the original (no-attack) protocol. (See Section 2 for all the definitions.)

The attacks of [12, 21, 28] all track the expected value f̄(v≤i−1) = Pr[b = 1 |
v≤i−1] of the final bit b conditioned on the current messages v≤i−1 (which forms a
Doob martingale). Let wi be the honestly prepared message of the i’th party that is

9 In case [21], here we refer to their proof for the case of bitwise messages. Their attack for the
long-message setting is (inherently) an non-targeted attack, and not a PPT one.
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about to be sent in round i. If the number of corruptions has not reached k yet, with the
attack parameter λ ∈ [0, 1], do as follows.
1. Even before looking at wi, if there is some vi that increases the expected value of b

by λ (i.e., f̄(v≤i) > f̄(v≤i−1) + λ) then corrupt the i’th party and send vi instead.
2. Otherwise, look at wi. If, it is going to decrease the expected value of b by more

than λ (i.e., f̄(v≤i, wi) < f̄(v≤i−1)− λ), then again corrupt message wi to vi.
3. Otherwise, do not corrupt the i’th party, and let vi = wi remain unchanged.

Analysis of [28]. The main ideas in the analysis of [28] are as follows.
1. Ignoring the number of corruptions, the∞-replacing attack achieves expected value

1− err(λ, µ, n), where err(λ, µ, n) = e−Ω(µ2/(nλ2)) is an “Azuma error”.
2. For every corruption, the expected value of the output jumps up by at least λ.

Relying on the above two keys, [28] proved that the total expected number of cor-
ruptions cannot be larger than 1/λ, so by choosing λ ≈ µ/

√
n, they can achieve both

(1) high expected value 1− err(λ, µ, n) and (2) few corruptions k ≤ 1/λ ≈
√
n/µ.

A candidate one-replacing targeted PPT attack. We now propose our new one-replacing
attack that we will analyze using new ideas. The first version of our attack follows that
of [28] and immediately stops as soon as the first corruption happens. Note that, the
analysis of [28] says nothing about the power of this 1-replacing attack, as this attack is
cut prematurely.
Idea 1: we gain as soon as the corruption happens. Our first key idea is that, the additive
attack of [28] (as opposed to the “multiplicative” attack of [12]) always gains by λ,
whenever a corruption happens. So, to analyze our 1-replacing attacks, all we need is
to lower bound the probability p1 of one corruption.
Idea 2: 1-replacing is as good as ∞-replacing if no corruptions happens. As long as
no corruption has happened, our one-replacing attacker is actually identical to an attack
with no limit on the number of corruptions. Also, note that the probability of outputting
1 in the ∞-replacing attack of [28] is 1 − err(λ, µ, n). Therefore, we conclude that
if we run the one-replacing attack, with probability 1 − err(λ, µ, n) we either output
1 (which is good enough) or do at least one corruption (which is also good for us!).
Since the probability of outputting 1 without any attacks is exactly µ, we can now lower
bound p1 and conclude that

p1 ≥ 1− err(λ, µ, n)− µ.

Having the above bound on p1, we lower bond output’s expected value µ1 under our
1-replacing attack is

µ1 ≥ µ+ λ · (1− err(λ, µ, n)− µ).

We can now choose λ = Θ(µ/
√
n) which leads to up bias Ω(µ/

√
n). This attack can

be made polynomial time by approximating output’s Doob martingale.

Induction on k to obtain k-replacing targeted attack. Having the 1-replacing attack
above, it is now tempting to apply them recursively to get k-replacing attacks. Note that
this is possible only because we have a targeted attack, and so we can recursively apply
such attack k times, each of which is a one-replacing attack, and increase the expected



8 O. Etesami et al.

value of the output bit gradually. This approach, however, remains polynomial time only
for k = O(1). Here, we take a different approach and directly analyze the k-replacing
attack of [28] using induction on k.

The idea is to allow the ∞-replacing attack of [28] run for k corruptions in total
rather than one, and then trying to analyze it by induction on k. Suppose pk is the
probability that the k-replacing attack reaches its k’th corruption. Also, let µi be the
expected value of the output b under the i-replacing targeted attack. A key idea is that
all we have to do is to lower bound the probability of the corruptions happening, and
by linearity of expectation we will indeed gain by at least λ · k in expected value of
the outcome. In fact, we go one step further and relate the gain in the k’th corruption
directly to the gain already obtained through k − 1 corruptions. I.e., by linearity of
expectation, we have:

µk ≥ µk−1 + λ · pk.
The intuition is that before reaching the k’th corruption, the two attack are the same, and
once the k’th corruption happens, the k-replacing attack gets a jump of λ up compared
to the (k − 1)-replacing attack. Again, all we need is to lower bound pk. To do so, we
again use a generalization of the idea that we described for the case of one-replacing
above. Namely, we note that as long as the k’th corruption does not happen in the k-
replacing attack, it is again indistinguishable from the∞-replacing attack of [28]. Also,
the (k−1)-replacing attack reaches b = 1 with probability µk−1 already. Using a union
bound, we get:

pk ≥ 1− err(λ, µ, n)− µk−1,
using which we can get that the expected value of b under the k-replacing attack is

µk ≥ µ+ λ · (1− err(λ, µ, n)− µk−1) .

Solving the recursive inequalities above, we lower bound µk as in Theorems 1 and 14.
We now describe some of the key ideas behind our proof of Theorem 2, which deals

with uniform binary messages. In this section, we mainly focus on showing the core
ideas that lead to the information theoretic optimal k-replacing attacks of Theorem 2,
which deals with online attacks. In the full version of this paperwe show how to use
similar ideas (by approximating the Doob martingale of the final output bit) used for
the polynomial-time attacks for Theorem 1 to also extend our information theoretic
attacks for Theorem 2 to polynomial time variants.

Notation. First, we define the key notations that are needed for our overview of the ideas
behind the proof of our Theorem 2. Here, all the original messages are independent and
uniform random bits, which we denote with (u1, . . . , un). Also, we let S be the set
of input sequences that lead to output 1, namely S = {x | f(x) = 1}. We know that
Pr[(u1, . . . , un) ∈ S] = Pr[

∑
ui ≥ t] = β

(t)
n is that of a Hamming ball. The goal of

the adversary is to maximize the probability of falling into S through k-replacements in
an online way. We now define the “online expansion” under optimal online k-replacing
attacks, both as a function of sets, or as a function of set probabilities. (See Defini-
tion 17 for more details.) Let A be an online k-replacing adversary over the uniform
distribution over {0, 1}n. Let OnExp(A)(S) be the probability that A can map a random
input to S through its online k-replacing attack. Let OnExp(k)(S) be the maximum over
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OnExp(A)(S) among all k-replacing attacks, and let the following be the minimum of
OnExp(k)(S) among all sets of measure µ.

OnExp(k)
n (µ) = inf

S,Pr[S]≥µ
OnExp(k)(S).

Our key idea is to show that the following piecewise-linear function is a lower
bound on the power of k-replacing attacks. We prove this by induction on n. In com-
parison, [23] also used similar piecewise-linear functions, but their goal was to obtain
1-corrupting information theoretic non-targeted attacks. It is possible that using similar
techniques, one can make the attack of [23] also polynomial time, but the key differ-
ences are due to the fact that [23] aims for a non-targeted attack, and hence it ends up
with a completely different recursive relation and induction on n.

Definition 3 (The piecewise-linear lower bound – informal). For any non-negative in-
tegers k, n, the function `(k)n : [0, 1]→ [0, 1] is defined as follows.

– If µ = β
(t)
n for any t ∈ [n], it holds that `(k)n

(
β
(t)
n

)
= β

(t−k)
n . Namely, when the

input probability is that of an exact Hamming balls, `(k)n returns their probability
after expanding them to include anything within their k Hamming distance (which
is also a Hamming ball).

– Connect all the n+ 2 points above to obtain a piecewise-linear function `(k)n .

See Definition 24 for a formal definition of the function above.

Recursive relation for OnExp(k)
n (µ). We then use a recursive relation that can be used

to exactly compute OnExp(k)
n (µ) for all k, n, µ (see Definition 20). The idea of the re-

cursive relation is to model adversary’s decision based on optimal decisions. In fact,
if an adversary is given a bit ui = 0, and it holds that Pr[(0, u2, . . . , un) ∈ S] =
µ0,Pr[(1, u2, . . . , un) ∈ S] = µ1. Then, an optimal online adversary shall decide be-
tween changing it to 1 or not, and if it knows the optimal solutions for OnExp

(k)
n−1(µ0)

(reflecting the “no change” decision) and OnExp
(k−1)
n−1 (reflecting the “change” deci-

sion) it can make the optimal decision.

