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Abstract. An encryption scheme is called indistinguishable under cho-
sen plaintext attack (short IND-CPA) if an attacker cannot distinguish
the encryptions of two messages of his choice. There are other variants of
this de�nition but they all turn out to be equivalent in the classical case.
In this paper, we give a comprehensive overview of these di�erent variants
of IND-CPA for symmetric encryption schemes in the quantum setting.
We investigate the relationships between these notions and prove var-
ious equivalences, implications, non-equivalences, and non-implications
between these variants.
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1 Introduction

Advances in quantum computing have continuously raised the interest in
post-quantum secure cryptography. In order for a post-quantum secure scheme
to be designed, as a �rst step a security de�nition has to be agreed upon.
There has been extensive research toward proposing quantum counterparts of
classical security de�nitions for di�erent cryptographic primitives: encryption
schemes [6,12,9], message authentication codes [5,1], hash functions [26,24],
etc. For a classical cryptographic primitive to be quantum secure, besides the
necessity of a quantum hardness assumption, we also need to consider how a
quantum adversary will interact with a classical algorithm. In the research works
mentioned above, the security notions have been de�ned in a setting where the
quantum adversary is allowed to make quantum queries a.k.a. superposition
queries to the cyptographic primitives. In this paper, we focus on quantum
versions of indistinguishability under chosen plaintext attack for symmetric
encryption schemes. There are some proposals for a quantum IND-CPA notion
in the literature [6,12,19] (see Section 1.1 for more details). However, there are
a number of design choices (e.g., how queries are performed, when they are clas-
sical, etc.) in those works, each work considers di�erent combinations of those
design decisions, and the choice which combinations are investigated and which
are not is somewhat ad-hoc. In addition, it was not known (prior to our work)
how the di�erent de�nitions relate to each other, or whether they are even all



equivalent. (The latter would show that the design choices are in fact irrelevant,
but unfortunately we �nd that this is not the case.) The aim of our work is to
comprehensively study the resulting variants of the IND-CPA de�nition and
the relationship (implication/equivalence/non-implication) between them.

Indistinguishability under chosen plaintext attack (IND-CPA) is a classical
security notion for encryption schemes in which the adversary interacts with the
encryption oracle in two phases: the learning phase and challenge phase. The
learning phase (if it exists) is de�ned in a unique way: the adversary makes
queries to the encryption oracle. In contrast, the challenge phase can be de�ned
in di�erent ways:
(a) The adversary chooses two messages m0,m1 and sends them to the chal-

lenger. The adversary will receive back the encryption of mb for a random
bit b.

(b) The adversary chooses two messages m0,m1 and sends them to the chal-
lenger. The adversary will receive back the encryptions of mb, mb̄ for a
random bit b.

(c) The adversary chooses a message m and sends it to the challenger. The
challenger will send back either the encryption of m or a randomly chosen
message depending on a random bit b.

At the end, the adversary tries to guess the bit b. In other words, the de�nition
varies according to how the challenger responds to the adversary during the
challenge phase. We call it the �return type�. As summarized above, there are
three di�erent return types: a) The challenger returns one ciphertext. (We use
the abbreviation �1ct�.) b) The challenger returns two ciphertexts. (We use the
abbreviation �2ct�.) c) The challenger returns a real or random ciphertext. (We
use the abbreviation �ror�.) A comprehensive study of these notions has been
done in [4] in the classical setting and it turns out these notions are equivalent
up to a polynomial loss in the reductions. (The notion 2ct has not been studied
in [4], however, it is easy to see that 1ct and 2ct are equivalent in the classical
setting.)

In addition, there are di�erent kinds of quantum queries, di�ering in what
registers are returned or discarded or used as input/output. (We make the dif-
ferent possibilities more explicit in the following.) This distinction has no coun-
terpart in the classical setting.

In the following, we present existing quantum IND-CPA notions in the liter-
ature [6,12,19]. We make the type of quantum query and the return type (1ct,
2ct or ror) in the de�nitions explicit.

1.1 Previous works

Boneh-Zhandry de�nition. In [6], Boneh and Zhandry initiate developing
a quantum security version of IND-CPA. They consider that the adversary
has �standard oracle access� (ST ) to the encryption oracle in the learning
phase. The standard oracle access to the encryption oracle Enc is de�ned as
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the unitary operator UEnc : |x, y〉 → |x, y ⊕ Enc(x)〉 (see Section 3). For the
challenge phase, they attempt to translate the classical notion of one-ciphertext
and two-ciphertext return types (presented in (a) and (b) above) to the quantum
case using the standard query model. However, they show that the natural
translation leads to an impossible notion of IND-CPA. So instead they consider
classical challenge queries in their proposed de�nition combined with standard
quantum queries in the learning phase. This inconsistency between the learning
phase and the challenge phase resulted in further investigation of the quantum
IND-CPA notion in [12].

Quantum IND-CPA notions in [12]. In [12], the authors attempt to
resolve the inconsistency of the learning and the challenge phase of the security
de�nition proposed in [6]. They propose a �security tree� of possible security
notions. In a nutshell, their security tree is built on four di�erent perspectives on
the interaction between the adversary and the challenger: 1) how the adversary
sends the challenge queries: the adversary sends quantum messages during
the challenge phase or it sends a classical description of quantum messages;
2) whether the challenger sends back the input registers to the adversary or
keeps them; and 3) the query model: the adversary has standard oracle access
to the challenger or it has �minimal oracle� access [15] (that is de�ned as
|x〉 → |Enc(x)〉, called the �erasing query model� in this work).4 Even though in
total there are 23 = 8 possible security de�nitions, only two are investigated in
[12]. These two de�nitions are (according to their terminology briefed above):
1) quantum messages, not returning the input register and minimal oracle
access 5. 2) classical description of messages, not returning the input register
and minimal oracle access. In our paper, we do not consider the case when the
adversary can submit the classical description of quantum messages. Therefore,
we only study the former security notion in our paper. In this paper, we re-
fer to the minimal query model as the �erasing query model� (ER) (see Section 3).

Quantum IND-CPA notion in [19]. In [19], Mossayebi and Schack focus on
translating the real-or-random case (c) to the quantum setting by considering an
adversary that has standard oracle access to the encryption oracle. Their security
de�nition consists of two experiments, called real and permutation. In the real
experiment, the adversary's queries will be answered by the encryption oracle
without any modi�cation (access to UEnc) whereas in the permutation game, in

4 They additionally distinguish between what they call the �oracle model� and the
�challenger model� queries. The di�erence is that in the �oracle model�, only unitary
query oracles are allowed, while in the �challenger model�, query oracles are allowed
that, e.g., erase register. The security de�nitions that can be expressed in the �chal-
lenger model� trivially subsume those that can be stated in the �oracle model�. So
the distinction has no e�ect on the set of possible security de�nitions. (In fact [12]
never formally de�nes the distinction.)

5 This security de�nition is equivalent to the indistinguishability notion proposed in
[7] for secret key encryption of quantum messages when restricted to a classical
encryption function operating in the minimal query type.
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each query a random permutation will be applied to the adversary's message and
the permuted message will be encrypted and returned to the adversary (access
to UEnc◦π for a random π). The advantage of the adversary in distinguishing
these two experiments should be negligible for a secure encryption scheme. This
is a security notion without learning queries but the adversary can perform many
challenge queries. The adversary has the standard oracle access to the challenger
and the challenge phase is implemented by the real-or-random return type.

Therefore, there are three achievable de�nitions for quantum IND-CPA no-
tion in the literature so far. These three notions only cover a small part of the
di�erent combinations of the design choices made in those papers � the query
models (classical, ST , and ER etc.), the challenge return type (1ct, 2ct, and
ror), the number of queries (none, one, many) � even if we only consider dif-
ferent combinations of the design decisions already made in those papers. The
choice which combinations are considered seems ad-hoc (in the sense that there
is no systematic consideration of other combinations), and the combinations ac-
tually matter (di�erent from the classical setting where we tend to arrive at the
same notion of IND-CPA in many di�erent ways).

In this paper, our aim is to answer the following questions:

What is a comprehensive list of distinct possible quantum IND-CPA notions?
How do these notions relate to each other?

Which one is the strongest (achievable) security notion?

Why should we care? Encryption schemes (and other crypto-
graphic primitives) secure under quantum queries (a.k.a. superposition
queries) have been studied in prior work from a number of angles, e.g.,
[16,17,6,5,10,14,19,12,3,18,11]. There are two main reasons for studying them:
The fear that future cryptographic devices will be quantum and will therefore
either intentionally or due to manipulation by the adversary perform encryption
and similar operations in superposition. And the fact that in security proofs,
intermediate games may involve oracles that answer quantum queries even if the
original games were purely classical.6 While these reasons give motivation for
studying quantum queries, they do not answer the question which model is the
right one, and which security de�nition is the right one. While we cannot give a
de�nitive answer which de�nition is right (although we can answer, e.g., which
is strongest), we do clarify which options there are, and how they relate (at least
in the case of IND-CPA security of symmetric encryption). And by showing
equivalences, we also narrow down the �eld to a more manageable number of
choices (namely 14 instead of 72). This enables designers of symmetric encryp-
tion schemes or modes of operations to know which security notions can be or
need to be considered (e.g., they could simply show security with respect to the
strongest ones). It provides guidance to cryptographers using symmetric encryp-
tion as subprotocols what options there are to make the proofs go through, and

6 For example, in a post-quantum security proof involving quantum rewinding [25,23],
the adversary (including any oracles it queries) is �rst transformed into a unitary
operation. As a side e�ect, any classical oracle would also be transformed into a
unitary one.
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it provides foundational insight into the structure of security de�nitions, and
tells us which design choice does or does not matter. We note that it is very easy
to get misled here by one's intuition, and to assume relationships between the
notions that are not correct. For example, [12] mistakenly states that that the
security notion based on erasing queries ER are stronger than those based on
standard or embedding queries ST and then restricts their attention only to ER
queries because this supposedly leads to the strongest result.7 To the best of our
knowledge, this claim has not been disputed so far. Our results show that this
is not correct and the notions are actually incomparable. Last but not least, un-
derstanding IND-CPA with quantum queries is an important �rst step towards
�nding good notion for IND-CCA with quantum queries. The latter is a hard
problem with partial success [13,9] that has so far eluded a de�nitive answer.

