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Abstract. We consider the task of learning a function via oracle queries,
where the queries and responses are monitored (and perhaps also modi-
fied) by an untrusted intermediary. Our goal is twofold: First, we would
like to prevent the intermediary from gaining any information about ei-
ther the function or the learner’s intentions (e.g. the particular hypothesis
class the learner is considering). Second, we would like to curb the in-
termediary’s ability to meaningfully interfere with the learning process,
even when it can modify the oracles’ responses.
Inspired by the works of Ishai et al. (Crypto 2019) and Goldwasser et
al. (ITCS 2021), we formalize two new learning models, called Covert
Learning and Covert Verifiable Learning, that capture these goals. Then,
assuming hardness of the Learning Parity with Noise (LPN) problem, we
show:

– Covert Learning algorithms in the agnostic setting for parity func-
tions and decision trees, where a polynomial time eavesdropping ad-
versary that observes all queries and responses learns nothing about
either the function, or the learned hypothesis.

– Covert Verifiable Learning algorithms that provide similar learning
and privacy guarantees, even in the presence of a polynomial-time
adversarial intermediary that can modify all oracle responses. Here
the learner is granted additional random examples and is allowed to
abort whenever the oracles responses are modified.

Aside theoretical interest, our study is motivated by applications to the
secure outsourcing of automated scientific discovery in drug design and
molecular biology. It also uncovers limitations of current techniques for
defending against model extraction attacks.

1 Introduction

A motivating scenario. Imagine a biologist, Alice, who wishes to learn a model—
within some class of hypothesized models—for the relationship between the
structure of a molecule and its “activity” (e.g. whether or not the molecule
binds to a certain protein). Alice plans to conduct a variety of lab experiments
in order to learn her model.

? Supported by the DARPA SIEVE program, Agreement Nos. HR00112020020 and
HR00112020021. A full version of this work appears in [CK21].
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However, in Alice’s lab all experiments are public: they are observable by
anyone. Can Alice design experiments so that only she will learn her model?
Furthermore, can Alice design the experiments so that they will not leak her
initial hypotheses on the possible models, which encode Alice’s innovative, secret
list of molecule features that are likely to influence activity? In fact, can Alice
design the experiments so that no one else but her learns anything at all from
her experiments?

To complicate things further, suppose that after starting the experiments,
Alice is notified that she has been exposed to COVID-19 and has to quarantine
at home; she has no choice but to delegate the recording of the results from
her experiments to an untrusted colleague, Bob. Thus, in addition to concealing
her learned model, hypothesized class of models, and any information about
the molecular relationship, Alice needs a way to verify the results reported by
Bob. In summary, Alice needs a learning algorithm that will carry the following
(informal) guarantees:

– Learning : If Bob reports the results correctly, then Alice is guaranteed to
acquire some satisfactory model for the studied molecular relationship.

– Verifiability : Even if Bob behaves maliciously, Alice is guaranteed to acquire
a satisfactory model, as long as she does not decide to reject Bob’s report.

– Hypothesis-hiding : Bob does not learn anything about the model Alice has
learned or about Alice’s hypothesized class of models.

– Concept-hiding : Bob learns nothing about the molecular relationship.

The learning requirement mimics classic learning-theoretic formalisms. In
particular, it naturally corresponds to agnostic learning with membership queries:
the molecular relationship corresponds to a concept, Alice’s experiments corre-
spond to queries to the concept at arbitrary points, and Alice’s task of finding
a model within a class of models corresponds to learning a hypothesis out of a
given hypothesis class (e.g. polynomial size decision trees).

Put in these terms, our work is focused on the following questions: Can we
devise agnostic learning algorithms in the membership query model that satisfy
the above verifiability and hiding guarantees? If so, then for which hypothesis
classes, and under what computational assumptions? In fact, how should we
even define these (so far informal) goals?

Before proceeding to present our contributions, we note that this work has
been inspired by the works of Ishai et al. [IKOS19] and Goldwasser et al.
[GRSY20] that consider related models. We elaborate on these works in Sec-
tion 1.3 and in the full version [CK21] of this paper.

1.1 Our Contributions

We define and construct learning algorithms that satisfy the above requirements.
We first present our definitions, then state our results, and finally overview our
techniques.
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New Learning Models: Covert and Verifiable Learning. We propose two
new learning models: the basic Covert Learning model, which considers a passive
adversary only, and the Covert Verifiable Learning model, which considers an
intermediary who may observe queries and even modify responses.

The Covert Learning model. Our model is grounded in the learning with mem-
bership queries setting, where a learner is allowed to directly query the concept,
with an added twist: every query and response obtained by the learner is also
obtained by a computationally bounded adversary. The high level goal is for
the learner to construct queries that are useful to herself, but are completely
unintelligible to any adversary.

Fig. 1: A Covert Learning scenario. The learner interacts with the concept by making
queries to an oracle that implements access to the concept at arbitrary points. Mean-
while, an adversary attempts to deduce information about the learner’s hypothesis or
about the concept itself, given a view: the set of queries and responses obtained by the
learner.

One may be tempted to formulate this property by requiring that the ad-
versary gains nothing from the interaction between the learner and the concept.
However, this would be too much to demand, since the adversary does (at the
very least) learn the responses to the learner’s queries. We thus somewhat relax
the hiding property to say that the adversary learns nothing except for some
number of random examples from the concept. In other words, the view of the
adversary can be simulated in probabilistic polynomial time (p.p.t.), given only
random examples from the concept. This in particular means that the notion of
Covert Learning is meaningful only when the learning task at hand is computa-
tionally hard in the traditional PAC learning model, where a concept must be
learned from random examples only.

A bit more formally, Let X be a set, and consider a distribution D over
X×{0, 1}. We will call a sample (x, y) ∼ D an example, where x is an input and y
is a label, and call D a concept1. LetH denote a hypothesis class, which is a subset

1 Alternatively, one may think of a concept as a tuple consisting of a distribution DX
over the input domain X and a target function f : X → {0, 1} which labels inputs.
However, the notion described above (and used in the rest of this paper) is more
general, as a joint distribution allows concepts which are probabilistic.
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of functions h : X → {0, 1}. A learning algorithm under the Covert Learning
model is tasked with finding an hypothesis h ∈ H that best approximates the
concept D on unobserved examples (x, y) ∼ D. This notion is captured by a loss
function (with respect to a concept). For example: LD(h) = Pr(x,y)∼D[h(x) 6= y].
The learning goal of the Covert Learning model is then the requirement that the
learner outputs h ∈ H such that LD(h) ≤ LD(H) + ε = infh∈H LD(h) + ε with
high probability, and we will call such an h ε-good. In order to achieve this goal,
the learner is given access to a (possibly probabilistic) oracle that labels a queried
input xj ∈ X with a corresponding yj . The novelty of the Covert Learning
model is the guarantee that—in addition to the learning goal—no information
about the hypothesis class or the concept is leaked to a passive adversary, except
some random examples from the concept. This guarantee holds even when the
adversary has access to extraneous information on the concept.

Definition 1. Covert Learning (informal version of Definition 9). A covert
learning algorithm—for a collection of hypothesis classes and with respect to a
class of concepts and a loss function—is an algorithm that, for any concept in
the class and accuracy parameters ε, δ, takes as input a target hypothesis class
in the collection, and interacts with an oracle that labels queries to the concept
such that the following are true:

– Completeness. The learning algorithm outputs an ε-good hypothesis for the
concept with probability 1− δ.

– Privacy. There exists a p.p.t. simulation algorithm that, given access to
additional random examples from the concept, generates a distribution of
queries and responses which is computationally indistinguishable from that
of the real interaction. The simulation algorithm should function without
further access to the oracle, or knowledge of the target hypothesis class within
the collection.

On hypothesis-hiding. In addition to hiding the learned concept, the above defi-
nition also requires that a covert learning algorithm hides the initial hypothesis
class. Let us motivate this requirement. Indeed, when operating in a setting
where the concept is included in a fixed class and can be learned fully, there
is little motivation for hypothesis-hiding. However, in the more realistic setting
of agnostic learning—where no assumptions are made about the concept—one
resorts to learning the best approximation to the concept that is contained in
some chosen hypothesis class. Clearly, the choice of hypothesis class is crucial
in determining the value of the resulting approximation. Therefore, the chosen
hypothesis class reflects the learner’s prior beliefs about the concept, and is itself
valuable information in need of protection. Indeed, the main motivation of toler-
ance testing2 is to decide if a class of hypotheses contains a good approximator

2 In tolerance testing [PRR06], a generalization of property testing, the goal is distin-
guish the case where a function is “close” to a class of functions, or “far.” A further
generalization is the problem of estimating the distance of a function to a certain
class of functions.
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to an unknown concept. Concretely, the learner could be motivated to hide the
results of a tolerant testing procedure that were received as advice. Alternatively,
relating back to the motivating scenario, the specific domain knowledge that Al-
ice has might influence her choices of experiments, which could in turn reveal
information about her sensitive domain knowledge. Alice may be motivated to
conceal her sensitive domain knowledge.