Using lower bounds lead to lower bounds. We prove by induction on n, that if one uses
lower bounds (e.g., `(k)n−1 and `(k−1)n−1 ) instead of OnExp

(k)
n−1(µ0) and OnExp

(k−1)
n−1 (µ1)

in the recursive relation that computes OnExp(k)
n , then one obtains a lower bound on

OnExp(k)
n (µ). This part of the proof follows from the monotonicity of the recursive

relation for OnExp(k)
n .

Function OnExp(k)
n (µ) remains a lower bound for `(k)n . We also show that when we

apply the recursive relation over `(k)n−1 and `(k−1)n−1 , the result will be an upper bound on
`
(k)
n . This, together with the step above implies that `(k)n remains a lower bound `(k)n .

This is the most technical step of the proof that goes through a careful case study and
heavily relies on the concavity and monotonicity of `(k)n .

Making the attack polynomial time. In the actual polynomial time attack, the adversary
approximates µ, and it uses `(k)n (which is efficiently computable) instead of OnExp(k)

n (µ)
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in the recursive relation and decides to change or not change the bits. See the full version
of the paper for the details of making the attack polynomial time.

1.2 Further related work

Many of the related works were already discussed in previous sections. In this section,
we discuss other works related to ours, mostly in the context of coin tossing protocols.

Adaptive corruption. As explained above, our results are proved in the strong adaptive
corruption model. However, many works study the power of standard adaptive corrup-
tion in coin tossing protocols. The main result in [21] indeed proves the existence of
such attacks that achieve non-targeted biasing that controls the output fully when the
number of corruptions is k ≥

√
n. Haitner and Karidi-Heller [15] further generalized

this result to multi-turn protocols, resolving a long-standing open problem of Ben-Or
and Linial [4]. Dodis [11] previously proved that certain black-box methods cannot
break this conjecture. The recent work of Khorasgani, Maji, and Wang [22,23] showed
that for the case of 1 replacing, (computationally unbounded) adaptive adversaries can
achieve non-targeted bias Ω(1/

√
n) in single-turn protocols.

Static corruption. A static adversary chooses the corrupted parties independently of the
execution of the protocol, and hence can fix the corrupted set ahead of the execution.
The previously mentioned works of [3,5,25,27,29] all fall into this framework and prove
that corrupting k parties can lead to bias Ω(µk/n) statically. These results hold even
if the statically corrupted set is chosen at random. For single-round protocols in which
each party sends a single bit, Kahn, Kalai and Linial [20] showed that any protocol is
susceptible toΩ(n/ log n) corruptions. A long line of exciting works (see [35]) showed
how to achieve robustness to (1− δ) · n static corruption for any δ < 1.

Fair coin tossing. Another line of work in coin tossing protocols aims to study the power
of fair protocols in which the parties need to output a bit even if the other party is caught
cheating (e.g., by aborting in the middle of the protocol). The work of Cleve [7] showed
that in any such protocol with r rounds between two parties, there is a PPT attacker that
biases the output of the other party by at least Ω(1/r). The work of Moran, Naor,
and Segev [34] showed how to match this bound assuming oblivious transfer, leading
to an “optimally fair” protocol. A sequence of works [9, 10, 16, 17] showed barriers for
doing so from one-way functions, and finally, the beautiful work of Maji and Wang [30]
completely resolved this question for black-box constructions. For works on fair coin
tossing in the multiparty settings see [2, 18].

2 Preliminaries

General notation. We use calligraphic letters (e.g.,X ) for sets. All distributions and ran-
dom variables in this work are discrete. We use bold letters (e.g., w) to denote random
variables that return a sample from a corresponding discrete distribution. By w ← w
we denote sampling w from the random variable w. By Supp(w) we denote the sup-
port set of w. For an event S ⊆ Supp(w), the probability function of w for S is
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denoted as Pr[w ∈ S] = Prw←w[w ∈ S] or simply as Pr[S] when w is clear from
the context. By u ≡ v we denote that the random variables u and v have the same
distributions. Unless stated otherwise, we denote vectors by using a bar over a variable.
By (w1,w2, . . . ,wn) we refer to a sequence of n jointly sampled random variables.
For a vector (w1 . . . wn), we use w≤i to denote the prefix (w1, . . . , wi), and we use the
same notation w≤i for jointly distributed random variables. For vector x = u≤i−1 and
y = ui, by, by xy we denote the vector u≤i−1 that appends ui as the last coordinate
of x. For a jointly distributed random variables (u,v), by (u | v = v) or we denote
the random variable u conditioned on v = v. When it is clear from the context, we
simply write (u | v) or u[v] instead. By u × v we refer to the product distribution in
which u and v are sampled independently. HD(u≤n, v≤n) = |{i | ui 6= vi}| denotes
the Hamming distance for vectors of n coordinates.

Random processes. Let w≤n ≡ (w1, . . . ,wn) be a sequence of jointly distributed ran-
dom variables. We can interpret the distribution of w≤i as a random process in which
the ith block wi is sampled from the marginal distribution (wi | w≤i−1) ≡ (wi |
w≤i−1 = w≤i−1) ≡ wi[w≤i−1]. We also use w≤n[·] to denote an oracle sampling
algorithm that given w≤i returns a sample from w≤n[w≤i].

Attack model. Our adversaries replace a message/block in a random process. Namely,
they observe the blocks one by one and sometimes intervene to replace them with a new
value. (The new values will subsequently change the way the random process will pro-
ceed.) Hence, we refer to them as replacing adversaries. Such adversaries are equivalent
to strongly adaptive corrupting adversaries as defined in [13].

Definition 4 (Online replacing attacks on random processes). Let w≤n ≡ (w1, . . . ,wn)
be a random process. Suppose A(x, σ) → (x′, σ′) is a (potentially randomized) algo-
rithm with the following syntax. It takes as input some (randomness,) x and σ, where
σ is interpreted as a “state”, and it outputs (x′, σ′). We call such algorithm an online
replacing adversary and define the following properties for it.

We define the following notions for w≤n.

– The generated and output random processes under replacing attacks. Suppose
A is an replacing algorithm. We now define two random processes that result from
running the replacing adversary A to influence the original random process w≤n.
For i = 1, 2, . . . , n, we first sample ui ← (wi | w≤i−1 = v≤i−1), and then we
obtain (vi, σi)← A(ui, σi−1). If at any point during this process Pr[w≤i = v≤i] =
0, we will output ui+1 = · · · = un = vi+1 = · · · = vn = ⊥. We call (u≤n,v≤n)
the jointly generated random processes under the attack. We also refer to u≤n as
the original values and v≤n as the output of the random process under the attack A.

– Online replacing. We call A a valid (online replacing) attack on w≤n, if with
probability 1 over the generation of u≤n, v≤n, it holds that none of the coordinates
are ⊥ (i.e., Pr[w≤i = v≤i] 6= 0.) In this work we always work with valid online
replacing attacks, even if they are not called valid.

– Budget of replacing attacks. Replacing adversary A has budget k, if

Pr[HD(u≤n,v≤n) ≤ k] = 1,
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where (u≤n,v≤n) are the jointly generated random processes that are also jointly
distributed.

– Algorithmic efficiency of attacks. If w≤n is indexed by n as a member of a family
of joint distributions defined for all n ∈ N, then we call an online or offline replac-
ing algorithm efficient, if its running time is at most poly(N) where N is the total
bit-length representation of any w≤n ∈ Supp(w≤n). We would also consider effi-
ciency where the replacing algorithm uses an oracle. In particular, we say an attack
Aw≤n[·] with oracle access to sampler w≤n[·] is efficient if it runs in time poly(N).

We now recall the so-called Doob martingale of a (Boolean-output) random process.

Definition 5 (Doob martingale, partial averages, and their approximate variant). For
random process w≤n ≡ (w1, . . . ,wn), let f : Supp(w≤n) 7→ R, i ∈ [n], and w≤i ∈
Supp(w≤i). Then we use the notation f̄(w≤i) = Ew≤n←(w≤n|w≤i)[f(w≤n)] to define
the expected value of f for a sample from w≤n conditioned on the prefix w≤i and
refer to it as a partial-average of f . In particular, using notation w≤0 = ∅, we have
f̄(∅) = E[f(w≤n)]. The random process (f̄(w≤1), . . . , f̄(w≤n)) is called the Doob
martingale of the function f over the random process w≤n. For the same w≤n and f̄(·),
we call f̃(·) an (additive) ε-approximation of f̄(·), if for all w≤i ∈ Supp(w≤i), it holds
that f̃(w≤i) ∈ f̄(w≤i)± ε.