1.2 Our contribution

We study all possible quantum IND-CPA security notions. We classify the no-
tions according to the following criteria:
(1) Number of queries that the adversary can make during the learning and

challenge phase: zero (0), one (1) or many (∗) queries. Note that in the
learning phase either there are no queries or many queries, while in the
challenge phase there is one query or many queries.

(2) Query model in which the adversary is interacting with the challenger: clas-
sical (CL), standard (ST ), erasing (ER), or �embedding query model� (EM ).
The embedding query model is the same as the standard oracle model except
that the adversary only provides the input register and the output register
will be initiated with |0〉 by the challenger (see Section 3).

(3) The return type of the challenge ciphertext: 1ct, 2ct, or ror.
This gives 5 choices for the learning phase and 24 choices for the challenge

phase. Therefore, there are 120 variants of the security notion altogether. We use
the notation learn(?, ?)-chall(?, ?, ?) for the security notions where the question
marks are identi�ed from the choices above. For instance, Boneh-Zhandry
de�nition [6] can be represented with learn(∗,ST )-chall(1,CL, 1ct) which means
many ST queries in the learning phase and one classical challenge query, both
returning one ciphertext.

Excluded security notions. We do not consider security notions with
di�erent quantum query models in the learning phase and the challenge phase.
E.g., ST challenge queries with ER learning queries. While technically possible,
we consider such combinations to be too �exotic� and do not expect them to be
used.8 (Classical queries can be combined with any of quantum query models

7 Their precise wording is �we will focus on the (. . . 2) models in order to be on the
`safe side', as they lead to security notions which are harder to achieve.�. In their
language, type-(2) models correspond to our ER queries, and type-(1) models to our
ST queries.

8 This is, of course, arguable. But without this restriction, the number of possible
combinations would grow beyond what is manageable in the scope of this paper.
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though. E.g., the Boneh-Zhandry de�nition [6] is of this type.) Also, we do
not consider a security notion with no learning queries and only one challenge
query since this corresponds to the IND-OT-CPA notion (one-time IND-CPA
security) that will not be considered in this paper. This leaves us with 72 notions.

Impossible security notions. Any security notion with the standard query
model and the return type of one-ciphertext or two-ciphertexts in the challenge
phase is impossible to achieve by any encryption scheme [6]. Any query model
with the embedding query type EM and the one-ciphertext return type in the
challenge phase is impossible to achieve. (See Section 5).

Impossible security notions

learn(0,−)-chall(∗,ST , 1ct), learn(0,−)-chall(∗,ST , 2ct),
learn(∗,CL)-chall(1,ST , 1ct), learn(∗,CL)-chall(1,ST , 2ct),
learn(∗,CL)-chall(∗,ST , 1ct), learn(∗,CL)-chall(∗,ST , 2ct),
learn(∗,ST )-chall(1,ST , 1ct), learn(∗,ST )-chall(1,ST , 2ct),
learn(∗,ST )-chall(∗,ST , 1ct), learn(∗,ST )-chall(∗,ST , 2ct),
learn(0,−)-chall(∗,EM , 1ct), learn(∗,CL)-chall(1,EM , 1ct),
learn(∗,CL)-chall(∗,EM , 1ct), learn(∗,EM )-chall(1,EM , 1ct),
learn(∗,EM )-chall(∗,EM , 1ct)

This leaves us with 57 notions that remain valid and achievable. Then, we
compare these notions and put the equivalent notions in the same panel and
this results in 14 panels. We give an overview of the equivalent notions in each
panel and relations between panels below.

Security notions that are equivalent (see Section 6): The de�nitions inside
each box are equivalent.

Panel 1

learn(0,−)-chall(∗,ER, 1ct), learn(0,−)-chall(∗,ER, 2ct),
learn(∗,CL)-chall(∗,ER, 1ct), learn(∗,CL)-chall(∗,ER, 2ct),
learn(∗,ER)-chall(1,ER, 1ct), learn(∗,ER)-chall(1,ER, 2ct),
learn(∗,ER)-chall(∗,ER, 1ct), learn(∗,ER)-chall(∗,ER, 2ct)

Note that Panel 1 includes the security notion from [12]. These equivalences
have been achieved by Theorem 15, Theorem 17 and Theorem 20.

Panel 2

learn(0,−)-chall(∗,ST , ror), learn(∗,CL)-chall(∗,ST , ror),
learn(∗,ST )-chall(1,ST , ror), learn(∗,ST )-chall(∗,ST , ror)

Note that Panel 2 includes the security notion from [19]. These equivalences
have been obtained by Theorem 15 and Theorem 18.
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Panel 3

learn(∗,CL)-chall(1,ER, 2ct)

Panel 4

learn(0,−)-chall(∗,ER, ror), learn(∗,CL)-chall(∗,ER, ror),
learn(∗,ER)-chall(1,ER, ror), learn(∗,ER)-chall(∗,ER, ror)

The equivalences in Panel 4 have been concluded by Theorem 15 and Theo-
rem 18.

Panel 5

learn(0,−)-chall(∗,EM , ror), learn(0,−)-chall(∗,EM , 2ct),
learn(∗,CL)-chall(∗,EM , ror), learn(∗,CL)-chall(∗,EM , 2ct),
learn(∗,EM )-chall(1,EM , 2ct), learn(∗,EM )-chall(1,EM , 2ct),
learn(∗,EM )-chall(∗,EM , 2ct), learn(∗,EM )-chall(∗,EM , 2ct)

We can conclude the equivalences in Panel 5 by Theorem 15, Theorem 17,
Theorem 19, Theorem 18, and Theorem 22.

Panel 6

learn(∗,ST )-chall(1,CL, 1ct), learn(∗,ST )-chall(1,CL, 2ct),
learn(∗,ST )-chall(1,CL, ror), learn(∗,ST )-chall(∗,CL, 1ct),
learn(∗,ST )-chall(∗,CL, 2ct), learn(∗,ST )-chall(∗,CL, ror)

Note that this panel includes the security notion from [6]. We can conclude
these equivalences by Theorem 15 and Theorem 16.

Panel 7

learn(∗,CL)-chall(1,EM , 2ct)

Panel 8

learn(∗,CL)-chall(1,ER, 1ct)

Panel 9

learn(∗,CL)-chall(1,ER, ror)

Panel 10

learn(∗,ER)-chall(1,CL, 1ct), learn(∗,ER)-chall(1,CL, 2ct),
learn(∗,ER)-chall(1,CL, ror), learn(∗,ER)-chall(∗,CL, 1ct),
learn(∗,ER)-chall(∗,CL, 2ct), learn(∗,ER)-chall(∗,CL, ror)

We can conclude the equivalences in Panel 10 by Theorem 15 and Theo-
rem 16.
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Panel 11

learn(∗,ER)-chall(1,CL, 1ct), learn(∗,ER)-chall(1,CL, 2ct),
learn(∗,ER)-chall(1,CL, ror), learn(∗,ER)-chall(∗,CL, 1ct),
learn(∗,ER)-chall(∗,CL, 2ct), learn(∗,ER)-chall(∗,CL, ror)

Panel 12

learn(∗,CL)-chall(1,ST , ror)

Panel 13

learn(∗,CL)-chall(1,EM , ror)

Panel 14

learn(0,−)-chall(∗,CL, ror), learn(0,−)-chall(∗,CL, 1ct),
learn(0,−)-chall(∗,CL, 2ct), learn(∗,CL)-chall(∗,CL, ror),
learn(∗,CL)-chall(∗,CL, 1ct), learn(∗,CL)-chall(∗,CL, 2ct),
learn(∗,CL)-chall(1,CL, ror), learn(∗,CL)-chall(1,CL, 1ct),
learn(∗,CL)-chall(1,CL, 2ct)

We can conclude the equivalences in Panel 14 by Theorem 15 and Theo-
rem 16.

Main Conclusion. We observe that di�erent from the the classical case in
which IND-CPA notions with di�erent types of challenge queries (1ct, 2ct or ror)
are equivalent (see Panel 14), when the challenge query is quantum (ST , EM or
ER), the notions are not equivalent. More speci�cally: 1) for the standard query
model, only the real-or-random return type is achievable (and two others are
impossible to achieve). 2) for the embedding query model, the one-ciphertext
return type is impossible to achieve, however, other two cases are equivalent (see
Panel 5). 3) for the erasing query model, the one-ciphertext and two-ciphertexts
return type are equivalent (see Panel 1) and they are stronger than the real-or-
random return type (Panel 1 implies Panel 4 but Panel 4 does not imply Panel 1.)

Implications and non-implications (Section 6 and Section 7). The im-
plications and separation have been drawn in Table 1. The cells with a question
mark remain open questions. We conclude that a notion P does not imply Q
if there exists an encryption scheme that is secure with respect to the notion
P and insecure with respect to the notion Q. All of non-implications hold on
the assumption of the existence of a quantum secure one-way function. They all
hold in the standard model except the non-implication in the Theorem 38 that
holds in the quantum random oracle model.

Main conclusions of Table 1.
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� Panels P1 and P2 together imply all other security notions. We present an
encryption scheme that is secure in the sense of the notions in Panels 1 and 2
(see Section 8), and therefore it is secure with respect to all notions.

� Panel 1 and 2 are not comparable to each other. This resolves an open
question stated in [19,13] for a comparison between these security notions.