As a matter of fact, digging deeper into real world applications of learning
with membership queries reveals further motivation for hypothesis-hiding, even
when the concept is known to be from a fixed class (and therefore may be
learned fully). In some specific practical applications (see Section 1.2 for more
details), arbitrarily synthesized membership queries are difficult or expensive (in
some measure) to obtain. For example, conducting a biological assay using an
unstable compound. As is the case, and despite the fact that a concept may
be known to be contained in a fixed class, the learner might voluntarily submit
itself to an agnostic learning setting (i.e., settle for a hypothesis from a less
expressive, easier to learn class, that does not contain the full set of potential
concepts). Doing so is motivated by either the desire to reduce the total number
of membership queries needed, or avoid making contrived or artificial queries
(e.g. the inclusion of a highly unstable chemical in the biological assay).

The Covert Verifiable Learning (CVL) model. The Covert Verifiable Learning
model considers the case where, in addition to observing all queries and re-
sponses, the adversary (henceforth, the adversarial intermediary) also actively
modifies the oracle’s responses. Still, we require the learner to either detect the
modifications and abort, or else come up with a good approximation of the ac-
tual concept represented by the oracle (which may in and of itself be an arbitrary
function).

To make this requirement meaningful—namely, to allow the learner to mean-
ingfully distinguish between responses that were modified by the adversarial in-
termediary and those that were not—we give the learner access to some number
of ground truth random examples from the concept (see Figure 2). We con-
sider three variants of the CVL model, depending when the adversarial inter-
mediary learns these additional random examples: In the weakest variant, the
ground truth examples remain completely hidden throughout. In the interme-
diate model, we consider the case where the examples become known once the
learning process completes. Finally, we consider our strongest variant, where
these examples are publicly known in advance.

In more detail, the Covert Verifiable Learning model requires that, like Covert
Learning, the output of the learner is a hypothesis h ∈ H that such that (with
respect to the concept D) LD(h) ≤ LD(H) + ε with high probability, but only
when the adversarial intermediary simply observes and does not tamper with or-
acle responses. The Covert Verifiable Learning model then augments the Covert
Learning model by requiring that, for any adversarial intermediary that tam-
pers with the oracle, the output of the learner is an h ∈ H that such that
LD(h) > LD(H) + ε with low probability, assuming that the learner did not
reject the interaction all together.
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Fig. 2: The “intermediate model” Covert Verifiable Learning scenario. A learner, given
a set of random examples of a concept, accesses supplementary data using an oracle in
the presence of an adversarial intermediary. While attempting to deduce information
about the concept or the learner’s hypothesis, the adversarial intermediary may tamper
with the oracle responses (both to help steal information and to simply deceive the
learner). The learner aims to output a hypothesis that models the concept.

The concept-hiding and hypothesis-hiding guarantees should still hold—albeit
with an adversarial intermediary. To capture this stronger requirement, we adapt
the simulation-based privacy of Covert Learning to embrace the active nature
of the adversarial intermediary. Basically, we require that for any adversarial
intermediary, there is a simulator that can interact with the adversarial interme-
diary such that no computationally bounded adversary be able to tell whether
the adversarial intermediary is interacting with the actual learner or with the
simulator. As in Covert Learning, the simulator will access random examples
from the concept, but operate with no further knowledge about the concept and
no knowledge of the learner’s hypothesis class. Depending on the variant we con-
sider, the adversary may have access to the learner’s random examples (recall
that in the intermediate setting, they leak subsequent the interaction).

Definition 2. Covert Verifiable Learning (informal version of Definition 25)
A covert verifiable learning algorithm—for a collection of hypothesis classes and
with respect to a class of concepts and a loss function—is a learning algorithm
that, for any concept in the class and accuracy parameters ε, δ, takes as input
a target hypothesis class in the collection, a set of random examples from the
concept, and interacts with an oracle that labels queries on the concept such that
the following are true:

– Completeness. If the adversarial intermediary acts honestly (i.e. no ora-
cle responses are corrupted), then the learning algorithm outputs an ε-good
hypothesis for the concept with probability 1− δ.

– Soundness. For any computationally bounded adversarial intermediary who
tampers with oracle responses, if the learning algorithm does not reject then
it outputs a hypothesis which is not ε-good with probability at most δ.

– Privacy (intermediate model). For any adversarial intermediary, there
exists a simulator such the following two random variables are indistinguish-
able to an external adversarial entity which chooses the concept, the target
hypothesis class, and accuracy parameters:
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Real execution: The output of the intermediary from a real interaction
with the learning algorithm and the oracle, along with the set of random
examples that the learner received in this interaction (the intermediary
does not see the random examples).

Ideal execution: The output of the simulator, along with the set of random
examples that the learning algorithm received in the interaction. The
simulator is given access to the set of random examples that were known
to the learning algorithm, plus an additional set of random examples.
However, the simulator can neither have further access to the concept
nor have knowledge of the target hypothesis class.

If the output of the real execution does not include the random examples
given to the learning algorithm, then we say that the algorithm is a covert
verifiable learning algorithm with fully private examples.

If the random examples given to the learning algorithm are also given to
the intermediary, then we say that the protocol is a public covert verifiable
learning algorithm.

For simplicity, we don’t give the intermediary the ability to modify the queries.
Indeed, an intermediary that is able to modify the learner’s queries is arguably
able to learn the function to begin with.

Overview of Results. As discussed, meaningful covert learning algorithms
can exist only for learning problems where learning from random examples is
hard, whereas learning with membership queries is feasible. However, it is not
a priori clear that meaningful covert learning algorithms exist at all. In fact, to
the best of our knowledge, for all known learning algorithms in the membership
query model, an external observer can learn the function by just observing the
queries and responses. This holds even when no efficient learning algorithms are
known in the traditional PAC model (for instance, consider the algorithm of
Kushilevitz and Mansour for decision trees [KM93], which is thought to be hard
in the traditional PAC model [Blu03] [OS07]).

This works constructs polynomial time, covert learning algorithms for salient
learning tasks within the two new learning models.

First, we consider the problem of Covert Learning for noisy parity functions.
In this problem, a secret n-bit parity function is generated by drawing an n-bit
vector k, where each bit is sampled i.i.d. from a Bernoulli random variable with
mean 1/

√
n, and defining the parity function to be f(x) = 〈x, k〉. An example

(x, y) is generated from a concept Dk
LPN which draws a uniformly random input

x, and returns y = f(x) ⊕ 1 with probability 1/
√
n, and y = f(x) otherwise.

By the low-noise LPN assumption [Ale03], learning the hidden vector parity
function from examples (x, y) ∼ Dk

LPN is not possible in polynomial time. On
the other hand, oracle queries to Dk

LPN make the problem tractable. Let DLPN =
{Dk

LPN |k ∈ {0, 1}n}. To this end, we define a hypothesis class HT as the set of
all parity functions on a subset of T ⊆ [n]. We show:
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Theorem 1. (Informal version of Theorem 7) Assuming hardness of the low-
noise LPN assumption, there is a covert learning algorithm for the collection
C = {HT | T ⊆ [n]}, w.r.t. the concept class DLPN and loss function LD.

Next, we consider the following concept class. Let F be a class of functions
f : {0, 1}n → {−1, 1}. DF is a concept class indexed by f ∈ F , where for any
Df ∈ DF , an example (x, y) ∼ Df is generated by first sampling an input x
uniformly at random, and then a returning (x, f(x)).

The first problem we consider is that of learning the “heavy” Fourier coef-
ficients of a function. In this problem, the goal of a learner (given a function
f : {0, 1}n → {−1, 1}) is to find the set of all k such that Ex[f(x)χk(x)] ≥ τ ,
where τ ≥ 1/poly(n) is a given parameter and χk(x) = (−1)〈k,x〉. We denote

by f̂≥τb the aforementioned set of k with the added stipulation that |k| ≤ b.
Achieving this goal using only examples (x, y) ∼ Df is known to be as hard
many longstanding open problems in computational learning theory, such as
PAC learning DNF formulas, even when it is only required to find k such that
|k| = O(log n) [Blu03] [Jac97] [OS07]. On the other hand, membership queries
make the problem tractable [GL89]. With this in mind, we define a hypothesis
class HbT = {χk | ki = 0 =⇒ i 6∈ T, |k| ≤ b}, where T ⊆ [n], and a loss function
Lτ,b : P([n])→ [0, 1] given by

Lτ,b(T ) = Pr
k∼f̂≥τb

[
χk ∈ T

]
where k ∼ f̂≥τb is a uniformly random sample k ∈ f̂≥τb and P(S) denotes the
powerset of a set S (we also require that |T | ≤ poly(n)). We show:

Theorem 2. (Informal version of Theorem 9) Let F be the class of all n-bit
boolean functions. Assuming sub-exponential hardness of the standard LPN prob-
lem, there is a covert learning algorithm for the collection C = {HbT | T ⊆ [n]},
with respect to the concept DF and the loss function Lτ,b and for b ≤ O(log n),
τ ≥ 1/poly(n).