If one is given oracle access to ` samples from (wi | w≤i), then by averaging them,
one can obtain (due to the Hoeffding inequality) an ε-approximation of f̃(w≤i) for with
probability 1− exp(−`/ε2).

2.1 Useful facts

We use the following variant of the Azuma inequality which is proved in [14].

Lemma 6 (Azuma’s inequality for dynamic interval lengths (Theorem 2.5 in [14])). Let
t≤n ≡ (t1, . . . , tn) be a sequence of n jointly distributed random variables such that
for all i ∈ [n], and for all t≤i−1 ← t≤i−1, we have

∃t∗, Pr
ti←ti|t≤i−1

[t∗ + ηi ≥ ti ≥ t∗ − ηi] = 0

and E[ti | t≤i−1] ≥ 1. Then, we have

Pr

[
n∑
i=1

ti ≤ −s

]
≤ e

−s2

2
∑n
i=1

η2
i

Lemma 7 (Azuma’s inequality for dynamic interval lengths under approximate condi-
tions). Let t≤n ≡ (t1, . . . , tn) be a sequence of n jointly distributed random variables
such that for all i ∈ [n], and for all t≤i−1 ← t≤i−1, we have

∃t∗, Pr
ti←ti|t≤i−1

[|ti| ≥ 1] = 0

∃t∗, Pr
ti←ti|t≤i−1

[t∗ + ηi ≥ ti ≥ t∗ − ηi] ≥ 1− γ
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and E[ti | t≤i−1] ≥ −γ. Then, we have

Pr

[
n∑
i=1

ti ≤ −s

]
≤ e

−(s−2nγ)2

2
∑n
i=1

η2
i + n · γ

Proof. If we let γ = 0, Lemma 7 becomes equivalent to Lemma 6. Here we sketch
why Lemma 7 can also be reduced to the case that γ = 0 (i.e., Azuma inequality).
We build a sequence t′i from ti as follows: Sample ti ← ti | t≤i−1, if |ti − t∗| ≤
ηi, output t′i = ti + 2γ otherwise output t∗ + 2γ. We have E[t′i | t′≤i−1] ≥ 0 and
Pr[|t′i − t∗ − 2γ| > τi] = 0. Now we can use Lemma 7 for the basic case of γ = 0
for the sequence t′i and use it to get a looser bound for sequence ti, using the fact that
∃i ∈ [n], |ti − t∗| ≥ ηi happens with probability at most n · γ.

Lemma 8 (Composition of concave functions). Suppose `1 and `2 are two non-decreasing
concave functions. Then `1(`2) is also non-decreasing and concave.

3 Attacking protocols with any message length

In this section, we design and analyze our k-replacing up-biasing attack on random
processes with arbitrary alphabet size. We first describe our attack in an idealized model
in which the partial-average oracle f̄(·) and “maximum child” of a prefix of the process
are available for free. In the full version of this paper, we show that our attack can be
made polynomial-time using an approximation of the partial-average oracle that can be
obtained in polynomial time.

Construction 9 (k-replacing attack using exact oracles). This attack uses the exact
partial-average oracle f̄(·) and another oracle that returns “the best choice” for the next
block (see u∗i+1 defined below). The attack is also parameterized by a vector λ≤k =
(λ1, . . . , λk) ∈ [0, 1]k for some integer k ≤ n which is adversary’s budget. The attack
will keep state σi = (u≤i, v≤i) where u≤i are the original values and v≤i are the output
values under attack.10 Having state (u≤i, v≤i) and for given ui+1 the algorithm A will
decide on whether to keep or replace ui+1, using u∗i+1 = argmaxu′i+1

f̄(v≤i, u
′
i+1),

f̄∗ = f̄(v≤i, u
∗
i+1), and d = HD(u≤i, v≤i) as follows.

– (Case 0) If d ≥ k, do not change ui+1 and output vi+1 = ui+1.
– (Case 1) if Case 0 does not happen and f̄(v≤i, ui+1) < f̄∗−λd+1, then A[λ≤k](ui+1)

will return the output vi+1 = u∗i+1 which is different from ui+1.
– (Case 2) If Cases 0, 1 do not happen, do not change ui+1 and output vi+1 = ui+1.

In all the cases above, A will also update the state as σi+1 = (u≤i+1, v≤i+1) .

Notation. Suppose we run the attack A[λ≤k] on random process w≤n through the pro-
cess described in Definition 4. (In particular, ui+1 will be sampled from (wi+1 | w≤i =

10 Attack would need v≤i and the “used part of the budget” HD(u≤i, v≤i). Both of these can be
obtained from σi = (u≤i, v≤i).
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v≤i).) We use (u
(k)
≤n,v

(k)
≤n) to denote the jointly generated random processes under the

attack A[λ≤k]. (This notation allows us to distinguish between the generated random
processes under attacks with different budget.) We sometimes use (u

(∞)
≤n ,v

(∞)
≤n ) to de-

note (u
(n)
≤n,v

(n)
≤n) as they are the same distributions. Also, let

µk = E
(u≤n,v≤n)←(u

(k)
≤n,v

(k)
≤n)

[f(v≤n)]

denotes the expected value of f over the sequence that is the output of k-replacing
attack of Construction 9. For k = 0 we have and µ0 = µ = E[f(w≤n)].

Lemma 10 below shows that the increase in µk compared with µk−1 can be related
to the “threshold parameter” λk and the probability that an attack with unlimited (or
equivalently just n) budget with threshold parameters λ1, . . . , λk, λ′k+1, . . . , λ

′
n makes

at least k replacements.

Lemma 10. We have

µk ≥ µk−1 + λk · Pr
(u≤n,v≤n)←(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k].

Proof. For any j ∈ {0, 1, 2}, let Ckj be the Boolean random variable over (ui+1, σi)
that determines which case of the attack A with budget k happens on prefix (v≤i, ui+1)
where v≤i is the finalized output prefix, u≤i is the original prefix and ui+1 is the original
sampled block at round i+1. For all (v≤i, u≤i, ui+1) we have

∑2
j=0 C

k
j (ui+1, σi) = 1

because the cases complement each other.
In the rest of the proof, whenever u≤i and v≤i are clear from the context, we will

use Ckj (ui+1) instead of Ckj (ui+1, σi). In the following, when the threshold parameters
λ1, . . . , λk are clear from the context, we will use A instead of A[λ≤k].

For all u≤i, v≤i ∈ Supp(u≤i,v≤i) we have the following qualities for different
cases of the attack.

– Case 0:

E
(ui+1,vi+1)←(uki+1,v

k
i+1)[u≤i,v≤i]

[(
f̄(v≤i, vi+1)− f̄(v≤i, ui+1)

)
· Ck0 (ui+1)

]
= 0.

(1)
– Case 1:

Ck1 (ui+1) = (C∞1 (ui+1) ∧HD(u≤i, v≤i) < k). (2)

This is because as long as the number of replacements is fewer than k, Case 1 of
the attack with budget k would go through whenever A with budget of n does so.

– Case 2:

E
(ui+1,vi+1)←(uki+1,v

k
i+1)[u≤i,v≤i]

[(
f̄(v≤i, vi+1)− f̄(v≤i, ui+1)

)
· Ck2 (ui+1))

]
= 0.

(3)
This is correct because either Ck2 (v≤i, ui+1) = 0 or ui+1 = vi+1.
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We define a notation g(v≤i+1, u≤i+1) = f̄(v≤i+1)− f̄(v≤i, ui+1). In the following We
use the shorten forms of E(u≤i,v≤i) and E(u≤n,v≤n)[u≤i,v≤i] to refer to E(u≤i,v≤i)←(u≤i,v≤i)

and E(u,v)←(u≤n,v≤n)[u≤i,v≤i] . We have

E
(u

(k)
≤n,v

(k)
≤n)

[f(v≤n)]− µ = E
(u

(k)
≤n,v

(k)
≤n)

[
n−1∑
i=0

(f̄(v≤i+1)− f̄(v≤i))

]

= E
(u

(k)
≤n,v

(k)
≤n)

[
n−1∑
i=0

(f̄(v≤i+1)− f̄(v≤i, ui+1))

]
(by the definition of f̄ ) (4)

=

n−1∑
i=0

E
(uk≤i,v

k
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

g(v≤i+1, u≤i+1) ·

 2∑
j=0

Ckj (ui+1)


=

n−1∑
i=0

E
(uk≤i,v

k
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · Ck1 (ui+1)

]
(by (3) and (1))

(5)

=

n−1∑
i=0

E
(uk≤i,v

k
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · (C(∞)

1 (ui+1) ∧ (HD(u≤i, v≤i) < k)
]

=

n−1∑
i=0

E
(u∞≤i,v

∞
≤i)

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[g(v≤i+1, u≤i+1) · (C∞1 (ui+1) ∧ (HD(u≤i, v≤i) < k))] .