Decoherence Lemmas: As a technical tool, we introduce several �decoherence
lemmas�. Essentially, a decoherence lemma states that a certain randomized
query e�ectively measures the input of that query (even if the query is actually
performed in superposition). Speci�cally, we show that a query to a random
sparse injective function in the erasing query model ER will e�ectively measure
its input (even if no register is actually measured or erased). And we show an
analogous result for the embedding query model EM and a random function
(see Section 4). These decoherence lemmas make it much easier to compare
di�erent query models because we can use them to prove that the queries are
essentially classical. They are an essential tool in our analysis, both for showing
implications and separations. However, we believe that they are a tool of
independent interest for the analysis of superposition queries in cryptographic
settings.

Simulating learning queries with challenge queries. Classically, it is easy
to see that one can simulate the learning queries with the challenge queries.
For instance, for the return types of 1ct, 2ct, the reduction makes a copy of the
learning query and sends the query along with its copy to the challenger and
forwards back the ciphertext (for 1ct) or one of the ciphertexts (for 2ct) to the
adversary. But when the queries are quantum, this approach will not work due
to no-cloning theorem. We resolve this obstacle and show that the simulation
of learning queries using challenge queries is possible in the quantum setting as
well (see Theorem 17 and Theorem 18.).

Impossibility results for natural modes of operation. We show (Corol-
lary 42) that any out of a large class of modes of operation is insecure with respect
to challenge queries of type (ST , ror). Basically, this includes all modes of opera-
tion where at least one output block is not dependent on all input blocks. While
we do propose an encryption scheme that is secure with respect to all (achievable)
notions presented in this work, an e�cient mode of operation with this property
is an open problem. Corollary 42 gives an indication why this is the case. (Modes
of operation have been studied with respect to the Boneh-Zhandry's de�nition
in [3].)

1.3 Organization of the paper

In Section 2, we give some notations and preliminaries. The Section 3 is dedicated
to de�nitions that are needed in the paper. We present all possible security
notions for IND-CPA in the quantum case in this section. In Section 4, we prove
some lemmas that are needed for security proofs. The Section 5 is dedicated to
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

P1 ; ⇒ ⇒21 ⇒ ⇒23 ⇒ ⇒ ⇒ ⇒ ⇒ ;41 ⇒ ⇒
P2 ; ; ; ⇒ ⇒ ⇒ ;28 ;? ;38 ⇒ ⇒ ⇒ ⇒
P3 ? ; ? ? ? ⇒ ⇒ ⇒ ? ;? ; ⇒ ⇒
P4 ; ; ; ⇒ ;? ⇒ ;28 ⇒ ⇒ ⇒ ; ⇒ ⇒
P5 ; ; ; ; ? ⇒ ; ? ; ⇒ ; ⇒ ⇒
P6 ; ; ; ; ; ;39 ; ; ; ⇒ ; ;40 ⇒
P7 ; ; ; ; ? ? ; ? ; ? ; ⇒22 ⇒
P8 ? ; ? ? ? ? ;? ⇒21 ? ? ; ⇒ ⇒
P9 ; ; ; ? ? ? ? ; ? ? ; ⇒ ⇒
P10 ; ; ; ; ; ? ;39 ; ; ⇒ ; ;33 ⇒
P11 ; ; ; ; ; ? ; ; ; ; ; ; ⇒
P12 ; ? ; ; ? ? ;? ; ? ; ;? ⇒ ⇒
P13 ; ; ; ; ? ? ? ; ? ; ? ; ⇒
P14 ; ; ; ; ; ; ; ; ; ; ;32 ; ;

Table 1. Implications and separations between panels. The cells with question marks
remain open problems. An arrow in row Pn, column Pm indicates whether Pn implies
or does not imply Pm. The superscript number next to an arrow indicates the number
of the corresponding theorem. Arrows without a superscript follow by transitivity. See
Section 7 for more details. If the red non-implications with a question mark superscript
hold, all the remaining open cases will be non-implications by transitivity.

rule out security notions that are impossible to be achieved for any encryption
scheme. In Section 6, we investigate implications between all security notions
de�ned in Section 3. We obtain 14 groups of equivalent security notions. Then,
we prove some implications between these 14 panels. The Section 7 is dedicated
to show non-implications between panels. The relation between few panels are
left as open questions. Finally, we present an encryption scheme that is secure
with respect to all security notions de�ned in the paper in Section 8.

2 Preliminaries

We recall some basics of quantum information and computation needed for
our paper below. Interested reader can refer to [20] for more informations. For
two vectors |Ψ〉 = (ψ1, ψ2, · · · , ψn) and |Φ〉 = (φ1, φ2, · · · , φn) in Cn, the in-
ner product is de�ned as 〈Ψ, Φ〉 =

∑
i ψ
∗
i φi where ψ

∗
i is the complex conju-

gate of ψi. Norm of |Φ〉 is de�ned as ‖|Φ〉‖ =
√
〈Φ,Φ〉. The outer product

is de�ned as |Ψ〉〈Φ| : |α〉 → 〈Φ, α〉|Ψ〉. The n-dimensional Hilbert space H is
the complex vector space Cn with the inner product de�ned above. A quan-
tum system is a Hilbert space H and a quantum state |ψ〉 is a vector |ψ〉 in
H with norm 1. A unitary operation over H is a transformation U such that
UU† = U†U = I where U† is the Hermitian transpose of U and I is the iden-
tity operator over H. The computational basis for H consists of n vectors |bi〉

10



with 1 in the position i and 0 elsewhere (these vectors will be represented by n
vectors {|x〉 : x ∈ {0, 1}logn}). With this basis, the unitary CNOT is de�ned as
CNOT: |m1,m2〉 → |m1,m1 ⊕m2〉 where m1,m2 are bit strings. The Hadamard
unitary is de�ned as H: |b〉 → 1√

2
(
∣∣b̄〉+(−1)b|b〉) where b ∈ {0, 1}. An orthogonal

projection P over H is a linear transformation such that P2 = P = P†. A mea-
surement on a Hilbert space is de�ned with a family of orthogonal projectors
that are pairwise orthogonal. An example of measurement is the computational
basis measurement in which any projection is de�ned by a basis vector. The out-
put of computational measurement on state |Ψ〉 is i with probability ‖〈 bi, Φ〉‖2
and the post measurement state is |bi〉. The density operator is of the form
ρ =

∑
i pi|φi〉〈φi| where pi are non-negative and add up to 1. This represents

that the system will be in the state |φi〉 with probability pi. We denote the trace

norm with ||·||1, i.e., ||M ||1 = tr(|M |) = tr(
√
M† ·M). For two density operators

ρ1 and ρ2, the trace distance is de�ned as TD(ρ1, ρ2) = 1
2 ||ρ1 − ρ2||1. For two

quantum systems H1 and H2, the composition of them is de�ned by the tensor
product and it is H1 ⊗H2. For two unitary U1 and U2 de�ned over H1 and H2

respectively, (U1 ⊗ U2)(H1 ⊗H2) = U1(H1)⊗ U2(H2).
Often, when we write �random� we mean �uniformly random�. For a function

f , the notation im f means {f(x) : x ∈ {0, 1}m}. Many terms, which we are
going to use throughout this paper, are actually a function of the implicit security
parameter η, however in order to keep notations simple, we refuse in most cases
to make the dependence of η explicit, and just omit η. Quantum registers are
denoted by Q with possibly some index. We will use the notation of Uf , Û

g for
arbitrary f , arbitrary injective g where

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 and Ûg : |x〉 7→ |g(x)〉.

3 De�nitions

One of the main points in this text is to compare di�erent ways to model how
a quantum-circuit can access a classical function f : {0, 1}h → {0, 1}n (i.e., how
to represent a classical function f as a quantum gate). There are 3 query models
that model this, here called ST (standard query model), EM (embedding query
model) and ER (erasing query model). EM is in some sense the �weakest� in
that it can be simulated by both ST and ER.
ST-query model: In this query model, an algorithm A that queries f pro-
vides two registers Qin, Qout of h and n q-bits, respectively. Then, the unitary
Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 is applied to these registers and �nally the registers
Qin, Qout are passed back to A.
EM-query model: , The di�erence of the EM -query model with the ST -model
is that the lower wire (called "output-wire") is forced to contain 0n and is not
part of the input to quantum circuit but produced locally. In other words, an
algorithm A provides a register Qin of h qubits and Qout is initialized as 0n and
then the unitary Uf is applied to registers Qin, Qout and they are passed back
to A.

11



ER-query model: This query model is only possible for functions f that are
injective.

Q : |x〉 Ûf |f(x)〉

De�nition 1. A symmetric encryption scheme consists of there e�cient algo-
rithms (KGen,Enc,Dec) as follows.

� The key generating algorithm KGen on the input of the security parameter
returns a random secret key k.

� The encryption algorithm Enc on the inputs of k and a message m chooses
a randomness r and returns Enck(m; r).

� Dec on the inputs of k and c = Enck(m; r) returns m. For an invalid cipher-
text, the decryption algorithm Dec returns ⊥.

De�nition 2. We call two functions f1, f2 s-indistinguishable (short for stan-
dard indistinguishable) i� there exists a negligible ε such that for all quantum
polynomial time adversaries A and all auxiliary quantum states |ψ〉 chosen by
A (since A can use an internal quantum register to distinguish) it holds:

|Prob[1← ACL(f1)(|ψ〉)]− Prob[1← ACL(f2)(|ψ〉)]| < ε,

We call f1, f2 qm-q-indistinguishable for qm ∈ {CL,ST ,ER} (note that we are
not considering EM ) i� there exists a negligible ε such that for all quantum
polynomial time adversaries A making polynomial number of queries to its oracle
in the query model qm and all auxiliary quantum states |ψ〉 chosen by A it holds:

|Prob[1← Aqm(f1)(|ψ〉)]− Prob[1← Aqm(f2)(|ψ〉)]| < ε.