In the problem of agnostically learning decision trees, a learner is given access
to Df ∈ DF and tasked with finding (close to) the best decision tree that
minimizes some loss function with respect to Df . This learning problem, too,
is thought to be difficult in the traditional PAC model, but is known to be
efficiently learnable with membership queries [KM93] [Blu03]. Building on top
of the covert learning algorithm for O(log n)-degree Fourier coefficients, we show:

Theorem 3. (Informal version of Theorem 10) Assuming sub-exponential hard-
ness of the standard LPN problem, there is a covert learning algorithm for the
collection of all subsets of functions computable by poly(n) size decision trees
with respect to the concept class DF and the loss function LD.

Unsatisfied with only the covert learning algorithms, we demonstrate how
to transform our covert learning algorithms into covert verifiable learning algo-
rithms. We do so both according to the intermediate setting and the stronger
public variant. Specifically, in the intermediate setting we show:
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Theorem 4. (Informal version of Theorem 11) Assuming sub-exponential hard-
ness of the standard LPN problem, there is a covert verifiable learning algorithm
for the collection C = {HbT | T ⊆ [n]}, with respect to the concept DF and the
loss function Lτ,b, and for b ≤ O(log n), τ ≥ 1/poly(n).

Theorem 5. (Informal version of Theorem 12) Assuming sub-exponential hard-
ness of the standard LPN problem, there is a covert verifiable learning algorithm
for the collection of all subsets of functions computable by poly(n) size decision
trees with respect to the concept class DF and the loss function LD.

In the public variant, we prove:

Theorem 6. (Informal version of Theorem 13) Let s-DNFn be the class of
all f : {0, 1}n → {−1, 1} computable by a size s DNF formula. Assuming sub-
exponential hardness of the standard LPN problem, there is a public covert ver-
ifiable learning algorithm for the collection C = {HbT | T ⊆ [n]}, with respect
to the concept class Ds-DNFn and loss function and the loss function Lτ,b, for
s ≤ poly(n), b ≤ O(log n), and τ ≥ 1/poly(n).

In particular, the result of Theorem 13 gives the first verifiable PAC learning
protocol without any private examples, even in the model of [GRSY20] which
does not consider privacy.

Due to space constraints, we have omitted all proofs and refer the reader
to [CK21]. Furthermore, we have removed two results, namely, a key exchange
algorithm that arises from Theorem 7 and a statistically sound and perfectly
private covert learning algorithm for the “junta problem” in the fully private
examples model. These results may also be found in the [CK21].

Algorithmic Ideas. We give high level descriptions of the algorithmic tech-
niques. Formal overviews precede the constructions in the following sections.

Covert Learning of noisy parities. Our Covert Learning algorithm for learning
noisy parities employs a “masked query” technique which works as follows. To
mask a query q ∈ {0, 1}n, the learner starts by requesting n uniformly random
examples from the oracle. Then, by taking the inputs of those random examples
and drawing a random LPN secret, a “mask” is produced by multiplying the
random inputs with the secret, and corrupting the resulting vector with inde-
pendent random noise for each entry. Each query desired by the learner is then
“masked” by adding the resulting sequence of LPN samples. In other words,
each query is one-time-padded with an LPN instance. By the LPN assumption,
a single masked query is pseudorandom. Moreover, the joint distribution for a
set of masked queries is pseudorandom. The learner proceeds by sending the set
of masked queries to the oracle, and upon receiving the results, decodes each
one using the LPN secrets, the random examples, and by leveraging natural
homomorphic properties provided by the LPN problem (with low noise). The
simulation algorithm works by simply sampling queries from the uniform distri-
bution, and pairing them with uniformly random results. We reduce the hardness
of distinguishing the simulated transcript from the real transcript to solving the
low-noise LPN problem.
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Covert Learning of low-degree Fourier coefficients and decision trees. The covert
learning algorithms for low-degree Fourier coefficients and decision trees use
the same “masked query” technique as the covert learning algorithm for noisy
parities.

In particular, we use our “masked query” technique to run Goldreich-Levin
queries on the (arbitrary) function in question. In contrast to the noisy parity
setting, each individual query is not correctly decoded. Instead, the entire set of
results is aggregated in a way resembling the original technique of Goldreich and
Levin [GL89]. This allows us to then recover heavy Fourier coefficients belonging
to O(log n)-degree parity functions. Due to the noise of the masking, the tech-
nique fails to extract higher degree coefficients. Once the set of O(log n)-degree
parities that have noticeable Fourier coefficients is known, we employ standard
techniques to produce a hypothesis which is the sign of a low-degree polynomial.
We give a Fourier-based analysis that obtains agnostic learning guarantees on
the hypothesis for the class of polynomial size decision trees. To demonstrate pri-
vacy, we adopt a variant of the LPN assumption that works over sparse secrets.
The variant is due to [YZ16], whose hardness is implied by a sub-exponential
hardness assumption on the standard LPN problem. We then construct a simu-
lator that returns uniformly random examples of the function. We reduce solving
the variant of the LPN problem to a constructing putative distinguisher between
a real execution and a simulated execution.

Augmenting the covert learning algorithms with verifiability. In order to engineer
the verifiability guarantee into our covert learning algorithms, we use one main
technique which works as follows. We take the the covert learning algorithms
and wrap them with an outer loop, which at each iteration randomly decides
to do a “learning” phase, where the covert learning algorithm is executed, or
do a“test” phase. In a test phase, the algorithm sends a subset of the privately
held queries to the oracle. Naturally, if the intermediary modifies any responses
in this case, then the algorithm will detect that. Crucially, the distribution of
queries in the learning phase (pseudorandom) is computionally indistinguishable
from the distribution of queries in the test phase (uniformly random), due to
the masking technique (and the LPN assumption). Therefore, this allows us to
formalize the notion that no computationally bounded adversarial intermediary
can reliably lie on the learning phase but not the testing phase—it would entail
breaking the indistinguishability of the distributions of queries of the two phases
and therefore the LPN hardness assumption.

When considering verifiability in the Public Covert Verifiable Learning set-
ting (recall, here the learner does not have any private examples to leverage),
the above technique does not immediately work. However, we can modify it in
a simple way as follows. As before, the learning phase consists of executing a
covert learning algorithm. The testing phase is instead conducted by taking the
public random examples and applying the same masking technique as used on
the learning queries. Now, the test phase and the learning phase are still com-
putationally indistinguishable to the adversarial intermediary, but the queries
of the testing phase cannot be linked back to the public random examples. The
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learner can then decide if the intermediary is lying on the masked public exam-
ples by using the secret keys of the masks to unlock and measure a correlation
between the oracle’s responses on the masked public examples and the pub-
lic labels. Like above, the adversarial intermediary generating an “acceptable”
correlation, while reliably lying on the learning phase, would entail breaking the
indistinguishability of the distributions of queries of the two phases and therefore
the LPN hardness assumption.

Unconditional Covert Verifiable Learning with fully private examples. We design
a Covert Verifiable Learning with fully private examples algorithm for O(log n)-
juntas. The algorithm works by requesting random hamming neighbors of the
privately held uniformly random example set, and using them to find all the
O(log n) relevant variables. Clearly, this means that the distribution of the
membership queries is also uniform, despite the joint distribution being far from
the concatenation of independent and uniformly random distributions. Since the
adversary cannot see one component of the joint distribution, this suffices to
give perfect privacy. By planting other private random examples (those which
did not have random hamming neighbors requested), we may also prove that
the protocol achieves statistical soundness against computationally unbounded
adversarial intermediaries.

1.2 Real World Applications

Outsourcing of drug design and discovery. The drug design and discovery pro-
cess begins by searching a massive space of chemical compounds for an “active”
compound [LPP04] [DAG06] [DGRDR08]. A compound is called active (with re-
spect to some biological structure) if it produces a reaction under some biological
test (e.g. whether or not a molecule or compound binds with a protein). Quickly
finding (and optimizing) active compounds among a massive search space is a
primary goal of the drug discovery process.

The recent trend of drug companies delegating elements of the R&D process
to well-equipped and specialized third parties who can carry out the necessary
biological experiments on behalf of the drug companies has greatly enhanced the
efficiency of the drug discovery process (for more information, see [Cla11] and
the references therein). However, currently the outsourcing of experiments carries
within it the risk of exposure of both the experimental design and experimental
results. Indeed, much of the proprietary knowledge and intellectual property
underpinning pharmaceutical science is generated in this way, but only until
relatively recently was it not conducted in-house [Cla11].