(6)

The last equality above holds, because for all u≤i, v≤i where HD(u≤i, v≤i) < k,

Pr[(uk≤i,v
k
≤i) = (u≤i, v≤i)] = Pr[(u

(∞)
≤i ,v

(∞)
≤i ) = (u≤i, v≤i)].

The reason for this is that as long as we have not used the full budget k, the k-replacing
attack will behave as if its budget is infinite.

Similarly, for the adversary A with budget k − 1 we have

E
(u

(k−1)
≤n ,v

(k−1)
≤n )

[f(v≤n)]− µ =

n−1∑
i=0

E
(u

(∞)
≤i ,v

(∞)
≤i )≤i

E
(u

(k−1)
≤n ,v

(k−1)
≤n )[u≤i,v≤i]

[η(u≤i+1, v≤i+1)] .

(7)

where η(u≤i+1, v≤i+1) = g(v≤i+1, u≤i+1) ·
(
C∞1 (ui+1)∧ (HD(u≤i, v≤i) < k− 1)

)
.

Therefore, by combining Equations (6) and (7) we have
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E
(u

(k)
≤n,v

(k)
≤n)

[f(v≤n)]− E
(u≤n,v≤n)←(u

(k−1)
≤n ,v

(k−1)
≤n )

[f(v≤n)] =

n−1∑
i=0

E
(u

(∞)
≤i ,v

(∞)
≤i )

E
(u

(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[g(v≤i+1, u≤i+1) · C∞1 (ui+1) · (HD(u≤i, v≤i) = k − 1)]

≥
n−1∑
i=0

E
(u

(∞)
≤i ,v

(∞)
≤i )

[
λk · E

(u
(k)
≤n,v

(k)
≤n)[u≤i,v≤i]

[C∞1 (ui+1) · (HD(u≤i, v≤i) = k − 1)]

]
= λk · Pr

(u
(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k].

The last equality above holds because whenever C(∞)
1 holds, we know that A will

replace ui+1 with vi+1 6= ui+1 and this makes the hamming distance of u≤i+1 from
v≤i+1 equal to k.

Now we prove the following lemma about the power of attacks with infinite budget.
The work of [28] also prove a similar bound (see Claim 19 in [28]) for their attack but
our attack achieves a better bound because of the fact that our attack has only one step in
which the replacement might happen which allows us to make a better use of Azuma’s
inequality with dynamic interval (See Lemma 6).

Lemma 11. If µ∞ = E
(u≤n,v≤n)←(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n)] and λ = maxi∈[n] λi, then

µ∞ ≥ 1− e−
2µ2

nλ2 .

Proof. We define a sequence of random variables t≤n = (t1, . . . , tn), where ti+1 =
f̄(v≤i+1)− f̄(v≤i) is a random variable that is dependent on v≤i+1. Then we have

E
(u

(∞)
≤n ,v

(∞)
≤n )[u≤i,v≤i]

[f̄(v≤i+1)− f̄(v≤i)]

≥ E
(u

(∞)
≤n ,v

(∞)
≤n )[u≤i,v≤i]

[f̄(v≤i, ui+1)− f̄(v≤i)] = 0.

Therefore, t≤n defines a sub-martingale. Furthermore, we have

f̄∗ ≥ f̄(v≤i+1) ≥ f̄∗ − λ.

Therefore, ti always falls in an interval of size λ. Hence, applying the right variant of
Azuma’s Inequality (as stated in Lemma 6) over t≤n, we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 0] = Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[ n∑
i=1

ti ≤ −µ
]
≤ e−

2µ2

nλ2 . (8)

Now, leveraging the fact that f outputs in {0, 1} and relying on Inequality (8), we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1] = 1− Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n)− µ ≤ −µ] ≥ 1− e−
2µ2

nλ2 .
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Lemma 12. If λ = maxi∈[k] λi, then

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k] ≥ 1− e−
2µ2

nλ2 − µk−1.

Proof. First we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
∨ (HD(u≤n, v≤n) ≥ k)]

= Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1 ∨HD(u≤n, v≤n) ≥ k]

≥ Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1]

= µ∞ ≥ 1− e−
2µ2

nλ2 (by Lemma 11). (9)

On the other hand, by a union bound we have

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
∨ (HD(u≤n, v≤n) ≥ k)] ≤

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[f(v≤n) = 1 ∧HD(u≤n, v≤n) < k] + Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k].

(10)

The generated process under k − 1 replacing attack is same as n-replacing attack as
long as the number of replacements is less than k. Therefore, it holds that

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[
(
f(v≤n) = 1 ∧HD(u≤n, v≤n) < k

)
] ≤ Pr

(u
(k−1)
≤n ,v

(k−1)
≤n )

[f(v≤n) = 1] = µk−1.

(11)

Now, combining Inequalities (9), (10) and (11) we get

Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k] ≥ 1− e−
2µ2

nλ2 − µk−1.

Corollary 13. If λ = maxi∈[k] λi, then we have

µk ≥ µk−1 + λk ·
(

1− e
−2µ2

n·λ2 − µk−1
)
.

Proof. Combining Lemmas 12 and 10 we have

µk ≥ µk−1 + λk · Pr
(u

(∞)
≤n ,v

(∞)
≤n )

[HD(u≤n, v≤n) ≥ k] (by Lemma 10)

≥ µk−1 + λk ·
(

1− e
−2µ2

n·λ2 − µk−1
)

(by Lemma 12).
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Theorem 14. If λ = maxi∈[k] λi, then we have

µk ≥ µ+
(

1−
k∏
i=1

(1− λi)
)
·
(

1− e
−2µ2

n·λ2 − µ
)
.

In particular, by setting all λi = µ√
n

we get

µk ≥ µ+

(
1−

(
1− µ√

n

)k)
·
(

1− e−2 − µ
)
.

Note that the choice of λi = u/
√
n above is not optimal. The optimal choice does

not have a compact closed form and is actually by setting different λi’s for different
remaining budgets.

Proof. We prove this by induction on k. The case of k = 1 directly follows from
Corollary 13. For k > 1, by Corollary 13 we have

µk ≥ µk−1 + λk ·
(

1− e
−2µ2

n·λ2 − µk−1
)
,

which implies that

µk ≥ (1− λk) · µk−1 + λk ·
(

1− e
−2µ2

n·λ2

)
.

Now we can use the induction’s hypothesis and replace µk−1 with µ+
(

1−
∏k−1
i=1 (1−

λi)
)
·
(

1− e−2µ2/(n·λ2) − µ
)

which implies that

µk ≥ µ+
(

1−
k∏
i=1

(1− λi)
)
·
(

1− e
−2µ2

n·λ2 − µ
)
,

and that proves the claim.

4 Optimal attacks for uniform binary messages

In this section, we focus on the setting in which n parties each send a uniform random
bit and then a final bit is chosen based on the published messages. We will show how to
obtain optimal online k-replacing attacks that match the power of offline attacks.