Note that s-indistinguishability is the same as CL-q-indistinguishability.

We call a pseudorandom permutation πs a vPRP for v ∈ {c, s, q}, i� it is
v-indistiguishable from a truly random permutation:

� With cPRP is meant a pseudorandom permutation πs which is secure
against a classical adversary with classical access to πs and π

−1
s .

� With sPRP is meant a pseudorandom permutation πs which is secure
against a quantum adversary with classical access to πs and π

−1
s .

� With qPRP is meant a pseudorandom permutation πs which is secure
against a quantum adversary with superposition access to πs and π

−1
s .

Formally ST -qPRP and ER-qPRP have to be distinguished, but as shown below
they are equivalent. More formally cPRP, sPRP, qPRP are de�ned by:

De�nition 3. A (m,n)-v-strong-PRP (also called block cipher) for v ∈ {c, s, q}
is a pair of two permutations (= bijective functions) π and π−1 with seed s:

πs, π
−1
s : {0, 1}n → {0, 1}n, s ∈ {0, 1}m

sucht that the oracle f1(x) = πs(x) is v-indistinguishable from a truly random
permutation f2 : {0, 1}n → {0, 1}n.

12



Remark 4. Note that Zhandry showed in [27] that a qPRP (ST -query-model)
can be constructed from a one-way-function. Also we are not distinguishing
qPRP in the ST -query-model and in the ER-query-model. The next lemma will
justify that by proving that ST -q-PRP-oracles and ER-q-PRP-oracles can be
constructed out of each other by a simple construction.

Lemma 5. A bijection π is a strong ST -q-PRP i� it is a strong ER-q-PRP.

Proof. The reason is, that ST and ER query models can be constructed out of
each other if the oracle function is an invertible permutation.

Next we have to de�ne what it means for an encryption scheme to ful�ll
a certain security notion. Namely we will de�ne what it means to be l-c-IND-
CPA-secure. Here l and c are just symbols which will be instantiated later. l
stands for learning query and c stands for challenge query. Accordingly l will
be instantiated with some learning query model and c will be instantiated with
some challenge query model.

De�nition 6. We say the encryption scheme Enc = (KGen,Enc,Dec) is l-
c-IND-CPA-secure if any polynomial time quantum adversary A can win in the
following game with probability at most 1

2 + ε for some negligible ε.

The l-c-CPA game:

Key Gen: The challenger runs KGen to obtain a key k, i.e., k
$←− KGen(), and

it picks a random bit b.
Learning Queries: The challenger answers to the l-type queries of A using
Enck. l also speci�es the number of times this step can be repeated.
Challenge Queries: The challenger answers to the c-type queries of A using
Enck and the bit b. (Note that the adversary is allowed to submit some learning
queries between the challenge queries as well.) c also speci�es the number of
times this step can be repeated.
Guess: The adversary A returns a bit b′, and wins if b′ = b.

In the two sections below, we de�ne di�erent types of the learning queries and
the challenge queries and we specify which combination of them are considered
for IND-CPA security of encryption schemes.

3.1 Syntax of l - the learning queries

Note that in all of the following query models, we assume the challenger picks

k
$←− KGen(). For simplicity, we omit it from our description. A fresh randomness

will be chosen for each query (quantum or classical), but, for a superposition
query, all the messages in the query will be encrypted with the same randomness
[6].
Learning Query type CL. For any query on input message m, the challenger

picks r
$←− {0, 1}t and gives back c← Enck(m; r) to the adversary.
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Learning Query type ST. For any query, the challenger picks r
$←− {0, 1}t and

applies the unitary UEnck to the provided registers of the adversary, Qin, Qout
registers, and gives them back to the adversary.
Learning Query type EM. Upon receiving the provided register of the adver-

sary, say Qin, the challenger picks r
$←− {0, 1}t and creates a register Qout con-

taining the state |0〉⊗n and applies the unitary UEnck to the registers Qin, Qout,
and gives them back to the adversary.
Learning Query type ER. Upon receiving the provided register of the adver-

sary, say Qin, the challenger picks r
$←− {0, 1}t , applies the unitary ÛEnck(·,r) to

the register Qin and gives it back to the adversary.

3.2 Syntax of c - the challenge queries

We present di�erent challenge query types in this section.
Challenge Query type chall(·,CL, 1ct). (The notation 1ct stands for one-
ciphertext.) In this query model, the adversary picks two messages m0,m1 and

sends them to the challenger. The challenger picks r
$←− {0, 1}t and a random bit

b and returns Enck(mb; r)
Challenge Query type chall(·,ST , 1ct). In this query model, the adversary
prepares two input registers Qin0, Qin1, one output register Qout and sends them

to the challenger. The challenger picks r
$←− {0, 1}t and a random bit b, applies

the following operation on these three registers and returns the registers to the
adversary.

UST ,1ct,r,b : |m0,m1, c〉 7→ |m0,m1, c⊕ Enck(mb; r)〉.

Challenge Query type chall(·,EM , 1ct). In this query model, the adversary
prepares two input registers Qin0, Qin1, and sends them to the challenger. The

challenger prepares an output register Qout containing |0〉⊗n
′
, picks r

$←− {0, 1}t
and a random bit b, applies the following operation on these three registers and
returns the registers to the adversary.

UEM ,1ct,r,b : |m0,m1, 0〉 7→ |m0,m1,⊕Enck(mb; r)〉.

Challenge Query type chall(·,ST , 2ct). (The notation 2ct stands for two-
ciphertexts.) In this query model, the adversary prepares two input registers
Qin0, Qin1, two output registers Qout0, Qout1 and sends them to the challenger.

The challenger picks r0, r1
$←− {0, 1}t and a random bit b, applies the following

operation on these four registers and returns the registers to the adversary.

UST ,2ct,r0||r1,b : |m0,m1, c0, c1〉 7→ |m0,m1, c0 ⊕ Enck(mb; r0), c1 ⊕ Enck(mb̄; r1)〉.
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Challenge Query type chall(·,EM , 2ct). In this query model, the adver-
sary prepares two registers Qin0, Qin1 and sends them to the challenger. The

challenger prepares two registers Qout0, Qout1 containing |0〉⊗n
′
, picks r0, r1

$←−
{0, 1}t and a random bit b, applies the following operation on these four registers
and returns the registers to the adversary.

UEM ,2ct,r0||r1,b : |m0,m1, 0, 0〉 7→ |m0,m1,Enck(mb; r0),Enck(mb̄; r1)〉.

Challenge Query type chall(·,ER, 2ct).
In this query model, the adversary prepares two registers Qin0, Qin1 and

sends them to the challenger. The challenger picks r0, r1
$←− {0, 1}t and a random

bit b, applies the following operation on these two registers and returns the
registers to the adversary.

UER,2ct,r0||r1,b : |m0,m1〉 7→ |Enck(mb; r0),Enck(mb̄; r1)〉.

Challenge Query type chall(·,ER, 1ct). In this query model, the adversary
prepares two registers Qin0, Qin1 and sends them to the challenger. The chal-

lenger picks r
$←− {0, 1}t and a random bit b, measures the register Qinb̄ (one of

the provided registers by the adversary) and throws out the result, applies the
unitary ÛEnck(·,r) to the register Qinb, and passes it back to the adversary.

Qin0 ÛEnck(·;r) Qout

Qin1 a
b •

where registers Qin0, Qin1 will be swapped if and only if b = 1.
Challenge Query type chall(·,ST , ror). (The notation ror stands for �real or
random�.) In this query model, the adversary provides two registers Qin, Qout.

The challenger picks r
$←− {0, 1}t, b $←− {0, 1}, a random permutation π on

{0, 1}n, applies the unitary UEnck◦πb to Qin, Qout and passes them back to the
adversary.
Challenge Query type chall(·,EM , ror). In this query model, the adversary

provides a registerQin. The challenger prepares a registerQout containing |0〉⊗n
′
,

picks r
$←− {0, 1}t, b $←− {0, 1}, a random permutation π on {0, 1}n, applies the

unitary UEnck◦πb to Qin, Qout and passes them back to the adversary.
Challenge Query type chall(·,ER, ror). In this query model, the adversary
prepares a register Qin and sends it to the challenger. The challenger picks

r
$←− {0, 1}t, b $←− {0, 1}, a random permutation π on {0, 1}n, applies the following

operation to the register Qin, and passes it back to the adversary.

UER,ror,r,b : |m〉 7→
∣∣Enck(πb(m); r)

〉
.

3.3 Instantiation of learning and challenge query models

We de�ne l := learn(lnb, lqm) (�nb� stands for �number�, �qm� stands for
�query model�) where lnb shows the number of the learning queries and lqm
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shows the type of the learning queries. Therefore, l = learn(lnb, lqm) where
(lnb, lqm) ∈ ({∗}×{CL,ST ,EM ,ER})∪{(0,−)} where ∗ means arbitrary many
queries and 0 means no learning queries. For the challenge queries, we de�ne c :=
chall(cnb, cqm, crt) (�nb� stands for �number�, �qm� stands for �query model�, �rt�
stands for �return type�) where cnb shows the number of the challenge queries and
cqm, crt show the type of the challenge queries. Therefore, c = chall(cnb, cqm, crt)
where (cnb, cqm, crt) ∈ {1, ∗} × {CL,ST ,EM ,ER} × {1ct, 2ct, ror}.
The valid combinations of the learning and challenge queries. We ex-
plicitly specify which combination of the learning queries, l, and the challenge
queries, c, are considered in this paper. We consider only combinations where,

� (lnb, cnb) ∈ {(∗, 1), (∗, ∗), (0, ∗)} i.e., (lnb, cnb) 6= (0, 1).
� (lqm, cqm) ∈ {(CL,CL)} ∪ {(CL, x), (x,CL), (x, x)|x ∈ {ST ,EM ,ER}}.