One of the famous methods for carrying out drug discovery is Quantitive
Structure-Activity Relationship modelling, or QSAR (for more information, see
[DAG06] and the references therein). The QSAR methodology attempts to iden-
tify a relationship between compound activity and compound structure. As noted
in [BHZ19], a compound or molecule may be described using a predefined set of
features, which may then be linked to positive classification if it is active, and
a negative classification if inactive. A membership query can be simulated by
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assembling a compound according to the specific attributes defined by the algo-
rithm’s query and submitting it to face some biological test. Thus, the process
of privately and verifiably delegating QSAR modelling can be distilled to the
following covert verifiable learning setting: Drug company A contracts a private
lab to gather relevant data labelled by a function f , with the end goal of learning
a model that provides a good approximation to f . In this case, A may want to
prevent the private lab from:

1. Reselling or releasing the data (queries to f) to a competing drug company
B, after collecting the data for A.

2. Leaking to B that A is interested in a certain type of model, or certain trade
secrets like cutting edge domain knowledge that is revealed by the design of
the queries.

3. Charging more money for arbitrary, complex or “high value” data (that is,
data needed to learn expressive models like polynomial size DNF formulas).

4. Cutting costs by providing faulty data.

Using a covert verifiable learning algorithm in this setting achieves each of the
above points, while maintaining the usual learning guarantees of the plain learn-
ing with membership queries setting. In particular, the concept-hiding guarantee
prevents (1), as the queries requested by A are essentially useless to any other
(computationally bounded) party. Meanwhile, hypothesis-hiding (for a relevant
collection of hypothesis classes) counters (2) and (3), as ability to efficiently do
either would clearly violate the guarantee. Ultimately, the verifiability require-
ment also prohibits a private lab from (4).

We note that decision trees are one of the standard ways used in QSAR
modelling to obtain a relationship between molecule features and activity. Thus,
the decision tree learning algorithms in this work are highly relevant.

1.3 Related Work

Two recent works explore models related to ours and have influenced this work.

Cryptographic Sensing. Ishai et al. study a related scenario, called Cryptographic
Sensing [IKOS19]. Like the present work, Cryptographic Sensing focuses on the
goal of sensing (or, learning) properties of a physical object, while keeping these
same properties secret to any passive adversary who does not have access to the
internal randomness of the sensing algorithm. However, Cryptographic Sensing
does not consider our notion of hypothesis-hiding, nor does it consider active
intermediaries and verifiability. Furthermore, [IKOS19] chiefly focuses on exact
learning of the object, where the aim is to decode the object exactly with non-
noisy queries, and hiding is achieved for any high-entropy object. In contrast,
our focus is on agnostic learning, where membership queries may return noisy
responses. As a result, our model allows learning parities, whereas [IKOS19] only
obtain learning algorithms for linear functions over larger moduli or over the
integers. Another effect of noisy membership queries is that they allow concept-
hiding even when there is a large and public labeled data set (the latter would
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rule out hiding a linear function in the noiseless setting of [IKOS19]). Indeed,
our simulation-based definition will allow us to consider hiding in relation to
auxiliary information about the concept, in a strong, zero-knowledge-like way.

PAC-verification. Goldwasser et al. initiated the study of PAC-verification [GRSY20],
which aims to answer questions about the complexity of verifying machine learn-
ing models via interactive proofs. Among other scenarios, they consider the task
where a prover, having learned a concept (perhaps via membership queries),
wishes to convey the learned model to a distrusting third party (a verifier) that
has only random examples from the concept. In this setting, they obtain a proto-
col for PAC-verification for the heavy Fourier coefficients (of any degree) of arbi-
trary functions. Their protocol is statistically sound in a model that corresponds
to our CVL with fully private random examples model. That is, the prover has no
access to the random examples available to the verifier. We note, however, that
Goldwasser et al. do not consider (or obtain) any hiding requirements—neither
concept hiding nor hypothesis hiding. Furthermore, while our covert verifiable
learning algorithms offer only computational soundness, some of them provide
soundness even in the setting where the random examples are known to the
prover in advance.

Other Related Models

Delegation of computation. Though bearing some resemblance to the traditional
cryptographic task of delegation of computation, our setting focuses on the spe-
cific task of learning. In this respect, we are focused on good outcomes, that is,
guarantees on the efficacy of the learned hypothesis. In contrast, delegation of
computation provides guarantees on the correctness of the computation steps
themselves, and provides no guarantees on the learned hypothesis. For example,
the delegation of computation model does not address the use of incorrect or
poisoned data.

The PAC+MQ model. The power of membership queries in the agnostic set-
ting was studied by Feldman in [Fel09]. Feldman defines an agnostic PAC+MQ
learning model and, assuming existence of one-way functions, shows a particu-
lar learning problem that is computationally hard to learn in the agnostic PAC
model with uniformly random examples, while efficiently learnable in the ag-
nostic PAC+MQ model. Essentially, the agnostic PAC+MQ model augments
the agnostic PAC learning model with query access to a membership oracle for
the concept. It is possible to view our Covert Learning algorithms as working
in a model that is between PAC and PAC+MQ, where the membership queries
cannot be synthesized arbitrarily (as in PAC+MQ), but must be generated in a
way that can be emulated by a simulation algorithm.

r-local membership queries. Another learning model lying between PAC and
PAC+MQ was introduced in [AFK13]. There, r-local membership queries are
permitted, in that any membership query must have have hamming distance
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r from an example received from the concept D. This requirement forces the
membership queries to “look” like they are distributed according to D, but it
falls short of our model. In contrast, we require that the membership queries,
in conjunction with the examples from D, can be emulated by a simulation
algorithm.

Differentially private learning. The study of differentially private learning was
initiated in [KLN+11]. Roughly, the work of [KLN+11] asks what can hypothesis
classes can learned by an algorithm whose output does not depend too heavily
on any one specific training example. In essence, differentially private learning
is concerned with maintaining the privacy of sensitive training data used by
the learner. In contrast, our notion of privacy is orthogonal, as it pertains to
the secrecy (with respect to third parties) of the underlying concept, and the
hypothesis of the learner itself.

2 Covert Learning

In this section, we concentrate on the basic Covert Learning setting, which con-
siders only eavesdropping attacks. We give a formal definition of Covert Learning.
Next, we demonstrate how to construct a Covert Learning algorithm for a noisy
parity learning problem as a warm-up. Then we extend the techniques used in
the warm-up and show a Covert Learning algorithm for learning the O(log n)-
degree Fourier coefficients of any function f : {0, 1}n → {−1, 1}. Using this
algorithm as a subroutine, we obtain a Covert Learning algorithm for functions
computable by polynomial size decision trees.

2.1 Preliminaries

We briefly recall here the standard terminology and notation which we use
throughout the paper.

Definition 3. A concept Dn is a joint distribution over an input domain Xn
and label domain Yn.

Definition 4. A hypothesis class Hn is a set of functions Hn = {h : Xn → Yn}.
We call a sampled (x, y) ∼ Dn an example, where x is the input and y is the

label. We use Xn = {0, 1}n, and either Yn = {0, 1} or Yn = {−1, 1}. We will
use the term concept class denoted by Dn to signify a set of concepts (which are
joint distributions over the input domain {0, 1}n and label domain {0, 1}).
Definition 5. A concept oracle ODn for a concept Dn is a (probabilistic) or-
acle with the property that on query z ∈ {0, 1}n, ODn(z) = y with probability
PrDn [(x, y)|x = z], and y ⊕ 1 otherwise.

Finally, we very often use the notation to denote random variables of n-bit
vectors.

Definition 6. βnµ denotes the distribution over an n-bit vector where each of
the bits is drawn i.i.d. from a Bernoulli random variable with mean µ.
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2.2 Definition of Covert Learning

In defining Covert Learning, we wish to require that the transcript of the inter-
action between a learner and a membership oracle reveals no information to a
passive adversary about either:

– the concept, or
– the learner’s chosen hypothesis class, or any auxiliary information that the

learner has on the concept prior to the interaction.

Furthermore, these requirements should hold even when there is auxiliary in-
formation (in the form of random examples from the concept) available to the
adversary.

As a starting point, we consider the learning with membership queries model,
where the learner is given query access to a probabilistic oracle that responses
queries about a concept (a concept oracle ODn for the concept Dn). The learner’s
goal is to find a hypothesis, out of some given class of hypotheses Hn, that best
approximates the concept Dn with respect to a loss function. For example, a
loss function LDn(h) = Pr(x,y)∼Dn [h(x) 6= y]. This gives us a baseline model for
accuracy guarantees in the learning with access to membership queries setting.
However, we diverge from this model in an important way. Rather than define
learning with respect to a single, fixed hypothesis class (as is common in learning
theory), we use a collection of hypothesis classes. This will provide a natural way
to model the desire to hide auxiliary information on the concept, as well as the
chosen hypothesis class.