Notation. u≤n ≡ (u1 × · · · × un) denotes the uniform random variable over {0, 1}n,
where each ui is a uniform and independent random bit. In this section, for sim-
plicity we use notation Un for this distribution. We will study k-replacing attacks
on Un.11 HW(x) = HD(x, 0n) denotes Hamming weight of x ∈ {0, 1}n. We let
11 In Sections 2 and 3, we called the original random process w≤n and Un was one of the

generated random processes (modeling the original samples). However, since we are starting
from a product distribution, it would hold that Un ≡ w≤n, and thus we simply call the
original distribution u.
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[n] = {1, . . . , n}, 〈n] = {0, . . . , n} and 〈n〉 = {0, . . . , n+ 1}. For t ∈ 〈n〉, we
define the threshold function τt : {0, 1}n → {0, 1} as τt(x) = 1 iff HW(x) ≥ t.
(τ0 is the constant function 1 function and τn+1 is the constant 0 function.) We let
β
(t)
n = 2−n ·

∑n
i=t

(
n
i

)
be the probability of the Hamming ball defined by τt, and when

n is clear from the context we write it as β(t). We also let s(t)n = 2n · β(t)
n be the size of

the same Hamming ball. For set S ⊂ R, r ∈ R, we use the notation rS = {rx | x ∈ S},
e.g., r〈n] = {0, r, 2r, . . . , nr}. We let

(
n
k

)
= 0 if k < 0 or k > n. For a set S ⊆ {0, 1}n

and r ∈ {0, 1}d for d ∈ [n], we let

S[r] =
{
x′ | x ∈ S ∧ ∃x′ ∈ {0, 1}n−d such that x = (r, x′)

}
be the set of suffixes of strings in S of length n− d with r as their prefix.

We first define the isoperimetry function that capture the power of “offline” attacks.

Definition 15 (The offline expansion and isoperimetry functions). For k ∈ [n],S ⊆
{0, 1}n, the offline k-expansion (probability) of S is the probability of all points within
Hamming distance k of S

OffExp(k)(S) =
| {y ∈ {0, 1}n | ∃x ∈ S,HD(x, y) ≤ k} |

2n
.

For a given probability µ, the k-expansion of µ is equal to:

OffExp(k)(µ) = inf
S,Pr[S]≥µ

OffExp(k)(S).

Finally, for a set S and probability µ, we define the (offline) k-isoperimetry function

OffIso(k)(S) = OffExp(k)(S)− Pr[S], OffIso(k)
n (µ) = OffExp(k)

n (µ)− µ.

Note that whenever the input is a set S ⊆ {0, 1}n, it already determines n on its
own, and hence we do not need to state it explicitly, but when the input is µ ∈ R, we
explicitly state n as the index of the function.

Theorem 16 (Implied by the vertex isoperimetric inequality in Boolean hypercube [19]).
For any t ∈ 〈n], it holds that OffExp(k)(β(t)) = β(t−k).

Online attacks vs. offline attacks. Suppose an adversary wants to increase the proba-
bility of falling into a set S in an “offline” attack, in which the adversary gets a point
x ← Un and then can replace k of the bits of x. It is easy to see that the adversary
can increase the probability of falling into S exactly by OffIso(k)(S). Accordingly, we
can define the online variant of such attacks as defined in Section 4. In such online
attacks, the adversary gets to see the independent and uniformly sampled random bits
(u1, . . . ,un) one by one, and after seeing ui ← ui, it can decide to keep or change it.

Definition 17 (The online expansion OnExp and isoperimetry OnIso functions). Let A
be an online adversary of budget k over the uniform distribution Un over {0, 1}n. Let
v≤n be the generated output random process (distributed over {0, 1}n) under attack A

(as defined in Definition 4). We define OnExp(A)(S) = Pr[v≤n ∈ S]. LetAk be the set
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of all k-replacing attacks on Un. We define OnExp(k)(S) as the maximum probability
of points in {0, 1}n that any online adversary can map to S by up to k changes to a
stream of n uniformly random bits. Namely,

OnExp(k)(S) = max
A∈Ak

OnExp(A)(S).

Also, for any µ ∈ [0, 1], we define

OnExp(k)
n (µ) = inf

S,Pr[S]≥µ
OnExp(k)(S)

as the minimum OnExp(k)(S) among all sets of probability at least µ. Finally, for any
set S and probability µ, we define the online k-isoperimetry functions as follows

OnIso(k)(S) = OnExp(k)(S)− Pr[S], OnIso(k)
n (µ) = OnExp(k)

n (µ)− µ

as the growth in probability of falling into sets (of probability µ) under optimal online
k-replacing attacks.

Since offline adversaries know as much as online adversaries when making decision
to change or not, it always holds that OffIso(S) ≥ OnIso(S), and hence OffIso(k)

n (µ) ≥
OnIson(µ) for all n, S ⊆ {0, 1}n, and µ ∈ [0, 1]. The surprising phenomenon stated in
the next theorem is that when µ is the probability of a Hamming ball, online and offline
attacks have the same exact power as a function of the measure µ, and consequently the
online and offline k-isoperimetry functions would be equal.

Theorem 18 (Power of online vs. offline attacks for the uniform distribution over
{0, 1}n). For all n ∈ N, t ∈ [n], k ≤ t, if β(t) = Pr[HW(Un) ≥ t] be the proba-
bility of a Hamming ball. Then it holds that

OnExp(k)
n (β(t)) = OffExp(k)

n (β(t)) = β(t−k).

In words, if µ = β(t), then the power of online k-replacing adversaries to increase the
probability of falling into a set S, in the minimum over all sets of probability at least
β(t), is equal to that of offline attacks.

Reaching a target probability. Suppose Pr[S] = µ, and suppose we want to increase
the probability of falling into S to µ′ > µ. How much budget an adversary needs?
Theorem 18 shows that as long as µ is the probability of a Hamming ball (i.e., µ = β(t)),
then in the worst case (among all possible sets S of probability µ) the power of online
and offline attacks are exactly the same. Therefore, this brings up the natural question of
what happens in general, when µ is not exactly the probability of a Hamming ball. As
stated in Corollary 19 below, Theorem 18 already shows that the power of offline and
online attacks is different by at most one. In fact, as we will see later, these quantities
are not equal in general. In particular, Figure 1 compares OnIson(µ) and OffIso(k)

n (µ)
for all µ when n = 10 (and k = 1).
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Corollary 19 (Budget of online vs. offline attacks to reach a target probability). For
0 < µ < µ′ ≤ 1, let

OfBudn(µ→ µ′) = min
k∈[n]

[OffExp(k)
n (µ) ≥ µ′]

be the minimum budget k that an offline adversary needs to increase the probability of
falling into any set S of probability at least µ to µ′. Let

OnBudn(µ→ µ′) = min
k∈[n]

[OnExp(k)
n (µ) ≥ µ′]

be the similar quantity for online attacks. Then, it always holds that

OfBudn(µ→ µ′) ≤ OnBudn(µ→ µ′) ≤ OfBudn(µ→ µ′) + 1

and OfBudn(β(t) → µ′) = OnBudn(β(t) → µ′) for all t ∈ [n+ 1].

0 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 1. Comparing the online isoperimetric function OnIso (blue) versus the offline isoperimetric
function OffIso (red) for n = 10.

We first prove Corollary 19 using Theorem 18 and then will prove Theorem 18.

Proof of Corollary 19. Let k = OfBudn(µ → µ′), we have OffExp(k)
n (µ) ≥ µ′ and

OffExp(k−1)
n (µ) < µ′. Let t ∈ 〈n〉 be the minimum such t that β(t) ≥ µ, and so we

have β(t+1) ≤ µ ≤ β(t). By the monotonicity of OnExp(k)
n function, we have

OnExp(k+1)
n (β(t+1)) ≤ OnExp(k+1)

n (µ). (12)
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By Theorem 18 it holds that OnExp(k+1)
n (β(t+1)) = OffExp(k+1)

n (β(t+1)). Now,
because β(t+1) ≤ µ ≤ β(t), by the monotonicity of OffExp(k)

n (µ) we have

OffExp(k)
n (µ) ≤ OffExp(k)

n (β(t)) = OffExp(k+1)
n (β(t+1)) = OnExp(k+1)

n (β(t+1)).
(13)

Combining (12) and (13), we have

OffExp(k)
n (µ) ≤ OnExp(k+1)

n (β(t+1)) ≤ OnExp(k+1)
n (µ).

Therefore we have,

OfBudn(µ→ µ′) + 1 = min
k∈[n]

[OffExp(k)
n (µ) ≥ µ′] + 1

≥ min
k∈[n]

[OnExp(k+1)
n (µ) ≥ µ′] + 1

= min
k+1∈[n]

[OnExp(k+1)
n (µ) ≥ µ′]

= OnBudn(µ→ µ′).

The inequality holds because let k′ = mink∈[n][OffExp(k)
n (µ) ≥ µ′], we have

OnExp(k′+1)
n (µ) ≥ µ′, and therefore mink∈[n][OnExp(k+1)

n (µ) ≥ µ′] ≤ k′. Since we
also have OffExp(k)

n (µ) ≥ OnExp(k)
n (µ) for any µ, OfBudn(µ→ µ′) ≤ OnBudn(µ→

µ′) ≤ OfBudn(µ→ µ′) + 1.