That is, we have excluded IND-OT-CPA de�nitions and notions that combine
two di�erent notions of superposition queries.

4 Decoherence lemmas

In this section, we present some lemmas needed in our paper without proof. For
the proof, refer to the full version of the paper [8].

The informal idea of the following lemma is, that if you have one-time access
to an ER-type oracle of a random permutation, you cannot distinguish whether
this oracle �secretely� applies a projective measurement to your input, that mea-
sures whether your input is |+〉⊗m and if not which computational state |x〉 it
is.

Lemma 7. For a bijective function π : {0, 1}m → {0, 1}m let Ûπ be the unitary
that performs the ER-type mapping |x〉 7→ |π(x)〉. Let X be a quantum register
with m qubits. Then the following two oracles can be distinguished in a single
query with probability at most 2−m+2:

� F0: Pick a random permutation π and apply Ûπ on X,
� F1: Pick a random permutation π, measure X as described later and then

apply Ûπ to the result.

The quantum circuit for F0 is:

|x〉 Ûπ |π(x)〉

and for F1 it is:

|x〉 H⊗m c←M|0〉〈0| H⊗m Mc Ûπ |π(x̂)〉 or |+〉

where c←M|0〉〈0| is a projective measurement, storing the result (0 or 1) in c,

that projects to the spaces span(|0〉⊗m) (corresponding to 0) and its orthogonal
space (corresponding to 1) andM1 is a measurement in the computational basis,
whose outcome is denoted by x̂ andM0 means no operation.
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Note, that if we writeM|+〉〈+| for the projective measurement, that projects

to the subspace span(|+〉⊗m), we can write F1 simply as:

|x〉 c←M|+〉〈+| Mc Ûπ |π(x̂)〉 or |+〉

On a very high level, the proof proceeds as follows: We explicitly represent
the density operators ρ0, ρ1 after execution of F0, F1, respectively (for a generic
initial state). Then we show by explicit calculation that ρ0 = ρ′ where ρ′ is the
state after F1 if we omit the measurementMc. Finally we proceed to bound the
trace distance between ρ1 and ρ′. (This then gives a bound on the adversary's
distinguishing probability.) This is done by explicitly computing ρ1 − ρ′ and
noting that this di�erence is a tensor product of two matrices σ1, σ2, both of
reasonably simple form, and one of them having very small trace norm.

Lemma 8. For numbers m and n and an injective function f : {0, 1}m →
{0, 1}m+n let Ûf be the isometry that performs the ER-type mapping |x〉 7→
|f(x)〉. Let X be a quantum register containing m qubits. Then the following two
oracles can be distinguished with probability at most 3 · 2−n.

1. F0: Pick f uniformly at random and then apply Ûf on X,
2. F1: Pick f uniformly at random, measure X in the computational basis then

apply Ûf to the result.

The quantum circuit for F0 is:

|x〉 Ûf |f(x)〉

and for F1 it is:

|x〉 M Ûf |f(x̂)〉

where M is a computational basis measurement (in the picture we denote the
outcome of this measurement with x̂).

Proof. Intuitively this follows from Lemma 7 because: Picking a random injection
has the same distribution as composing concatenation of su�ciently many 0s
with a random permutation.

Lemma 9. For a random function f : {0, 1}m → {0, 1}n, an embedding query to
f is indistinguishable from an embedding query to f preceded by a computational
measurement on the input register. Let X be an m-qubit quantum register. Then
for any input quantum register m, the following two oracles can be distinguished
with probability at most 2−n.

1. F0: apply Uf to X and another register containing n zeros. The quantum
circuit for F0 is:

|x〉
Uf

|x〉
|0〉⊗n |f(x)〉
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2. F1: measure X in the computational basis and apply Uf to the result and
another register containing zeros. The circuit for F1 is:

|x〉 M
Uf

|x̂〉

|0〉⊗n |f(x̂)〉

where M is a computational basis measurement whose outcome we denote
by x̂.

Corollary 10. Assume n ≥ m. For a random injective function f : {0, 1}m →
{0, 1}n the oracles F0 and F1 in Lemma 9 are distinguishable with probability at
most 1/2n + C/2n where C is a universal constant.

Corollary 11. Let R ⊆ {0, 1}s be a (�xed) set of size 2n. Let f : {0, 1}m →
{0, 1}s be a random injection with range R, that is, f is uniformly randomly
chosen from the set of all injective functions f : {0, 1}m → {0, 1}s with im f ⊆ R.
An EM -query to f is distinguishable from an EM -query to f preceded with a
computational basis measurement with probability at most 1/2n+C/2n where C is
a universal constant. In other words, the following circuits are indistinguishable.

|x〉
Uf

|x〉 |x〉 M
Uf

|x̂〉

|0〉⊗n |f(x)〉 |0〉⊗n |f(x̂)〉

5 Impossible Security Notions

Proposition 12. [Theorem 4.2 in [6]] There is no l-chall(cnb,ST , 1ct)-IND-
CPA-secure encryption scheme where the l and cnb can be replaced by any of the
possible parameters.

Proposition 13. [Theorem 4.4 in [6]] There is no l-chall(cnb,ST , 2ct)-IND-
CPA-secure encryption scheme where the l and cnb can be replaced by any of the
possible parameters.

Proposition 14. There is no l-chall(cnb,EM , 1ct)-IND-CPA-secure encryption
scheme where the l and cnb can be replaced by any of the possible parameters.

6 Implications

From the theoretically (4 + 1) × 2 × 4 × 3 = 120 possible IND-CPA-notions,
12 correspond to IND-OT-CPA, 36 are considered exotic, 15 are impossible to
achieve and this leaves 57 notions that are grouped in 14 Panels as described in
the introduction. Inside each panel all the notions are equivalent and apart from
that, there are 20 implications between the panels. The full set of implications
between all notions can be derived by transitivity. Some of implications follow
from some theorem proven later and some are easy enough that say can be proven
by a short argument. The arguments used are the following. In each case, we
assign a short name in bold to that argument type.
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1. more cqs: i.e., more challenge queries. If two security notions just di�er
by the fact that one of them allows only one challenge query and the other
allows polynomially many, then trivially the notion allowing polynomially
many implies the notion allowing only one.

2. extra lq-oracle: i.e., extra learning-query-oracle. If two security notions
just di�er by the fact, that one of them allows learning queries and the other
doesn't, then trivially the notion allowing learning queries implies the notion
allowing no learning queries.

3. other ciphertext: If two security notions just di�er by the fact,
that one of them allows chall(cnb,ER, 1ct) challenge queries and the
other chall(cnb,ER, 2ct) challenge queries, then trivially the notions al-
lowing chall(cnb,ER, 2ct) challenge queries implies the notion allowing
chall(cnb,ER, 1ct) challenge queries.

4. simulate classical: Classical queries can be simulated with any quantum
query type by measuring the result in the computational basis.

5. simulate le with ch: When learning queries are classical, they can be
simulated by the challenge queries in the case of 1ct and 2ct. In more details,
on input m as a classical learning query, we can query (m,m) as a challenge
query and simulate the learning query.

6. EM simulation by ST. The query type EM can be simulated by ST -type
by putting |0〉 in the output register Qout.

7. EM simulation by ER. The query type EM can be simulated by ER-type
queries. In the following, we present a circuit that depicts the simulation of
EM -type queries to some function f using an ER-type query to f :