In more detail, we fix a collection of hypothesis classes Cn, and require ac-
curacy guarantees for every hypothesis class Hn ∈ Cn: the learning algorithm
will receive as input a description of a specific target hypothesis class within the
collection, along with accuracy parameters ε, δ > 0. Then, the learning algorithm
will agnostically learn the target hypothesis class with respect to a given loss
function. For example, using the above example loss function, the learner will try
to find an h ∈ Hn such that Pr(x,y)∼Dn [h(x) 6= y] ≤ infh∈Hn Pr(x,y)∼Dn [h(x) 6=
y] + ε, with probability at least 1 − δ . That is, the algorithm should output a
hypothesis—within the given target class—that best approximates the concept
(up to the given accuracy parameters and a distribution over inputs). The in-
put to the learner naturally models the intent of the learner, by capturing the
particular choice of hypothesis class within the collection, and any auxiliary in-
formation used to select the class (e.g. the results of a tolerant testing algorithm
or specific domain knowledge).

Finally, we will require that the transcript of the communication between the
learner and the concept oracle does not leak any knowledge to an eavesdropper,
in the following sense: we require that there exists a p.p.t. algorithm (a simulator)
that generates an (ideal) simulated transcript of the (real) interaction between
the learner and the concept oracle, with access to random examples from the
concept, but not further access to the concept oracle. Furthermore, the simulator
should operate without knowledge of the learner’s target hypothesis class. The
simulated transcript should be indistinguishable from a real transcript, even to
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a (polynomial time) adversary that has access to auxiliary information on the

concept. We define two distributions, {realODnA } and {idealSim} as follows.

Definition 7. Let Dn be a concept class, and Cn a collection of hypothesis

classes. We define {realODnA } to be the distribution generated by the following
process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn,
and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.

3. A learner A receives ε, δ and Hn, and begins interacting with the concept by
querying the oracle ODn on examples of his choosing, receiving back responses
for each queried example. A tries to agnostically learn Hn using this oracle.
Denote the queries and responses as transcriptAODn (Hn,ε,δ).

4. Output
(
Hn, ε, δ, transcriptAODn (Hn,ε,δ)

)
Definition 8. Let Sim be a p.p.t. algorithm, which takes as input a set of ran-
dom examples to a concept, and a length parameter which denotes the number
of queries requested by the learner in the real interaction. We define {idealSim}
to be the distribution generated by the following process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn,
and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.

3. A p.p.t. simulator Sim receives S, `, and “interacts” with the ODn and out-
puts the set queries and responses denoted as transcriptSim(S,`). Here ` is the
number of queries that the learner requests in the real interaction.

4. Output
(
Hn, ε, δ, transcriptSim(S,`)

)
We note that the size of the random example set obtained by the simulator

is given as a parameter of the definition of Covert Learning. Formally,

Definition 9. Covert Learning. Let Cn be a collection of hypothesis classes,
let Dn be a concept class, let ODn be a class of oracles indexed by Dn ∈ Dn, and
let L be a loss function. A is a (m(n), α)-covert learning algorithm for C with
respect to Dn, ODn and L if for every ε, δ > 0, A satisfies the following:

– Completeness. For every distribution Dn ∈ Dn, and every Hn ∈ Cn, the
random variable h = AODn (Hn, ε, δ) satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1− δ

The loss function may depend on the distribution Dn. For proper Covert
Learning, the output of A must be an element of H, i.e. h ∈ Hn.
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– Privacy. There exists a p.p.t. simulator Sim such that:{
real
ODn
A

}
c
≈
{
idealSim

}
where

c
≈ denotes computational indistinguishability. We stipulate that the

number of random examples given to the simulator is O(m(n)).

See Figure 3 for an illustration of the model. Often, we will use the terminol-
ogy from the computational learning theory literature, and say that a collection
of hypothesis classes C is α-covertly learnable if there exists an α-covert learning
algorithm for C.

Fig. 3: Privacy of Covert Learning. The “real world,” where the adversary views the
learner access the oracle, should be indistinguishable from the “ideal world,” where the
adversary interacts with a simulator that simulates the learner accessing the oracle.
The adversary gets to choose the concept which is implemented by oracle (within the
given class). Observe that, the simulator is also allowed random examples from the
concept, and these are “leaked.”

About the simulation. We note that the simulation paradigm lends itself well
to our setting: It allows formalizing the requirement that sensitive information
is not revealed by the interaction, while maintaining the overall usefulness of
the interaction. In this case, we formalize the notion that whatever could have
been learned by a passive adversary about the concept or learner’s hypothesis
after the interaction, could have been learned before the interaction (given ac-
cess to random examples). Furthermore, we can model the presence of other,
unavoidable information leakage (e.g. random examples on the concept).

Our focus is on collections of hypothesis classes that are not efficiently PAC
learnable. When every hypothesis class in a collection is efficiently learnable
without membership queries (i.e. with random examples only), Covert Learning
is considered trivial. This is because in this case the privacy requirement is
easily satisfied by a transcript full of random examples (and it does not even
rule out leakage, because the adversary can learn the function from them). We
thus concentrate on the case where the hypothesis classes within the collection
need (or are assumed to need) membership queries to be learned.
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2.3 A Warm-Up: Covert Learning of Noisy Parity Functions

In this section, we concentrate on Covert Learning of parity functions with noise.
Indeed, this class of learning problems is broadly assumed to not be efficiently
agnostically PAC-learnable in a very strong sense, as per the Learning Parity
with Noise (LPN) assumption:

Definition 10. Search/Decision LPN assumption: For µ ∈ (0, 0.5), n ∈
N, the (m(n), T (n))-DLPNµ,n assumption states that for every distinguisher D
running in time T (n),∣∣∣∣ Pr

s,A,e
[D(A,As⊕ e)] = 1− Pr

r,A
[D(A, r)] = 1

∣∣∣∣ ≤ 1

T (n)

where s
$← Zn2 ,A

$← Zm(n)×n
2 , e

$← β
m(n)
µ , r

$← Zm(n)
2 .

For µ ∈ (0, 0.5), n ∈ N, the (m(n), T (n))−SLPNµ,n search assumption states that
for every inverter I running in time T (n),

Pr
s,A,e

[I(A,As⊕ e) = s] ≤ 1

T (n)

where s
$← Zn2 ,A

$← Zm(n)×n
2 , e

$← β
m(n)
µ .

Remark 1. The search and decisional LPNµ,n assumptions are polynomially equiv-
alent, in that an algorithm that breaks one of them can be turned into an algo-
rithm that breaks the other in polynomial time. For more information, consult
[Pie12] and the references therein.

One typical setting of parameters gives the DLPN1/
√
n,n problem, which is con-

jectured to be (O(n),poly(n))-hard [Ale03]. However, for even super polynomial
queries, the best known attacks are not asymptotically better than the O(n) case
[YS16]. Furthermore, an important variant was introduced in [ACPS09]. Specif-
ically, it was shown that solving the decisional LPN problem when drawing the
secret from the same distribution as the noise vector is as hard as drawing the
secret from the uniform distribution. Henceforth, when referring to the DLPNµ,n
problem, we refer to this setting.

In the remainder of this section, we construct a Covert Learning algorithm for
the learning parity with noise problem using only the assumption that DLPN1/

√
n,n

is hard itself—the minimal assumption that keeps the problem nontrivial: for any
rate of noise bounded away from one half by an inverse polynomial, it easy (us-
ing majority voting) to solve DLPNµ,n when membership queries are available,
and even in the “adversarial” noise case [GL89]. However, this is not enough for
Covert Learning. It is clear that running membership query algorithms “in the
open” (like Figure 1) may violate all our previously mentioned privacy goals.
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The Learning Problem. As a warm-up, we will consider a distributional variant
of Covert Learning. Here, the learning and privacy guarantees are required when
the concept is drawn from a distribution over the concept class, rather than for
every concept in the class. For privacy, this means that the distinguisher will
not have the privilege of choosing the concept from the class, but instead it is
sampled from the distribution. Our concept class is the following:

Definition 11. Let Xn = {0, 1}n. We define the concept class Dµ,nLPN to be the
family of distributions over Xn × {0, 1} indexed by a k ∈ {0, 1}n, that have the
following properties,

– The input (marginal) distribution over X of any Dk ∈ Dµ,nLPN is uniform.
– For any Dk ∈ Dµ,nLPN, the label y ∈ {0, 1} of the input x is generated by taking
〈k, x〉 and flipping the result with probability µ.

For our learning problem, the concept will be drawn using a distribution over
Dµ,nLPN:

Definition 12. We define a distribution Mn
LPN over the concept class Dµ,nLPN as

follows. Dk ∈ Dµ,nLPN is selected by drawing k
$← βn

1/
√
n

.