Finally, because OffExp(k)
n (β(t)) ≥ OnExp(k)

n (β(t)) holds for any k and t, we have
OfBudn(β(t) → µ′) = OnBudn(β(t) → µ′) for all t ∈ [n+ 1].

In the rest of this section, we prove Theorem 18.

Proof of Theorem 18. In order to prove Theorem 18, we start by deriving a recursive
relation for OnExp(k)

n (·). Before doing so, we define some mathematical notation.

Definition 20 (Definitions related to the recursive relation of online expansion). For
s ∈ 〈2n], let

Divn−1(s) =
{

(s0, s1) | s0, s1 ∈ 〈2n−1], 0 ≤ s0 ≤ s1 ≤ 2n−1, s = s0 + s1
}

be the set of ways in which a “set size” s ∈ 〈2n−1] can be divided into two sizes. For
(s0, s1) ∈ Divn−1(s) and a fixed pair of integers n, k let Rec(k)n (·, ·) be defined as

Rec(k)n (s0, s1) =
Rec

(k)
n−1

(
s1

2n−1

)
+ max

{
Rec

(k)
n−1

(
s0

2n−1

)
,Rec

(k−1)
n−1

(
s1

2n−1

)}
2

(14)

based on functions Rec
(k)
n−1,Rec

(k−1)
n−1 to be specified later. Finally, for µ ∈ 2−n〈2n] let

Rec(k)n (µ) = inf
(s0,s1)∈Divn(2n·µ)

Rec(k)n (s0, s1). (15)

Transformation Rec(k)n [p, q]. For functions p, q defined on input space 2−n〈2n]. Sup-
pose we use p instead of Rec

(k)
n−1 and q instead of Rec

(k−1)
n−1 in Equation (14). Then

by Rec(k)n [p, q](·, ·) (resp. Rec(k)n [p, q](·)) we denote the function that one obtains in
Equation (14) (resp. Equation (15)).
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Interpretation. Rec(k)n (s0, s1) represents the optimal choice that a tampering adver-
sary can make to increase the probability of falling into a set of size s, when S[0] =
S0,S[1] = S1 are adversarially chosen based on their sizes s0, s1 where s0 ≤ s1, and
when the optimal online expansions for s0, s1 can be applied by (appropriate use of)
functions Rec

(k)
n−1,Rec

(k−1)
n−1 .

Notation. Let f, g be defined over the same input domain D. We say f ≤ g, if ∀µ ∈
D, f(µ) ≤ g(µ).

We now show that the transformation of Definition 20 has some desired properties.

Claim 21 (Transformation of Definition 20 is monotone). Let u
(k)
n−1 ≤ v

(k)
n−1 and

u
(k−1)
n−1 ≤ v

(k−1)
n−1 , and let

u(k)
n = Rec(k)n [u

(k)
n−1, u

(k−1)
n−1 ], v(k)n = Rec(k)n [v

(k)
n−1, v

(k−1)
n−1 ]

as defined in Definition 20. Then, it holds that u
(k)
n ≤ v

(k)
n .

Proof. We first show that for any s0, s1 ∈ Divn(2n · µ), we have u
(k)
n (s0, s1) ≤

v
(k)
n (s0, s1). Because u

(k)
n−1 ≤ v

(k)
n−1 and u

(k−1)
n−1 ≤ v

(k−1)
n−1 , we have u

(k)
n−1

(
s1/2

n−1) ≤
v
(k)
n−1

(
s1/2

n−1) and

max{u(k)
n−1

(
s0/2

n−1) , u(k)
n−1

(
s1/2

n−1)} ≤ max{v(k)n−1
(
s0/2

n−1) , v(k)n−1
(
s1/2

n−1)}.
Therefore, u

(k)
n (s0, s1) ≤ v

(k)
n (s0, s1) holds for any s0, s1.

From Eq. (15), let (s′0, s
′
1) = arg inf(s0,s1)∈Divn(2n·µ)v

(k)
n (s0, s1) be the parti-

tion where v
(k)
n (µ) achieves its minimum. Then we have u

(k)
n (µ) ≤ u

(k)
n (s′0, s

′
1) ≤

v
(k)
n (s′0, s

′
1) = v

(k)
n (µ).

Claim 22 (Recursive relation for online expansion). One can recursively compute
OnExp(k)

n (µ) for all µ ∈ 2−n〈2n] as follows.

– If k = 0 and n ≥ 0, then OnExp(0)
n (µ) = µ.

– If k ≥ 1 and k ≥ n, then: OnExp(k)
n (0) = 0 and OnExp(k)

n (µ) = 1 for µ > 0.
– If k ≥ 1 and and k < n, then OnExp(k)

n = Rec(k)n [OnExp
(k)
n−1,OnExp

(k−1)
n−1 ] as in

Definition 20.

Proof sketch. The extremal cases of the recursive relation stated in the first two bullets
hold trivially. Below we argue why the inductive step as stated in the third bullet holds
as well.

Suppose by fixing the first bit to b we get a subset of size sb, and s0 ≤ s1, and
suppose in both cases the residual subsets S[0],S[1] are chosen in the “worst” case
(against the adversary) based on their sizes s0, s1, minimizing the success probability
of an online adversary. Since OnExp(·) is a monotone function, then when the first bit
is selected to be 1, the adversary has no motivation to replace it with 0. When the first
bit is selected to be 0, the adversary has choose between maximum of the expansions
that arise from changing or not changing the bit to 1. Once we consider all ways that s
can be split into s = s0 + s1, this leads to the definition of the recursion of Eq. (15) and
the transformation of Definition 20.
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Claim 23. Suppose p ≤ OnExp
(k)
n−1, q ≤ OnExp

(k−1)
n−1 for functions p, q. Then, it holds

that Rec(k)n [p, q] ≤ OnExp(k)
n (see Definition 20).

Proof. The proof directly follows from Claims 22 and 21.

We now define a piecewise-linear function `(k)n to later prove to be a lower bound
for OnExp(k)

n .

Definition 24 (The piecewise-linear (lower bound) function). For any non-negative
integers k, n, the function `(k)n : [0, 1]→ [0, 1] is defined as follows.

– If µ = β
(t)
n for any t ∈ 〈n〉, it holds that `(k)n

(
β
(t)
n

)
= OffExp(k)

n

(
β
(t)
n

)
. Namely,

`
(k)
n

(
β
(n+1)
n

)
= OffExp(k)

n (0) = 0, and for any t ∈ 〈n], `(k)n

(
β
(t)
n

)
= β

(t−k)
n =

Pr [HW(Un) ≥ t− k].
– If µ = αβ

(t)
n + (1 − α)β

(t−1)
n for 0 < α < 1 and any t ∈ 〈n〉, then `(k)n (µ) =

α · `(k)n

(
β
(t)
n

)
+ (1− α) · `(k)n

(
β
(t−1)
n

)
.

Proposition 25 (Composition of the lower bound function). For any k1, k2, n ≥ 0 and
µ ∈ [2−n, 1], it hold that `(k1+k2)n (µ) = `

(k1)
n

(
`
(k2)
n (µ)

)
.

Proof. Consider every case,

– If µ = β
(t)
n . By Definition 24 we have `(k1)n

(
`
(k2)
n (µ)

)
= `

(k1)
n

(
OffExp(k2)

n

(
β
(t)
n

))
.

As µ ∈ [2−n, 1], we have t ≤ n. Therefore, OffExp(k2)
n

(
β
(t)
n

)
= β

(t−k2)
n . There-

fore, we have

`(k1)n

(
`(k2)n

(
β(t)
n

))
= `(k1)n

(
β(t−k2)
n

)
= β(t−(k2+k1))

n = `(k1+k2)n

(
β(t)
n

)
.

– If µ = αβ
(t)
n +(1−α)β

(t−1)
n for 0 < α < 1, In this case, by Definition 24 we have

`
(k2)
n (µ) = α · `(k2)n

(
β
(t)
n

)
+ (1 − α) · `(k2)n

(
β
(t−1)
n

)
. As µ ∈ [2−n, 1], we have

t ≤ n. Therefore, we have `(k2)n (µ) = α · β(t−k2)
n + (1− α) · β(t−1−k2)

n . We then
have

`(k1)n

(
`(k2)n (µ)

)
= `(k1)n

(
α · β(t−k2)

n + (1− α) · β(t−1−k2)
n

)
= α · β(t−k2−k1)

n + (1− α) · β(t−1−k2−k1)
n

= `(k1+k2)n (µ).