|m〉 •
|0〉⊗n Ûf

We show how the equivalences of the notions inside of the panels are derived.
Panel P1 (8 security notions):
learn(∗,CL)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 1ct) by Item 3.
learn(∗,CL)-chall(∗,ER, 1ct) =⇒ learn(0,−)-chall(∗,ER, 1ct) by Item 2.
learn(0,−)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, 1ct) by Theorem 17.
learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(1,ER, 1ct) by Item 1.
learn(∗,ER)-chall(1,ER, 1ct) =⇒ learn(∗,ER)-chall(1,ER, 2ct) by Theo-
rem 20.
learn(∗,ER)-chall(1,ER, 2ct) =⇒ learn(∗,ER)-chall(∗,ER, 2ct) by Theo-
rem 15.
learn(∗,ER)-chall(∗,ER, 2ct) =⇒ learn(0,−)-chall(∗,ER, 2ct) by Item 2.
learn(0,−)-chall(∗,ER, 2ct) =⇒ learn(∗,CL)-chall(∗,ER, 2ct) by Item 5.
Panel P2 (4 security notions):
learn(∗,ST )-chall(∗,ST , ror) =⇒ learn(∗,CL)-chall(∗,ST , ror) by Item 4.
learn(∗,CL)-chall(∗,ST , ror) =⇒ learn(0,−)-chall(∗,ST , ror) Item 2.
learn(0,−)-chall(∗,ST , ror) =⇒ learn(∗,ST )-chall(∗,ST , ror) by Theorem 18.
learn(∗,ST )-chall(∗,ST , ror) =⇒ learn(∗,ST )-chall(1,ST , ror) Item 1.
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learn(∗,ST )-chall(1,ST , ror) =⇒ learn(∗,ST )-chall(∗,ST , ror) by Theorem 15.
Panel P4 (4 security notions):
learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,CL)-chall(∗,ER, ror) by Item 4.
learn(∗,CL)-chall(∗,ER, ror) =⇒ learn(0,−)-chall(∗,ER, ror) by Item 2.
learn(0,−)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(∗,ER, ror) by Theorem 18.
learn(∗,ER)-chall(∗,ER, ror) =⇒ learn(∗,ER)-chall(1,ER, ror) by Item 1.
learn(∗,ER)-chall(1,ER, ror) =⇒ learn(∗,ER)-chall(∗,ER, ror) by Theo-
rem 15.
Panel P5 (8 security notions):
learn(∗,EM )-chall(∗,EM , ror) =⇒ learn(∗,CL)-chall(∗,EM , ror) by Item 4.
learn(∗,CL)-chall(∗,EM , ror) =⇒ learn(0,−)-chall(∗,EM , ror) by Item 2.
learn(0,−)-chall(∗,EM , ror) =⇒ learn(∗,EM )-chall(∗,EM , ror) by Theo-
rem 18.
learn(∗,EM )-chall(∗,EM , ror) =⇒ learn(∗,EM )-chall(1,EM , ror) by Item 1.
learn(∗,EM )-chall(1,EM , ror) =⇒ learn(∗,EM )-chall(1,EM , 2ct) by Theo-
rem 19.
learn(∗,EM )-chall(1,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , 2ct) by Theo-
rem 15.
learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,CL)-chall(∗,EM , 2ct) by Item 4.
learn(∗,CL)-chall(∗,EM , 2ct) =⇒ learn(0,−)-chall(∗,EM , 2ct) by Item 2.
learn(0,−)-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , 2ct) by Theo-
rem 17.
learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , ror) by Theo-
rem 22.
Panel P6 (6 security notions):
learn(∗,ST )-chall(1,CL, 1ct) =⇒ learn(∗,ST )-chall(∗,CL, 1ct) by Theorem 15.
learn(∗,ST )-chall(∗,CL, 1ct) =⇒ learn(∗,ST )-chall(1,CL, 1ct) by Item 1.
The rest of equivalences hold by Theorem 16.
Panel P10 (6 security notions):
learn(∗,ER)-chall(1,CL, 1ct) =⇒ learn(∗,ER)-chall(∗,CL, 1ct) by Theorem 15.
learn(∗,ER)-chall(∗,CL, 1ct) =⇒ learn(∗,ER)-chall(1,CL, 1ct) by Item 1.
The rest of equivalences hold by Theorem 16.
Panel P11 (6 security notions):
learn(∗,EM )-chall(1,CL, 1ct) =⇒ learn(∗,EM )-chall(∗,CL, 1ct) by Theo-
rem 15.
learn(∗,EM )-chall(∗,CL, 1ct) =⇒ learn(∗,EM )-chall(1,CL, 1ct) by Item 1.
The rest of equivalences hold by Theorem 16.
Panel P14 (9 security notions):
learn(∗,CL)-chall(1,CL, 1ct) =⇒ learn(∗,CL)-chall(∗,CL, 1ct) by Theorem 15.
learn(∗,CL)-chall(∗,CL, 1ct) =⇒ learn(∗,CL)-chall(1,CL, 1ct) by Item 1.
learn(∗,CL)-chall(∗,CL, 1ct) =⇒ learn(0,−)-chall(∗,CL, 1ct) by Item 2.
learn(0,−)-chall(∗,CL, 1ct) =⇒ learn(∗,CL)-chall(∗,CL, 1ct) by Item 5.
The rest of equivalences hold by Theorem 16.

The implications between the panels that does not have superscript in Table 1
hold using one of the described arguments above.
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Now we present the theorem mentioned in Table 1 and we refer to the full version
of the paper [8] for a detailed proof.

In Theorem 15, we prove that if we �x all the parameters in two notions
expect the number of the challenge queries (that can be one or many), the notion
with many challenge queries implies the notion with one challenge query if one
can simulate the challenge queries with the learning queries (when knowing the
challenge bit).

Theorem 15. If a chall(1, cqm, crt)-challenge-query can be e�ciently simulated
with an lqm-learning-query (when knowing the challenge bit b) then learn(∗, lqm)
-chall(1, cqm, crt) =⇒ learn(∗, lqm)-chall(∗, cqm, crt).

In the following theorem, we show that when the challenge queries are clas-
sical and we �x other parameters except the return types, these notions (with
di�erent return types 1ct, 2ct, ror) are equivalent.

Theorem 16. Let L = {learn(0,−), learn(∗,CL), learn(∗,ST ), learn(∗,EM ),
learn(∗,ER)} and Cnb = {1, ∗}. For all (l,Cnb) ∈ L × Cnb \ {

(
learn(0,−), 1

)
},

the following security notions are equivalent for all encryption schemes: (Note
that when l = learn(0,−) and cnb = 1, the security de�nition is IND-OT-CPA
that we have excluded.)

� C1ct := l-chall(cnb,CL, 1ct)-IND-CPA-security
� C2ct := l-chall(cnb,CL, 2ct)-IND-CPA-security
� Cror := l-chall(cnb,CL, ror)-IND-CPA-security

In the theorem below, we show that the security de�nition with no learning
queries imply the security de�nition that performs EM and ER type learning
queries.

Theorem 17. learn(0,−)-c =⇒ learn(∗, lqm)-c where

c ∈ {chall(∗,EM , 2ct), chall(∗,ER, 2ct), chall(∗,ER, 1ct)} and lqm ∈ {EM ,ER}.

In the theorem below, we show that the security de�nition with no learning
queries imply the security de�nition that performs ST , EM and ER type learning
queries when the return type of the challenge queries is ror.

Theorem 18. learn(0,−)-chall(∗, cqm, ror) =⇒ learn(∗, cqm)-chall(∗, cqm, ror),
where cqm ∈ {ST ,EM ,ER}.

In the theorem below, we show that for the embedding query type, ror-
challenge queries imply 2ct-challenge queries. A less general version of this the-
orem (when there is only one challenge query) is used to show the equivalences
of the notions in Panel 5.

Theorem 19. learn(∗,EM )-chall(∗,EM , ror) =⇒ learn(∗,EM )-
chall(∗,EM , 2ct)

In Theorem 20, we show that when the query model is ER in both the
learning queries and the challenge queries, the return type 1ct implies 2ct.
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Theorem 20. learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-
chall(∗,ER, 2ct)

In Theorem 21, we show that 1ct return type implies ror return type for ER
query model.

Theorem 21. The following implications hold:

� learn(∗,CL), chall(1,ER, 1ct) =⇒ learn(∗,CL)-chall(1,ER, ror).
� learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ER)-chall(∗,ER, ror)

In Theorem 22, we show that the 2ct return type implies the ror return type
for the EM query model.

Theorem 22. The following implications hold:

� learn(∗,CL)-chall(1,EM , 2ct) =⇒ learn(∗,CL)-chall(1,EM , ror)
� learn(∗,EM )-chall(∗,EM , 2ct) =⇒ learn(∗,EM )-chall(∗,EM , ror)

Theorem 23. learn(∗,ER)-chall(∗,ER, 1ct) =⇒ learn(∗,ST )-
chall(∗,CL, 1ct). This shows that P1 =⇒ P6.

7 Separations

In this section, we show all the non-implications presented in Table 1. For more
detailed proofs of theorems, refer to [8]. Note that some of non-implications in
Table 1 hold trivially by transitivity.

7.1 Separations by Quasi-Length-Preserving Encryptions

The notion of a core function and quasi-length-preserving encryption schemes
was �rst formally introduced in [12]. Intuitively, the de�nition splits the cipher-
text into a message-independent part and a message-dependent part that has the
same length as the plaintext. We de�ne a variant of a quasi-length-preserving
encryption scheme below.

De�nition 24 (Core function). A function g is called the core function of an
encryption scheme (KGen,Enc,Dec) if

1. for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t,

Enck(m; r) = f(k, r)||g(k,m, r)

where f is an arbitrary function independent of the message.
2. there exists a function f ′ such that for all k ∈ {0, 1}h,m ∈ {0, 1}n, r ∈ {0, 1}t

we have f ′(k, f(k, r), g(k,m, r)) = m.
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De�nition 25 (Quasi-Length-Preserving). An encryption scheme with
core function g is said to be quasi-length-preserving if for all k ∈ {0, 1}h,m ∈
{0, 1}n, r ∈ {0, 1}t,

|g(k,m, r)| = |m|,

that is, the output of the core function has the same length as the message.

In the theorem below we show that any quasi-length-preserving encryption
scheme is insecure for the query model in Panel 8.

Theorem 26. Any quasi-length-preserving encryption scheme is insecure for
the query model learn(∗,CL)-chall(1,ER, 1ct). This shows that any quasi-length-
preserving encryption scheme is insecure for the query model in Panel 8.

Proof. Suppose the function Enc is quasi-length-preserving, i.e., we can write

Enck(m; r) = f(k, r)||g(k,m, r)

for some functions f and g such that |g(k,m, r)| = |m|. We draw the circuit
of the attack below where Qin0, Qin1 are two input registers. For simplicity, we
omit the classical values of f(k, r) from the circuits.

Qin0 : |+〉⊗n gk,r M|+〉

Qin1 : |0〉⊗n |
b •

When b = 0 the measurementM|+〉 succeeds with probability 1, but when b = 1,
this happens only with negligible probability.

In the theorem below we choose two query models from Panel 2 and Panel 4
and we propose a quasi-length-preserving encryption function that is secure in
those two security notions.

Theorem 27. If there exists a quantum secure one-way function then for query
models

learn(∗, qqm)-chall(1, qqm, ror) when qqm ∈ {ST ,ER}

there is a quasi-length-preserving encryption function that is secure. This shows
that there is a quasi-length-preserving encryption function that is secure for any
query models in Panels 2 and 4.

Proof. Let Enck(m; r) = sPRPk(r)||qPRPr(m) where qPRP is a strong
quantum-secure pseudorandom permutation [27] and sPRP is a standard-secure
pseudorandom permutation. Since in each query r is a fresh randomness, then
qPRPr is a fresh permutation. Now the security is straightforward.

Corollary 28. The security notions mentioned in Theorem 27 do not imply the
security notions mentioned in Theorem 26. Speci�cally, P2, P4 6=⇒ P8.
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7.2 Separations by Simon's Algorithm

Roughly speaking, in this section we construct a couple of separating examples
making use of the fact that Simon's algorithm (see [22]) can only be executed
by an quantum adversary with superposition access to the black box function,
but not by a quantum adversary with classical access to the black box function.