The learner will get membership access to the concept by using the following
class of oracles:

Definition 13. Let OD be a concept oracle for a concept D. Recall the concept
oracle that implements “membership query access” to a distribution D over X×Y
in the following sense: on a query q to the oracle, a sample from the conditional
distribution over Y is returned, given that X = q.

Hence, when the concept Dk is drawn fromMn
LPN, the learner will obtain access

to ODk . We will do Covert Learning for the following collection of hypothesis
classes:

Definition 14. For a ∈ {0, 1}n, let `a : {0, 1}n → {0, 1}, defined by `a(x) =
〈a, x〉. Let PARITYA,n = {`a | i 6∈ A =⇒ ai = 0}. Let CPARITY,n = {PARITYA,n | A ⊆
[n]}.

Our Covert Learning task is then as follows. We would like to design a learn-
ing algorithm that takes as input any hypothesis class PARITYA,n ∈ CPARITY,n
(we will call A the relevant set). Then, given access to ODk , the learning algo-
rithm outputs `a ∈ PARITYA,n which minimizes the following loss (with respect
to Dk):

Definition 15. Let the loss function LD be defined as

LD(h) = Pr
(x,y)∼D

[h(x) 6= y]

for a concept D.

Meanwhile, the privacy guarantee of Covert Learning should be satisfied. In
particular, any information about A or k should be hidden.
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The Construction

Overview. We will refer to D
1√
n
,n

LPN as DLow
LPN. We construct Covert Learning for

CPARITY,n with respect to DLow
LPN, ODLow

LPN
, and LD, and where learning is considered

when the concept is drawn from Mn
LPN. The Covert Learning algorithm begins

by requesting “masked queries” from ODk . For x1, · · · , xn
$← βn1/2, let

X =

x1 x2 x3 · · · xn


Note that, each xi is a column of X. Furthermore, let e, s
$← βn

1/
√
n
. A masked

query q̂ ∈ {0, 1}n for query q ∈ {0, 1}n is generated by taking

q̂ = Xs⊕ e⊕ q

In our algorithm, each query q requested by the learner is a unit vector under the
above masking, plus requests for the columns of X. Indeed, the ith unit vector is
only masked and requested if the ith index is in the relevant set A. Upon receiving
the results to the masked unit vectors, denoted by ODk(q̂), the algorithm decodes
each one by taking ODk(q̂)⊕〈y, s〉, where y = (ODk(x1), · · · ,ODk(xn)). It turns
out that,

Pr
[
ODk(q̂)⊕ 〈y, s〉 = 〈k, q〉

]
> 0.501

Hence, our algorithm requests each masked unit vector some constant number
of times—the final decoding for each is done by taking the majority bit over
the set of results from the duplicate queries. Note that, for a pair duplicate
queries (say, two copies of the ith unit vector), the masks are independently
generated. Once the decoded results to the masked unit vectors are obtained,
the algorithm produces a hypothesis in the natural way: if ri is the decoded
result of the masking query of the ith unit vector, then the output hypothesis is
r(x) = 〈(r1, · · · , rn), x〉.

Theorem 7. Assuming DLPNµ,n is (O(n),poly(n))-hard, CPARITY,n is (poly(n), 1)-
covertly learnable with respect to DLow

LPN, ODLow
LPN

, and LD, and where the concept
is drawn according to Mn

LPN.

The algorithm (called CLP and presented in [CK21]) is efficient. The queries
are constructed in time polynomial in n, and the same is true for the decoding
process. From there, it’s easy to see that since we run O(log(n/δ)) iterations,
the entire algorithm runs in time polynomial in n and log(1/δ).

2.4 Covert Learning of Low-degree Fourier Coefficients

In this section, we will extend our techniques from the warm-up to present
a Covert Learning algorithm for “heavy” O(log n)-degree Fourier coefficients.
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This learning problem will no longer live in the distributional learning case, as
in the warm-up.

The learning problem is nontrivial for Covert Learning: the problem of effi-
ciently identifying heavy, even O(log n)-degree, Fourier coefficients from random
examples is a fundamental problem that has so far evaded intense research ef-
fort from the learning theory community. In particular, such an algorithm would
imply the PAC learnability of DNFs via a “weak learning” parity function and
boosting results [Jac97]. Moreover, such an algorithm would be considered a
massive breakthrough in computational learning theory [Blu03] [OS07].

Our Task. We consider the following natural class of concepts.

Definition 16. Let Xn = {0, 1}n, and Fn be a class of functions f : Xn →
{−1, 1}. We define DFn . to be the concept class containing all distributions over
Xn × {−1, 1} that have the following properties,

– The input (marginal) distribution over Xn of any Df ∈ DFn is uniform.

– For any Df ∈ DFn , there exists a polynomial time computable target function
f : Xn → {−1, 1} such that f ∈ Fn and

Pr
(x,y)∼Df

[f(x)y = 1] = 1

The learner will be allowed to interact with a membership query oracle to
any concept in DFn .

Definition 17. Let OFn be a class of membership oracles indexed by Df ∈ DFn ,
such that Of implements membership query access to f . To simplify notation,
we may write Of instead of ODf .

Hence, the learner will have access to Of when tasked with learning the
“heavy” Fourier coefficients of the target function of Df .

In plain English, the task is as follows. The learner chooses a hypothesis
class characterized by a subset T of [n] and a bound b < n, where the hypothesis
class consists of a subset of all n-bit parity functions. A parity function is in the
hypothesis class if it is of degree less than b and if all it’s relevant variables are
included in T . The learner must then find all parity functions in the hypothesis
class which have Fourier coefficients larger than some given threshold τ .

More formally, the goal is to learn the following hypothesis class with respect
to the following loss function:

Definition 18. Let k ∈ {0, 1}n. Define the parity function χk : {0, 1}n →
{−1, 1} as

χk(x) = (−1)〈k,x〉

We will call |k| the degree of χk.
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Definition 19. Let T ⊆ [n]. Define the hypothesis class FOURIERT,b,n = P{χk | ki 6∈
T =⇒ ki = 0,∧|k| ≤ b}. In other words, FOURIERT,b,n is the powerset of the
set all parity functions on subsets of [n] contained in T , with degree at most b.
Let the collection of hypothesis classes CFOURIER,b,n = {FOURIERT,b,n | T ⊆ [n]}.
For any hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n, we will call T the relevant
set.

Definition 20. Let f : {0, 1}n → {0, 1} be a function. Let P = P{χk | k ∈
{0, 1}n}. Also, let f̂≥τb = {χk | f̂(k) ≥ τ, |k| ≤ b}. Lτ,b : P → [0, 1] is a loss
function given by

Lτ,b(T ) =

 Pr
χk∼f̂≥τb

[
χk ∈ T

]
when |T | ≤ poly(n)

1 otherwise

where χk ∼ f̂≥τb is a uniformly random sample χk ∈ f̂≥τb .

The learning algorithm, given a hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n,
should hide any information about the relevant set T , as well as any information
about f , as formalized by the privacy guarantee of Covert Verifiable Learning.
Finally, the protocol should achieve computational soundness and be efficient
(i.e. run in time poly(n, 1/τ, log(1/δ) for a soundness parameter δ).

The Construction

Overview. We construct Covert Verifiable Learning for CFOURIER,b,n with respect
to DFn , OFn , and Lτ,b. The overall flow of the algorithm will be similar to that
of our Covert Learning algorithm for noisy parities. Instead of using the masking
technique to encode unit vectors, we instead use masking to run Goldreich-Levin
queries.

Theorem 8. Goldreich-Levin learning algorithm. Given query access to
a function f : {0, 1}n → {−1, 1} and given parameters τ, δ, there exists a
poly(n, 1τ ,

1
δ ) time algorithm that outputs a list L = {S1, ..., S`} such that the

following hold,

1. if |f̂(S)| ≥ τ , then S ∈ L.

2. if S ∈ L, |f̂(S)| ≥ τ
2 .

with probability 1− δ.

The Goldreich-Levin queries are those that are selected by the above algo-
rithm. Using the Goldreich-Levin algorithm, all the Fourier coefficients satisfying
|f̂(S)| ≥ 1/poly(n) can be found in polynomial time (with high probability).

For any subset T ⊆ [n], the Goldreich-Levin algorithm can be executed in a
way that it only outputs subsets S such that S ⊆ T . In this case, the algorithm
skips doing majority voting on the indices not in T , and uses less queries. In the
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event that the algorthim is executed in the described restricted manner, we will
refer to the queries as the Goldreich-Levin queries on T .

For our construction, we will need the following “chopped tail” binomial
distribution.

Definition 21. Define the distribution, β̃nµ , as the output of the following pro-
cess. Draw y ∼ βnµ , and if µn/2 ≤ |y| ≤ 3µn/2 output y, else output ⊥.