Lemma 26. `(k)n is concave for all n, k ≥ 0.

Proof. `(0)n is linear, and hence concave, so suppose k ≥ 1. Let fix n, and define ˆ̀(µ) =

`
(1)
n (µ)− µ for µ ∈ [0, 1]. To prove that `(k)n (µ) is concave over [2−n, 1], it is sufficient

to show that ˆ̀(µ) is concave over [2−n, 1], because:
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1. If ˆ̀(µ) is concave, then ˆ̀(µ) + µ = `
(1)
n (µ) is concave as well.

2. If `(1)n (µ) is concave, since it is non-decreasing, by repeated applications of Lemma 8
and Proposition 25, it follows that `(k)n is also concave for all k ≥ 1 as well, when
we limit the inputs to µ ≥ 2−n.

Therefore, in the following, we only aim to prove that (1) ˆ̀(µ) is concave over [2−n, 1],
and (2) the left and right derivatives of ˆ̀(µ) over µ = 2−n do not violate its concavity.

In the following, we will fix n and k = 1. Because n, k are both fixed, in the rest of
the proof of Lemma 26 we do not represent them explicitly as indexes anymore.

It holds that ˆ̀(β(t)) = OffIso(β(t)) for all t ∈ 〈n〉. Also, for µ ∈ (β(t), β(t−1))
(recall that β(t) < β(t−1)) where µ = αβ(t) + (1− α)β(t−1), we have

ˆ̀(µ) = α`(β(t)) + (1− α)`(β(t−1))− αβ(t) − (1− α)β(t−1)

= αOffIso(β(t)) + (1− α)OffIso(β(t−1)).

Since the curve ˆ̀ is linear over every interval µ ∈ [β(t), β(t−1)] for all t ∈ [n + 1],
to prove its concavity, we only have to compare its left and right derivatives at every
β(t), t ∈ [n], where it holds that ˆ̀(β(t)) = OffIso(β(t)). Hence, for all t ∈ [n], we need
to prove the following.

OffIso(β(t))− OffIso(β(t+1))

β(t) − β(t+1)
≥ OffIso(β(t−1))− OffIso(β(t))

β(t−1) − β(t)
(16)

Note that by letting t = n in Inequality (16), we have ˆ̀ is still concave for point
2−n. We first verify Inequality (16) for extreme cases of t = 1, n. If t = 1, then
Inequality (16) holds because

1− n
n

=
OffIso(β(t))− OffIso(β(t+1))

β(t) − β(t+1)
≥ OffIso(β(t−1))− OffIso(β(t))

β(t−1) − β(t)
=

0− 1

1
.

If t = n, a generalization of Inequality 16 for any k holds because∑k
i=0

(
n
i

)
− 0

1− 0
=
`(k)(β(t))− `(k)(β(t+1))

β(t) − β(t+1)
≥ `(k)(β(t−1))− `(k)(β(t))

β(t−1) − β(t)
=

(
n
k+1

)
n

,

which in turn is correct because
∑k
i=0

(
n
i

)
>
(
n
k

)
≥
(
n
k+1

)
/n.

For the intermediate cases, for all t ∈ {n− 1, . . . , 2}, we have to prove:(
n
t−k
)
−
(
n
t

)(
n
t

) =
OffIso(β(t))− OffIso(β(t+1))

β(t) − β(t+1)

≥ OffIso(β(t−1))− OffIso(β(t))

β(t−1) − β(t)
=

(
n
t−2
)
−
(
n
t−1
)(

n
t−1
)

which is equivalent to proving the following true statement

t

n− t+ 1
=

t!(n− t)!
(t− 1)!(n− t+ 1)!

=

(
n
t−1
)(

n
t

) ≥ ( n
t−2
)(

n
t−1
)

=
(t− 1)!(n− t+ 1)!

(t− 2)!(n− t+ 2)!
=

t− 1

n− t+ 2
.
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The main step of the proof of Theorem 18 is to show the following claim.

Claim 27. It holds that `(k)n ≤ Rec(k)n

[
`
(k)
n−1, `

(k−1)
n−1

]
.

Proof. In the following, for simplicity we let Rec = Rec(k)n

[
`
(k)
n−1, `

(k−1)
n−1

]
.

Case of exact Hamming ball probabilities. We first prove

∀t ∈ 〈n〉, `(k)n (β(t)) ≤ Rec(β(t)) (17)

and then will extend the proof of this inequality to an arbitrary µ ∈ 2−n〈2n]. We only
need to prove Inequality 17 for t ∈ [n], because β(n+1)

n = 0, β(0) = 1, and so

`(k)n (0) = Rec(0) = 0, `(k)n (1) = Rec(1) = 1.

Recall that `(k)n

(
β
(t)
n

)
= OffExp(k)

n

(
β
(t)
n

)
= β

(t−k)
n . Hence, for s = s

(t)
n =

β(t) · 2n where t ∈ [n], our goal is to prove the following

β(t−k)
n ≤ inf

(s0,s1)∈Divn(s)
Rec(s0, s1). (18)

Case studies. Note that β(t)
n 2n = s

(t)
n = s

(t)
n−1 + s

(t−1)
n−1 because of the Pascal equality.

Also by the definition of Divn, we have s0 ≤ s1 and s0 + s1 = s
(t)
n for any choice of

(s0, s1) ∈ Divn(s) in the right hand side of Equation 18. Then, one of the following
three cases must hold: (1) s0 = s

(t)
n−1, (2) s0 < s

(t)
n−1, or (3) s0 > s

(t)
n−1. Hence, we

divide our analysis to the same three cases, and then prove that β(t−k)
n ≤ Rec(s0, s1)

holds in all of them. We will also use the Pascal equality in the form of β(t−k)
n =

(β
(t−k−1)
n−1 + β

(t−k)
n−1 )/2.

1. s(t)n−1 = s0 < s1 = s
(t−1)
n−1 . In this case, we have

`
(k)
n−1

( s0
2n−1

)
= `

(k−1)
n−1

( s1
2n−1

)
= β

(t−k)
n−1

which, informally speaking means that, it does not matter if the adversary inter-
venes to change 0 to 1 when the first bit is fixed to 0. Formally, we have

Rec(s0, s1) = Rec(s
(t)
n−1, s

(t−1)
n−1 )

=
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

=
β
(t−k−1)
n−1 + β

(t−k)
n−1

2
= β(t−k)

n .



Polynomial-time targeted attacks on coin-tossing for any number of corruptions 27

2. s(t)n−1 < s0 ≤ s1 < s
(t−1)
n−1 . Informally speaking, in this case the adversary does not

change the bit and we use the piece-wise linearity of the ` function on [β
(t)
n−1, β

(t−1)
n−1 ].

More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k)
n−1

(
s0

2n−1

)
2

=

`
(k)
n−1

(
s
(t−1)
n−1

2n−1

)
+ `

(k)
n−1

(
s
(t)
n−1

2n−1

)
2

(by piece-wise linearity of `(k)n−1)

= Rec
(
s
(t)
n−1, s

(t−1)
n−1

)
= β(t−k)

n .

3. s0 < s
(t)
n−1 < s

(t−1)
n−1 < s1. Informally speaking, in this case the adversary does

change the bit 0 into 1, and we also use the fact that `(k)n−1 is monotone. More
formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k−1)
n−1

(
s1

2n−1

)
2

≥
`
(k)
n−1

(
s
(t−1)
n−1

2n−1

)
+ `

(k−1)
n−1

(
s
(t−1)
n−1

2n−1

)
2

(by monotonicity of `(k)n−1)

= Rec
(
s
(t)
n−1, s

(t−1)
n−1

)
= β(t−k)

n .

Case of other probabilities. Here we no longer assume that µ = β(t) for some t ∈ [n],
and assume µ = αβ

(t)
n +(1−α)β

(t−1)
n for some t ∈ [n+1] and 0 < α < 1. Recall that

β(t)2n = s
(t)
n = s

(t)
n−1 + s

(t−1)
n−1 and β(t−1)2n = s

(t−1)
n = s

(t−1)
n−1 + s

(t−2)
n−1 . We define

s′0 = α · s(t)n−1 + (1− α) · s(t−1)n−1 , s′1 = α · s(t−1)n−1 + (1− α) · s(t−2)n−1 .