The idea is to de�ne a function Fs,σ (s being a random bitstring) that is
supposed to leak some bitstring σ to an adversary with superposition access
to Fs,σ but not to an adversary who has only classical access to Fs,σ. Namely
the adversary with superposition access uses Simon's algorithm to retrieve σ.
Roughly speaking Fs,σ is composed of many small block functions fs,σ,i, i =
1, . . . , n̂ and each of them leaking about one bit. It is proven in [22] that n̂ =
O(|σ|) queries su�ce to recover σ (see later).

The function Fs,σ is �rst de�ned and then it is used several times in this
subsection as a building block to construct separating examples for diverse IND-
CPA-notions.

De�nition 29. Let s = s1|| . . . ||sn̂||r1|| . . . ||rn̂ be a random bitstring. Let Psi
be a quantum secure pseudorandom permutation9 (qPRP) with the seed si and
input/output length of n/2. Let

gs,σ,i(y) = Psi(y)⊕ Psi(y ⊕ σ) and fs,σ,i(y) = gs,σ,i(y)||(y ⊕ ri).

Note that fs,σ,i is σ-periodic ignoring its second part. The second part makes
fs,σ,i injective. Note that the inverse of fs,σ,i is easy to compute. Let

Fs,σ(x) = fs,σ,1(x1)|| . . . ||fs,σ,n̂(xn̂)

where xi is i-th block of x. Note that Fs,σ will be decryptable using s since each
of fs,σ,i is decryptable.

Lemma 30. On the assumption of existing a quantum secure one-way function
and for a random secret s and known σ 6= 0, Fs,σ is indistinguishable from a
truly random function for any quantum adversary restricted to make only one
classical query.

Proof. We show that for every i and y, fs,σ,i(y) is indistinguishable from a
random bitstring. Since y ⊕ ri is indistinguishable from a random bitstring (for
random ri), it is left to show gs,σ,i(y) = Psi(y)⊕ Psi(y ⊕ σ) is indistinguishable
from a random bitstring. The result follows because Psi is a pseudorandom
permutation.

Lemma 31. An adversary having one-query-EM -type quantum access to Fs,σ
can guess σ with high probability. (The reason we are looking at the embedding
query model is because it is the weakest, the same statements for the standard
and the erasing query model follow automatically.)
9 Quantum secure pseudorandom permutation can be constructed from a quantum
secure one-way function [27].

24



Proof. The attack is a variation of Simon's attack [22]. Remember that Fs,σ
consists of n̂-many block function fs,σ,i. In the analysis below, we shorten fs,σ,i
to fi and gs,σ,i to gi. In the attack the same operation is done with each of the fi.
Namely the attack on one of the fi happens according to the following quantum
circuit:

|+〉⊗n

Ufi

• H⊗n M

|0〉 M
|0〉

The evolution of the quantum state right after CNOT gate is

2−
n
2

∑
m

|m, 0, 0〉 7→ 2−
n
2

∑
m

|m, gi(m),m⊕ ri〉 7→ 2−
n
2

∑
m

|m, gi(m), ri〉

The last register contains a classical value and therefore it does not interfere
the analysis of Simon's algorithm for the function gi. So the measurement returns
a random m such that m · σ = 0.

Hence it yields a linear equation about σ. As this happens for every block, the
adversary gets n̂ linear equations about σ, so by the choice of n̂ (i.e., n̂ = 2|σ|)
the adversary is able to retrieve σ with high probability.

Theorem 32. If there exists a quantum secure one-way function then
learn(∗,CL)-chall(∗,CL, 1ct) 6=⇒ learn(∗,EM )-chall(1,CL, 1ct). This shows
that Panel 14 6=⇒ Panel 11.

Proof. Consider Enck,k′(m,m
′; r||r′) = Fr,k(m)||PRFk′(r)||(PRFk(r′)⊕m′)||r′.

Here PRFk and PRFk′ are standard secure pseudorandom functions with
the key k, k′ respectively. It is easy to see Enck,k′ is decryptable. Since r, r′ are
fresh randomness in each query, the security of Enc in the sense of learn(∗,CL)-
chall(∗,CL, 1ct) follows by the Lemma 30. Now we show how EM leaning queries
can break the security of Enc. In the attack, the adversary uses one learning
query to retrieve k, according to Lemma 31 and then the challenge query can be
trivially distinguished by decrypting the third part of the challenge ciphertext
(adversary knows k, r′ and can decrypt PRFk(r′)⊕m′.)

Theorem 33. If there exists a quantum secure one-way function then the fol-
lowing non-implication holds:

learn(∗,ER)-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , ror).

This means that P10 6=⇒ P13.

Proof. The idea of the proof is like in the last theorem to open up a backdoor
that only a quantum adversary can use. We de�ne Enc as follows.

Enck(z||x; l||s) = sPRPk(l||s)||qPRPl(z)||Fs,l(x)

where Fs,l is de�ned in De�nition 29. It is easy to see that Enck is decryptable.
Now we show that Enc is insecure in the learn(∗,CL)-chall(∗,EM , ror)-sense.

25



The attack works as follows: A chooses z = 0n and puts in the register for x a
superposition of the form |+〉⊗n. Then A passes the result as a challenge query
to the challenger. Upon receiving the answer from the challenger, A performs
the algorithm presented in Lemma 31 to the last part of the ciphertext to recover
l. Let l̂ be the output of the algorithm presented in Lemma 31. Then A uses l̂
to decrypt the classical part of the challenge ciphertext, qPRPl(z). Let ĉ be the

output of the decryption using l̂. If ĉ = 0n, A returns 0, otherwise it returns
1. When the challenge bit is b = 0, the algorithm in Lemma 31 will recover l
with high probability and therefore A returns 0 with high probability. When
the challenge bit is b = 1 then A will get back Enck(·; r) ◦ π applied to the
input register. In this case, by Corollary 11 a measurement on the input register
remains indistinguishable for A (with R := range Enck(·; r) in Corollary 11). So
we can assume the input register collapses to a classical message. Therefore A
will recover l with negligible probability.

We show that Enc is secure in the learn(∗,ER)-chall(∗,CL, 1ct)-sense. Let
Gb be the learn(∗,ER)-chall(∗,CL, 1ct)-IND-CPA game when the challenge bit
is b. We show that G0 and G1 are indistinguishable. We de�ne the game G′ in
which the challenge query will be answered with a random string and learning
queries are answered with ER. We show that Gb is indistinguishable from G′.
We can replace sPRPk(l||s) with a random element in the challenge query. Since
s is a fresh randomness in the challenge query by Lemma 30 Fs,l(xb) is indis-
tinguishable from a random element. Finally, we can replace qPRPl(zb) with a
random element. Therefore, games Gb and G

′ are indistinguishable.

7.3 Separations by Shi's SetEquality problem

De�nition 34 (SetEquality problem). The general SetEquality problem can
be described as follows. Given oracle access to two injective functions

f, g : {0, 1}m → {0, 1}n

and the promise that

im f = im g ∨ (im f ∩ im g) = ∅)

decide which of the two holds.

Here we will be consider the average-case problem, which involves random
injective functions f and g. For SetEquality, the average-case and worst-case
problem are equivalent: if we have an average-case distinguisher D then we can
construct a worst-case-distinguisher by applying random permutations on the
inputs and outputs of queries to f and g, which simulates an oracle for D.

The SetEquality problem was �rst posed by Shi [21] in the context of quan-
tum query complexity. In [26] it is proven that with ST -type-oracle access this
problem is hard in m. However, a trivial implication of the swap-test shows that
with ER-type oracle access it has constant complexity.
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Lemma 35. The SetEquality problem is indistinguishable under polynomial ST -
type queries.

Proof. This follows from Theorem 4 in [26], which shows that Ω
(
2m/3

)
ST -type

queries are required to distinguish the two cases.

Lemma 36. The SetEquality problem is distinguishable under one ER-type
query. That is, an adversary can, by only accessing f once and g once, decide
whether they have equal or disjoint ranges with non-negligible probability.

Proof. The attack works by a so-called swap-test, shown in the following cir-
cuit where the unitary control-Swap is de�ned as cSwap : |b,m0,m1〉 →
|b,mb⊕0,mb⊕1〉.

|+〉 • H M

|+〉⊗m Ûf
Swap

|+〉⊗m Ûg

Let |Φ〉 = 2−m/2
∑
x |x〉 and |φM〉 =

∑
x |M(x)〉,M ∈ {f, g}, where the

sums are over all x ∈ {0, 1}m. Then, up to normalization, the quantum circuit
above implements the following:

|+〉|Φ〉|Φ〉 I⊗Û
f⊗Ûg

7−→ |+〉|φf 〉|φg〉
cSwap7→ |0〉|φf 〉|φg〉+ |1〉|φg〉|φf 〉
H⊗I7→ |0〉 (|φf 〉|φg〉+ |φg〉|φf 〉) + |1〉 (|φf 〉|φg〉 − |φg〉|φf 〉)

If the ranges of f and g are equal, then a measurement of the top qubit in the
computational basis is guaranteed to yield 0. If the ranges are disjoint, then the
measurement yields 0 or 1 with probability 1

2 .

In order to apply the SetEquality problem to encryption schemes, we de�ne
constructions for f and g that use a random seed s.

De�nition 37. Let σs1 , σ
′
s2 : {0, 1}m → {0, 1}m be qPRPs with seed s1, s2.

Let Js3 , Js4 be a pseudorandom sparse injection built from a qPRP, i.e., for
some qPRP J̃s3 , J̃s4 : {0, 1}n → {0, 1}n, and any x ∈ {0, 1}m with n > m,
de�ne Js3(x) := J̃s3(x||0n−m) and Js4(x) := J̃s4(x||0n−m). We can then de�ne
F0,s1,s2,s3 , G0,s1,s2,s3 : {0, 1}m → {0, 1}n to be a pair of pseudorandom sparse
injections with equal range:

F0,s1,s3 := Js3 ◦ σs1 , G0,s2,s4 := Js4 ◦ σ′s2 .