For µ = log(n)/n, β̃nµ can be seen to have min-entropy Θ(log2 n) [YZ16].

Fixing a Df ∈ DFn , the Covert Learning algorithm begins by requesting

“masked queries” from Of . Let ` = Θ(log2n). For x1, · · · , xn
$← β`1/2 and

y1, · · · , y`
$← βn1/2, let

U1 =

x1 x2 x3 · · · xn
 ,U2 =

y1 y2 y3 · · · x`


Note that, each xi or yi is a column of U1,U2. Now, let X = U2U1 Furthermore,

let s
$← β̃nµ for µ = log(n)/n. A masked query q̂ ∈ {0, 1}n for query q ∈ {0, 1}n

is generated by taking

q̂ = Xs⊕ e⊕ q

In the algorithm, each query q requested by the learner is a Goldreich-Levin
query under the above masking. Indeed, the Goldreich-Levin queries are only
masked and requested if they are one of the Goldreich-Levin queries on the
relevant set T given by the target hypothesis class (as discussed above).

Upon receiving the responses to the masked Goldreich-Levin queries, denoted
by Of (q̂), the secret s for the masked query q̂ is utilized to post-process Of (q̂).
The post-processed responses correlate with f ′(q), where f ′ is a function whose
O(log n)-degree Fourier coefficients are greater than Ω(τn−c) (for some small
constant c > 0) wherever f has a Fourier coefficient greater than τ . By following
the technique of Goldreich and Levin, we recover all the O(log n)-degree Fourier
coefficients of f ′ greater than Ω(τn−c)—and therefore all the O(log n)-degree
Fourier coefficients of f greater than τ .

To prove privacy of the algorithm, the idea is to produce a simulator that
first emulates the learner’s queries, and then interacts with an AI by also pass-
ing as the oracle to the concept. It turns out that, assuming subexponential
hardness of LPN, the masking procedure described above maps each query to
a pseudorandom distribution. Thus, we will construct a simulator that requests
truly random queries. Intuitively, it can then be shown that if there exists and
AI such that an adversary distinguishes between the simulated interaction and
the real interaction (where the requested queries are pseudorandom), then an
adversary distinguishes the pseudorandom masked queries from random queries.
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Theorem 9. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption and for suffi-

ciently large n, there exists a proper (poly(n), 1)-covert learning algorithm for
CFOURIER,b,n with respect to DFn , OFn , and Lτ,b, and where b ≤ O(log n), τ ≥
1/poly(n), δ ≥ exp(−n).

The algorithm, called CLF, is presented in [CK21]. An important ingredient
in the proof is the following hardness lemma due to [YZ16].

Lemma 1. LPN on squared-log entropy (Simplified from [YZ16]). Let n be
a security parameter and let µ ≤ 1/2 be a constant. Assume that the SLPNµ,n

problem is (2ω(n
1
2 ), 2ω(n

1
2 ))-hard, then for every λ = Θ(log2 n), q = poly(n),

and every polynomial time sampleable x ∈ {0, 1}n with H∞(x) ≥ 2λ,

(A,Ax+ e)
c
≈ (A, u)

where A = Uq×λUλ×n and Um×n is a uniformly random m×n binary matrix, and
e ∼ βqµ, u ∼ {0, 1}q. We will call the task of distinguishing the above distributions
the decisional squared-log entropy LPN problem.

Proof Idea. We first analyze the “unmasking” procedure φ defined in line 24. Es-
sentially, the unmasking φi, which is applied to the response for the ith masked
query, reintroduces a dependency on the secret used to construct the masking
for the ith query. In this way, we may cancel some noisy terms in an expanded
analysis of the oracle responses. We then leverage the pseudorandomness of the
masked queries to show that, roughly, the responses to the unmasked queries
can be written as noisy inner products with any O(log n)-degree parity func-
tion which the target function of the concept has a “heavy” Fourier coefficient
attached. Using this fact, we prove that running a “local decoding” of each bit
of any O(log n)-degree parity function where this is true suffices to recover the
parity functions we are interested in. We prove that this is the case by using
techniques inspired by the original analysis of the Goldreich-Levin algorithm
[GL89].

2.5 Covert Learning of Polynomial Size Decision Trees

In this section, we supply a natural application of Covert Learning for low-degree
Fourier coefficients. Specifically, we will show that the collection of hypothesis
classes given by taking all subsets of polynomial size decision trees is covertly
learnable. Recall that we are focused on collections that contain hypothesis
classes which are not (or not known to be) efficiently agnostically PAC learnable
from uniformly random examples. The problem of learning decision trees under
the uniform distribution has long been considered, and yet no polynomial time
(in the size of the smallest decision tree) algorithms exist for arbitrary functions,
and some distributions over functions [BFKL93] [IKOS19] (even in the realizable
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case). In fact, any such algorithm would be considered a massive breakthrough
in computational learning theory [Blu03] [OS07]3.

Definition 22. Let DTn,s be the hypothesis class of all f : {0, 1}n → {−1, 1}
computable by a size s decision tree. Let CDTn,s = {Hn|Hn ⊆ DTn,s}.

This collection of hypothesis classes is motivated for the following simple rea-
son. If an adversary has no information about which subset of decision trees has
been learned, then the adversary has no information about the learned decision
tree. This claim is easily seen to be true from the contrapositive. The algorithm
is presented as CLDT in [CK21].

Theorem 10. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, the collection

CDTn,s for s = poly(n) is (poly(n), 4)- covertly learnable, with respect to DFn ,
OFn , and LD, and where ε ≥ 1/poly(n), and δ ≥ exp(−n).

3 Covert Verifiable Learning

In this section we define and construct the notion of Covert Verifiable Learning.
The Covert Verifiable Learning setting can be viewed as an interactive protocol
between a learner and an adversarial intermediary (AI). Here, the adversarial
intermediary monitors access to the membership oracle. Figure 2 depicts this
perspective. In this context, the learner must request queries from the oracle,
but the responses are intercepted by the AI who then either truthfully reports
the oracle’s responses, or lies.

3.1 Definition of Covert Verifiable Learning

For Covert Verifiable Learning, we augment the desired properties of Covert
Learning by allowing the learner to abort, and requiring: If the AI corrupts any
queries or results, the learner will not output an incorrect hypothesis except with
small probability. In addition, we will extend the privacy requirements of Covert
Learning to capture the active nature of the adversarial intermediary. Let us
informally describe the Covert Verifiable Learning setting in more detail.

3 Not much formal work has been done on identifying “hard distributions” over DNF
formulas (or other function classes) [BFKL93] [IKOS19], as it is not relevant in the
usual learning models. However, even some relatively simple distributions appear to
defy all known techniques. For example, consider the distribution over polynomial
size DNFs (also, decision trees), constructed as follows. Select at random two disjoint
subsets of [n] of size log n each. Let the first subset be denoted S and the second T .
The distribution over DNFs induced by defining f(x) = χS(x)⊕majorityT (x) seems
hard to even weakly predict over the uniform distribution [BFKL93]. Indeed, such
a distribution over DNF formulas could be used to instantiate our Covert Learning
algorithms of this section.
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The learner’s inputs: Similarly to the Covert Learning setting, the learner will
receive as input a specific target hypothesis class Hn (within a fixed collection
Cn), in addition to accuracy parameters ε, δ. The learner will also receive a set
of auxiliary random examples from a concept Dn within a concept class Dn
which are private—the AI has no information on the identity of these random
examples.

The interaction: The learner will interact with an oracle ODn that implements
query access to the concept. However, the responses have the potential to be
corrupted by an AI who lives between the learner and the oracle. The learner
tries to learn Hn with respect to the concept Dn.

The security experiment: We define a real and ideal experiment.

Definition 23. Let Dn be a concept class, and let Cn be a collection of hypothesis
classes. Let I be a p.p.t adversarial intermediary algorithm, which takes as input
ε, δ, and a set of queries and the oracle’s responses on those queries. We define

{VrealODnA,I } to be the distribution generated by the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a
concept Dn ∈ Dn, and accuracy parameters ε, δ > 0.

2. A set of random examples S is drawn from Dn. S is given to the learner,
along with Hn, ε, δ, while the adversarial intermediary I is given ε, δ.

3. The learner begins to interact with the concept oracle ODn by requesting
membership queries in order to agnostically learn Hn. I sees the learner’s
queries and responses and is given the chance to modify the responses. At

the end of the interaction, I outputs a string denoted by real
ODn
A,I .

4. Output
(
Hn, ε, δ,S, real

ODn
A,I

)
Definition 24. Let Sim be a p.p.t. algorithm, which takes as input two sets
of random examples from the concept and a length parameter ` which signifies
the number of queries requested by the learner in the real interaction. Let I be
a p.p.t adversarial intermediary algorithm, which takes as input ε, δ, and a set
of queries and oracle’s responses. We define {VidealSim,I} to be the distribution
generated by the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a
concept Dn ∈ Dn, and accuracy parameters ε, δ > 0.