By the definition of µ, it holds that µ · 2n = s = s′0 + s′1 because

s′0+s′1 = α·
(
s
(t)
n−1 + s

(t−1)
n−1

)
+(1−α)·

(
s
(t−1)
n−1 + s

(t−2)
n−1

)
= α·s(t)n +(1−α)·s(t−1)n = s.

In general, s′0, s
′
1 are not integers, but intuitively, s′0 + s′1 gives the critical way of

splitting s into two numbers at which the replacing and no-replacing strategies give
the same bound and we can do the case studies. (In particular s′0, s

′
1 take the role of

s
(t)
n−1, s

(t−1)
n−1 when we previously assumed that µ = β(t).)
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Useful observations. By the piecewise linearity of `(k)n−1, `
(k−1)
n−1 we have

`
(k)
n−1

(
s′0

2n−1

)
= α`

(k)
n−1

(
s
(t)
n−1

2n−1

)
+ (1− α)`

(k)
n−1

(
s
(t−1)
n−1
2n−1

)
,

`
(k)
n−1

(
s′1

2n−1

)
= α`

(k)
n−1

(
s
(t−1)
n−1
2n−1

)
+ (1− α)`

(k)
n−1

(
s
(t−2)
n−1
2n−1

)
,

`
(k−1)
n−1

(
s′1

2n−1

)
= α`

(k−1)
n−1

(
s
(t−1)
n−1
2n−1

)
+ (1− α)`

(k−1)
n−1

(
s
(t−2)
n−1
2n−1

)
,

`
(k)
n−1

(
s
(t)
n−1

2n−1

)
= β

(t−k)
n−1 = `

(k−1)
n−1

(
s
(t−1)
n−1
2n−1

)
,

and `
(k)
n−1

(
s
(t−1)
n−1
2n−1

)
= β

(t−k−1)
n−1 = `

(k−1)
n−1

(
s
(t−2)
n−1
2n−1

)
.

Therefore, we get the following.

`
(k)
n−1

(
s′0

2n−1

)
= `

(k−1)
n−1

(
s′1

2n−1

)
= αβ

(t−k)
n−1 + (1− α)β

(t−k−1)
n−1 , (19)

`
(k)
n−1

(
s′1

2n−1

)
= αβ

(t−k−1)
n−1 + (1− α)β

(t−k−2)
n−1 . (20)

Case studies. We now again partition into three different categories and separately prove
that `(k)n (µ) ≤ Rec(s0, s1) holds for each category.

1. s′0 = s0 < s1 = s′1. In this case, using Equations (19) and (20) we get

Rec(s′0, s
′
1)

=
`
(k)
n−1

(
s′1

2n−1

)
2

+
max

{
`
(k)
n−1

(
s′0

2n−1

)
, `

(k−1)
n−1

(
s′1

2n−1

)}
2

=
α · β(t−k−1)

n−1 + (1− α) · β(t−k−2)
n−1

2
+
α · β(t−k)

n−1 + (1− α) · β(t−k−1)
n−1

2

= α · β(t−k)
n + (1− α) · β(t−k−1)

n

= α · `(k)n (β(t)) + (1− α) · `(k)n (β(t−1)) = `(k)n (µ).

2. s′0 < s0 ≤ s1 < s′1. Informally speaking, in this case the adversary does not
tamper and leave the bit 0 unchanged. We will use the fact that `(k)n−1 is concave,
which was proved in Lemma 26. Note that in the corresponding Case 2 when the
probability µ was that of an exact ball (µ = β

(t)
n ) we could have also used the

fact that `(k)n−1 is concave, but in that case we only used the concavity over a linear
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part of `(k)n−1. However, in our current case, we could no longer only rely on the
piecewise linearity of `(k)n−1 and we would use its concavity. More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k)
n−1

(
s0

2n−1

)
2

≥
`
(k)
n−1

(
s′1

2n−1

)
+ `

(k)
n−1

(
s′0

2n−1

)
2

(by concavity of `(k)n−1)

= Rec(s′0, s
′
1) = `(k)n (µ).

3. s0 < s′0 < s′1 < s1. Informally speaking, in this case the adversary does change
the bit 0 into 1, and we rely on the monotonicity of `(k)n−1. More formally,

Rec(s0, s1) =
`
(k)
n−1

(
s1

2n−1

)
+ max

{
`
(k)
n−1

(
s0

2n−1

)
, `

(k−1)
n−1

(
s1

2n−1

)}
2

≥
`
(k)
n−1

(
s1

2n−1

)
+ `

(k−1)
n−1

(
s1

2n−1

)
2

≥
`
(k)
n−1

(
s′1

2n−1

)
+ `

(k−1)
n−1

(
s′1

2n−1

)
2

(by monotonicity of `(k)n−1)

= Rec(s′0, s
′
1) = `(k)n (µ).

Claim 28. `(k)n ≤ OnExp(k)
n .

Proof. The proof is by induction on n. The claim hold for n = 0. Using Claim 23
and 27 and induction we get:

OnExp(k)
n ≥ Rec(k)n

[
`
(k)
n−1, `

(k−1)
n−1

]
≥ `(k)n .

Now we can finish the proof of Theorem 18. If µ = β
(t)
n for some t ∈ 〈n〉, it then

always holds that `(k)n (µ) ≥ OnExp(k)
n (µ) simply because `(k)n (µ) describes how much

one particular protocol (i.e., τt) can bound adversary’s power, while OnExp(k)
n (µ) is

equal to the minimum of the same quantity among all protocols. Therefore, by Claim 28,
OnExp(k)

n

(
β
(t)
n

)
= `

(k)
n

(
β
(t)
n

)
= β

(t−k)
n .

Relaxing the last message to non-binary. Here we discuss an extension to Theorem 18
that follows essentially from the same proof. Theorem 18 shows that online attacks are
as powerful as offline attacks when we focus on protocols with uniform binary mes-
sages. Now, suppose we allow the last message of the protocol to be an arbitrary long
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message, while every other message is supposed to be a uniform bit. We refer to such
protocols as binary-except-last-message (BELM) protocols. Note that BELM protocols
constitute a larger set of protocols, and hence they potentially could include more ro-
bust protocols that further limits the power of (offline or online) attacks. We observe
that, essentially the same proof as that of Theorem 18 shows that we can strengthen
Theorem 18 as follows.

Theorem 29 (Informally stated: extending Theorem 18 to BELM protocols). Suppose
a random process w≤n = (w1, . . . ,wn) has the property that all the first n− 1 blocks
are independent and uniform random bits, and suppose f is a Boolean function defined
over this random process. Suppose Pr[f(w≤n) = 1] = β

(t)
n for some t ∈ [n]. Then,

there is an online k-replacing adversary over u≤n that generates joint random process
(u≤n,v≤n) with v≤n being the output process, such that Pr[f(w≤n) = 1] ≥ β

(t−k)
n .

Note that this is optimal in a strong sense: there is a fully binary protocol (i.e., the
threshold function τt) for which even offline k-replacing adversaries are limited to
achieve offline expansion at most β(t−k)

n .

Proof Sketch. The proof of the above improved variant of Theorem 18 relies on two
observations. One of them is the basis of the induction, when n = 1, and the other one
is the improved induction step which follows from the improve variant of Claim 27 as
explained below.

Relaxing transformation of Definition 20. Claim 27 was the heart of the proof of
Theorem 18. In this claim, we deal with the recursion of Eq. (15) which is defined
by splitting integer s into smaller integers, computing some recursive expansions and
taking the minimum. It is easy to see that Claim 27 holds even if we relax the way we
split s into smaller quantities and pick such pairs as real values

D̃ivn−1(s) =
{

(s0, s1) | s0, s1 ∈ R, 0 ≤ s0 ≤ s1 ≤ 2n−1, s = s0 + s1
}
.

In particular, let R̃ec
[k]

n be the similar transformation using this relaxed variant D̃ivn−1(s)
instead. First, note that by this relaxation instead, we might end up getting smaller ex-

pansions; namely, R̃ec
(k)

n ≤ Rec(k)n . Yet, the same proof shows that Claim 27 holds even

if we use R̃ec
(k)

n instead of Rec(k)n . Moreover, in (both variants of) Case 1, it is now al-
ways possible to achieve the equality using some pair in D̃ivn−1(s). Therefore, this
time we obtain a slightly stronger statement than that of Claim 27 for BELM protocols
as follows.

Claim 30 (Variant of Claim 27 for BELM protocols). `(k)n = R̃ec
(k)

n [`
(k)
n−1, `

(k−1)
n−1 ].

The proof of the claim above is identical to that of Claim 27.
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