Let τs5 , τs6 : {0, 1}n → {0, 1}n be a qPRP with seed s5, s6. Let K̃s7 , K̃
′
s8 :

{0, 1}m → {0, 1}n−1 be a pair of pseudorandom sparse injections, and de�ne
Ks7 := 0||K̃s7 ,K

′
s8 := 1||K̃ ′s8 . We can then de�ne F1,s′ , G1,s′ : {0, 1}m → {0, 1}n

27



(where s′ = (s1, s2, s5, s6, s7, s8)) to be a pair of pseudorandom sparse injections
with disjoint ranges:

F1,s1,s5,s7 := τs5 ◦Ks7 ◦ σs1 , G1,s2,s6,s8 := τs6 ◦K ′s8 ◦ σ
′
s2 .

Let s = (s1, s2, s3, s4, s5, s6, s7, s8). Note that Fb,s and Gb,s are decryptable using
b, s.

Theorem 38. If there exists a quantum secure one-way function then
learn(∗,ST )-chall(1,ST , ror) 6=⇒ learn(∗,ER)-chall(1,CL, 1ct) in the quantum
random oracle model. This shows that Panel 2 6=⇒ Panel 10.

Proof. Let H : {0, 1}h → {0, 1}|s| be a random oracle. Let sPRP be a standard
secure pseudorandom permutation with seed of length |s|. Let γk(m1||m2; r, j) :=
Fkj ,H(r)(m1)||Gkj ,H(r)(m2) where kj is j-th bit of k. Consider the encryption
function

Enck(m1||m2; r, j) := γk(qPRPr(m1||m2); r, j)||sPRPH(k)(r)||j, (1)

where qPRPr is a quantum secure pseudorandom permutation with seed r. It
is easy to see that the encryption scheme above is decryptable. We sketch the
proof of the security in the sense of learn(∗,ST )-chall(1,ST , ror). We start with
an adversary that attacks the encryption scheme in the sense of learn(∗,ST )-
chall(1,ST , ror) IND-CPA. Then, in each query we replace H(r) and H(k) with
random values. To bound the advantage of A in distinguishing these replace-
ments, we use the Theorem 3 in [2]. Since the set-equality problem is hard for
ST-type queries by Lemma 35, we can ignore the key k in γk function and simply
choose two random injection functions F ∗1 and G∗1 with disjoint ranges in the
challenge query. Let γ′(m∗1||m∗2; r∗, j∗) := F ∗1 (m∗1)||G∗1(m∗2). It is clear that the
advantage of A in the last game is 1/2 since γ′ ◦ qPRP ◦ (m∗1||m∗2) (when b = 0)
and γ′ ◦ qPRP ◦ π(m∗1||m∗2) (when b = 1) are indistinguishable.

Insecurity. Now we show that Enc can be broken with ER learning queries.
By Lemma 36, it is possible that the adversary performs a learn(∗,ER)-learning-
query for m← |+〉⊗m|+〉⊗m and conduct a swap-test to determine kj with high
probability for a random j. (Note that j is the last part of the ciphertext and
is known to the adversary.) The procedure is repeated polynomially many times
until the adversary has enough information about the key k to guess it with a
su�ciently high probability. Finally, the adversary can choose any two classical
messages m0,m1 for challenge query, and use the private key k to decrypt the
result and determine the challenge bit b.

7.4 Separations by other arguments

Theorem 39. On the existence of a quantum secure one-way func-
tion, the following separation holds: learn(∗,ST )-chall(∗,CL, 1ct), learn(∗,ER)
-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , 2ct). That is P6, P10 6=⇒ P7.
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Proof. Consider

Enck(m; r) = r||PRFk(r)⊕m for m, r ∈ {0, 1}n

where PRF is a standard secure pseudorandom function. The security in
learn(∗,ST )-chall(∗,CL, 1ct) and learn(∗,ER)-chall(∗,CL, 1ct) senses follows by
Lemma 3 in [3]. We show the insecurity using a challenge query of type
chall(1,EM , 2ct). The attack is described by the following quantum circuit. For
simplicity, we omit the wires corresponding to the r-parts of two ciphertexts.

|+〉⊗n

UEM,2ct,r0||r1,b

• H⊗n M

|0〉⊗n

|0〉⊗n

|0〉⊗n

When b = 0, the measurement returns 0 with probability 1 and it outputs 0 only
with negligible probability when b = 1.

Theorem 40. On the existence of a quantum secure one-way function,
learn(∗,ST )-chall(∗,CL, 1ct) 6=⇒ learn(∗,CL)-chall(1,EM , 1ct). This shows
that P6 6=⇒ P13.

Proof. Consider

Enck(m; r) = r||PRPk(r)⊕m for m, r ∈ {0, 1}n

where PRP is a standard secure pseudorandom permutation. The security in
learn(∗,ST )-chall(∗,CL, 1ct) and learn(∗,ER)-chall(∗,CL, 1ct) senses follows by
Lemma 3 in [3]. The insecurity follows from Lemma 10 in [9].

Theorem 41. On the existence of a quantum secure one-way function,
learn(∗,ER)-chall(1,ER, 1ct) 6=⇒ learn(∗,CL)-chall(1,ST , ror). This shows
that P1 6=⇒ P12.

Proof. Let qPRP and qPRP ′ be two quantum secure pseudorandom permuta-
tions with input/output {0, 1}2n. Let sPRP be a standard secure pseudorandom
permutation. For m1 and m2 of length n-bits, we de�ne Enc as following:

Enck(m1,m2; r1, r2) = qPRPr1(0n||m1)||qPRPr2(0n||m2)||sPRPk(r1, r2).

The security in the sense of learn(∗,ER)-chall(1,ER, 1ct) follows because in each
query a fresh qPRP is used and we can measure the input register of queries by
Lemma 8. Thus, the security follows by the security in the sense of learn(∗,CL)
-chall(1,CL, 1ct).

Now we show that Enc is not secure with respect to learn(∗,CL)-
chall(1,ST , ror) notion. Let Qin1 and Qin2 be input registers corresponding to
�rst n bits and second n bits of message, respectively. Similarly, Qout1 and Qout2
be the output registers. The adversary can query

Qin1Qin2Qout1Qout2 := |+〉⊗n|0〉⊗n|+〉⊗2n|0〉⊗2n
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in the challenge query. After receiving the answer, it applies the Hadamard
operator to Qin1 then measures the register in the computational basis. We
draw the circuit to attack Enc in the following. For simplicity, we omit the wires
corresponding to the last parts of two ciphertexts.

Qin1 |+〉⊗n

UEnc◦πb

H⊗n M
Qin2 |0〉⊗n

Qout1 |+〉⊗2n

Qout2 |0〉⊗2n

When b = 0, since no permutation is applied and Enc works component-wise,
the output of the circuit right before applying the Hadamard operators is

|+〉⊗n|0〉⊗n|+〉⊗2n|qPRPr2(0n||0n)〉⊗2n
.

Therefore, the measurement returns 0 with probability 1. On the other hand,
when b = 1 a permutation will be applied to both input registers Qin1, Qin2

and it shu�es the input. Therefore Qin1 register will be entangled with output
registers. In this case, the measurement returns 0 with negligible probability.

Note that a block cipher mode of operation uses a block cipher several times
to encrypt a message of longer size. In the following we show that the attack
presented above can be applied to a large class of modes of operation and show
their insecurity with respect to learn(∗,CL)-chall(1,ST , ror) notion. This can be
extended to authentication encryption schemes and tweakable block ciphers.

Corollary 42. We call a mode of operation natural if it has the following prop-
erty: For some message length `, there exists an input block i and an output block
j such that output block j does not depend on i, but, ranging over all possible
input messages, output block j can take any value. (Note that this includes many
modes of operation. E.g., CBC mode satis�es this with i being the second and j
being the �rst block.) Then, no natural mode of operation is secure in the sense
of learn(∗,CL)-chall(1,ST , ror) notion.

Proof. The attack is similar to the above by inserting |+〉 in the Mi register and
|0〉 for the rest of the input registers and inserting |0〉 in the j-th output register
and |+〉 elsewhere. Then applying the Hadamard operator to the register Mi

followed with a computational basis measurement.

8 Encryption secure in all notions

In this section we propose an encryption scheme that is secure for all security
notions described in this paper. From Table 1, Panel 1 and Panel 2 imply all
other panels. Therefore it is su�cient to construct an encryption scheme that is
secure in a setting where there are no learning queries, and where the challenge
queries are either c1 = chall(∗,ER, 1ct) or c2 = chall(∗,ST , ror).
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Theorem 43. The encryption scheme Enck(m; r, r′) =
qPRPr(r

′||m)||sPRPk(r) presented above is chall(∗,ER, 1ct) and
chall(∗,ST , ror) secure.

Proof. chall(∗,ER, 1ct) security: In each query we can replace sPRPk(r) with
a random bit string because r is a fresh randomness and sPRP is a standard
secure pseudorandom function. Now we can replace qPRPr with a random per-
mutation π′ in each query and use Lemma 8 to measure the input register (with
f := π′(r′||·)). This collapses to the security against chall(∗,CL, 1ct) queries that
is trivial.
chall(∗,ST , ror) security: In each query we can replace sPRPk(r) with a ran-
dom bit string because r is a fresh randomness and sPRP is a standard se-
cure pseudorandom function. Then we can replace qPRPr with a random per-
mutation π′ in each query. The security is trivial because for a random r′,
f1(m) = π′(r′||m) (when the challenge bit is 0) and f2(m) = π′(r′||π(m)) (when
the challenge bit is 1) have the same distribution.
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