2. A set of random examples S ′ is drawn from Dn.
3. The simulator is given ε, δ,S,S ′ (where S is the set of examples given to the

learner in the real interaction), while an adversarial intermediary I is given
ε, δ.

4. Sim begins to “interact” with the ODn by “requesting” membership queries.
I “views” the queries and responses, and is given the chance to change the
responses. The simulator outputs a string, which is denoted by idealSimI .

5. Output
(
Hn, ε, δ,S, idealSimI

)
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Definition 25. Covert Verifiable Learning. Let Cn be a collection of hypoth-
esis classes, let Dn be a class of concepts, let ODn be a class of oracles indexed
by Dn ∈ Dn, and let L be a loss function. An algorithm A is an (m(n), α)-covert
verifiable learning algorithm for Cn, with respect to Dn, ODn and L, if for every
ε, δ > 0, the following are true.

– Completeness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈
Cn, and where S is a set of size m(n) of examples drawn i.i.d. from Dn, the
randomized output of h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1− δ

– Soundness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn,
and where S is a set of size m(n) of examples drawn i.i.d. from Dn, then
for any adversarial intermediary I that corrupts queries or responses from
A to ODn , the random variable h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) > α · L(Hn) + ε

∣∣∣ h 6= reject
]
< δ

We say that soundness is computational if I is p.p.t..
– Privacy. For any adversarial intermediary I, there exists a p.p.t. simulation

algorithm Sim that satisfies:{
Vreal

ODn
A,I

}
c
≈
{
VidealSim,I

}
We stipulate that each of the sets of random examples given to the simulator are
of size m(n).

Fig. 4: Privacy of Covert Verifiable Learning. The “real world,” where the AI interacts
with the learner and oracle, should be indistinguishable from the “ideal world,” where
the AI interacts with a simulator that plays both roles of learner and oracle. Impor-
tantly, the simulator works without knowledge of the underlying hypothesis classes or
the actual oracle, though it does have access to random examples from the concept.

In keeping with the terminology from the computational learning theory
literature, we will often say that a collection of hypothesis classes C is verifiably
(m(n), α)-verifiably covertly learnable if there exists a (m(n), α)-covert verifiable
learning algorithm for C.
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Discussion

Variants. We would like to highlight some salient variants of the model that we
have presented above. The variants are on the nature of the random examples
that are present in the interaction. For example, we could also consider the case
that the learner’s random examples are publicly known. We call this setting the
public Covert Verifiable learning variant. In this public variant, achieving sound-
ness and privacy is much more difficult, as the learner has no private examples to
leverage against the AI. However, this variant significantly increases the practi-
cality of the model because it may be infeasible for the learner to acquire private
examples. In Section 3.4, we focus on this case. Another variant of the formally
stated model involves weakening the privacy requirement to require indistin-
guishability of only the membership queries, and not for the joint distribution of
the private random examples and membership queries. This model (called the
fully private examples variant), may be justified, as we already consider private
examples in order to achieve soundness. In the full version [CK21] of this paper,
we show that this model is quite powerful, even if we require perfect privacy
and statistical soundness. We opt to focus (in Section 2.4 and Section 2.5) on
the case where privacy is with respect to the joint distribution since it seems
to be the “right” level of difficulty. Additionally, this model provides strong
“zero-knowledge-style” guarantees in a forward focused manner. That is, even if
private examples used for verification (a one time event) become known in the
future, then the privacy guarantees remain intact.

3.2 Making CLF Verifiable

In this section, we show how to add the soundness guarantee of Covert Verifiable
Learning to CLF. More specifically, we want to provide the guarantee that if for
any concept Df ∈ DFn , any hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n, and
where S is a set of size m(n) of examples drawn i.i.d. from Df , then for any
adversarial intermediary I that corrupts oracle responses from the interaction
between CLF and Of , the random variable h = CLFOf (FOURIERT,b,n, ε, δ,S)
satisfies

Pr
h

[
Lτ,b(h) > α · Lτ,b(FOURIERT,b,n) + ε

∣∣∣ h 6= reject
]
< δ

Our basic idea to achieve verifiability is to wrap the CLF algorithm with an
outer loop, which attempts to catch the adversarial intermediary cheating by
randomly deciding to either execute CLF (the “learning” case) or send queries
which are part of the learner’s private example set S (the “test” case). The crucial
point is: the queries of the learning case can be shown to be computationally
indistinguishable from the test queries (which are simply uniformly random).
This system gives an easy proof idea for soundness: The (p.p.t.) adversarial
intermediary must lie a similar amount on the learning case and the test case,
else it would contradict the pseudorandomness of the queries made by CLF.
Therefore, since the AI can always be detected if it lies in the test case, it
cannot reliably lie on the learning case, without being detected.
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Theorem 11. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, there exists a

(poly(n), 1)-covert verifiable learning algorithm for CFOURIER,b,n with respect to
DFn , OFn , and Lτ,b, and where the degree bound b ≤ O(log n) and τ ≥ 1/poly(n).

3.3 Making CLDT Verifiable

To make CLDT verifiable, almost all of the work has already been done by con-
structing CVLF. We may modify CLDT by replacing the subroutine of CLF in
CVLF, and this alone suffices. The resulting algorithm, called CVLDT, is pre-
sented [CK21].

All three guarantees of Covert Verifiable Learning intuitively hold for CLDT,
as all the communication of CVLDT is contained in CVLDT.

Theorem 12. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, the collection

CDTn,s for s ≤ poly(n) is (poly(n), 4)- covertly verifiably learnable, with respect
to DFn , OFn , and LD, and where ε ≥ 1/poly(n), and δ ≥ exp(−n).

3.4 Verifiability Without Secret Examples

In this section, we pose the question: can we achieve Covert Verifiable Learning
in a setting where the learner has no private examples to leverage against the
adversarial intermediary? Indeed, we are considering the public Covert Verifiable
Learning model briefly discussed in Section 3.1.

We will demonstrate that our CVL protocol for low-degree Fourier coeffi-
cients of Section 2.4 can be adapted to fit the Public Covert Verifiable Learning
(PCVL) model (formally defined in [CK21]). From there, we can conclude that
an application to decision trees is suitable, similar to that of Section 2.5.

Our algorithm CVLF (and soundness proof) falls short of the PCVL model—
it makes crucial use of secret examples. Specifically, the AI will always know
when the learner is executing a “test” case, because it has access to the test
examples before hand, and as a result can distinguish them from the learning
case. Our idea to adapt is as follows. Instead of threatening to send private
random examples at each iteration (with probability 1/2), we threaten to send
the public examples under the same masking that we use on the Goldreich-Levin
queries. In this way, we can show that the computationally bounded AI will be
caught lying with high probability; the AI will not be able to link the masked
public examples with the real public examples. We will require that the concept
is computed by a polynomial size DNF formula4, and this will be essential to
letting the learner detect an AI. Why this is the case will become clear shortly,
but intuitively, we must assume some structure on the concept; otherwise the
learner has no hope in obtaining any correlation on the public examples save
querying for them. Clearly, if the learner cannot get any correlation on the public
examples without querying them, then the AI will always be able to deceive the
learner.

4 Note that, this is still an agnostic setting, despite not being fully agnostic, as before.
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Definition 26. Let s-DNFn be the class of all f : {0, 1}n → {−1, 1} such that
f is computable by a size s DNF formula. A DNF formula is said to have size s
if it has s clauses.

Theorem 13. Under the (2ω(n
1
2 ), 2ω(n

1
2 ))−SLPNµ,n assumption, there exists a

proper (poly(n), 1)-Public covert verifiable learning algorithm for CFOURIER,b,n

with respect to Ds-DNFn , Os-DNFn , and Lτ,b, and where δ ≥ exp(−n), b ≤
O(log n), 1/poly(n) ≤ τ ≤ 1/2(2s+ 1)2, and the DNF size s ≤ poly(n).

The algorithm is presented as PCVLF in [CK21].

Proof Idea. We begin with a lemma that establishes a correlation between the
“test case” queries of the learner and the publicly available examples. Using this
lemma, we can prove soundness by showing that if the AI lies on a “significant”
amount of queries then the learner will be able to detect this using the correlation
with the public examples. On the other hand, we observe that if the AI lies
on a “less than significant” amount of queries, completeness still holds from
the properties of CVLF—thus we conclude PCVLF is sound. For completeness,
we need to prove that, essentially, the learner will not accidentally abort the
interaction too often. This is done by bounding the probability that an honest AI
is unlucky using standard probabilistic techniques. Finally, the proof of privacy
is done by adapting the simulator and reduction of the proof of Theorem 11 to
appropriately reflect the changes we made in the test case of the algorithm.
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