Secure Communications over Insecure Channels based on Short Authenticated Strings

Serge Vaudenay http://lasecwww.epfl.ch/

Crypto'05

Crypto'05 — SV 2005 — 1

Secure Communications

Crypto'05 — SV 2005 — 2

Basic Security Properties

- **\star** Confidentiality (C): only the legitimate receiver can get X
- * Authentication + Integrity (A+I): only the legitimate sender can insert X and the received message must be equal to X

...based on C+A+I Channels: the Conventional Model

...based on <u>A+I</u> Channels: the Merkle Model 1975

...based on C+A+I Narrowband Channels: the Bellovin-Merritt Model 1992

The Missing Stone

Cryptography Based on Short Authenticated Strings (SAS)

Message Authentication Protocols

output: ID, *m*

- ★ can be used to transmit a public key
- ★ can be used (in both ways) to run the Diffie-Hellman protocol

Communication Model

★ secure channel (A+I) with low bandwidth

Communication Model: Adversary Capabilities

Regular channels: the adverary can do whatever he/she wants with the messages: modify, create, swap, remove, stall, ...

(Weak) authenticated channels: the adversary cannot modify nor create messages. He/she can swap, remove, stall, ...

(Strong) authenticated channels: same plus some additional assumptions!

E.g. messages must be either deliver at once or removed (stall-free channels).

Application I: Personal Area Network Setup (Bluetooth, UWB, ...)

Application II: Peer-to-Peer PGP Channel Setup

File to be sent	//PGP Key.asc	Browse
lost name	localhost	
Port number	4711	
/erbose mode	•	Start authentication
The SAS you mu	ust transmit is 94 84 58	Close
	8344249377792897121 hit=8a:3c:ea:3e:a4:7e:96:53:4b:ce:2	26·75·24·b5·8f·22·35·f5·47

ort number	4711		
ile destination	//PGP Key.asc		Browse
erbose	•	Waiting authenti	ication
tart listening on p	ort 4711.		
nter the SAS for	authentification : 94 84	58 Ok	
		Clo	ose
Start SAS pro Receive com Send Rs=446 Send Reques Receive Rdm Receive Rc= Check comm Waiting for S The SAS is 9 ⁴	mit=8a:3c:ea:3e:a4:7e:96:53 557 t=0. =564483442493777928971 3801 it=8a:3c:ea:3e:a4:7e:96:53:4 AS	21	

Application III: Disaster Recovery

- ★ on the road, after a key loss (computer crash, stolen laptop)
 - \longrightarrow set up of a security association
- ★ PKI collapse (company bankrupt, main key sold, act of God)
 - \longrightarrow set up of a security association

Adversarial Model

Goal: to make an instance of Bob output ID, \hat{m} without any instance on Alice on node ID with input \hat{m} .

Folklore Protocol (Balfanz-Smetters-Stewart-Chi Wong 2002)

Alice **input**: *m*

Bob

 $\begin{array}{ccc} & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\$

output: Alice, \hat{m}

Security

Theorem 1. If *H* is a collision resistant hash function onto $\{0,1\}^k$, the protocol resists to impersonation attempts.

- © provable security, efficient (assuming collision resistance)
- this requires SAS of at least 160 bits

Gehrmann-Mitchel-Nyberg 2004: The MANA I Protocol

output: Alice, \hat{m}

Insecurity of MANA I

output: Alice, \hat{m}

Security of MANA I

Theorem 2. Using a universal hash function family H which produces ℓ -bit codes and in a **strong** communication model, the maximal probability of success of an impersonation of Alice when limited to Q_A runs of Alice's protocol and Q_B runs of Bob's protocol is at most $Q_A Q_B 2^{-k-\ell}$.

 \bigcirc we can work with SAS of $k + \ell = 20$ bits

Strong requirement on the communication model

A SAS-Based Authentication Protocol

Crypto'05 — SV 2005 — 21

SAS-Based Authentication

output: Alice, \hat{m}

Security

Theorem 3. Under reasonable assumptions on the commitment scheme (either extractable or equivocable), the maximal probability of success of an impersonation of Alice when limited to Q_A runs of Alice's protocol and Q_B runs of Bob's protocol is at most $Q_A Q_B 2^{-k} + \varepsilon$.

- © provable security, efficient
- ☺ we can work with SAS of 20 bits

Tag-Based Commitment Schemes

Set up: $(K_P, K_S) \leftarrow \text{setup}()$ Commit: $(c,d) \leftarrow \text{commit}(m,r)$ commit to r of k bits with tag mDecommit: $r \leftarrow \text{open}(m, c, d)$ whenever r is such that (c, d) is a possible output of commit(m, r)

Crypto'05 — SV 2005 — 24

LASEC

Extractable Commitment Based on a Random Oracle

Extract: $r \leftarrow \text{extract}_{K_{S}}(m,c)$ whenever there exists d such that $r \leftarrow \text{open}(m,c,d)$

NB: <u>adversaries can call this oracle</u> (except for some challenge tags)

Commit: to commit on *r* with tag *m*:

- 1. pick a random e, set d = r ||e|
- 2. send m || d to a random oracle H
- 3. get *c*

Decommit: check that H(m||d) = c, parse d = r||e and output r

Extract: look at the history of oracle calls and from *c* get *d* (provided no collision occured)

 \longrightarrow Instanciation: take H = SHA1 and hope it makes sense...

Equivocable Commitment in CRS Model Based on a Signature Scheme (MacKenzie-Yang 2004)

Simulate commit: $(c,\xi) \leftarrow \operatorname{simcommit}_{K_S}(m)$ **Equivocate:** $d \leftarrow \operatorname{equivocate}_{K_S}(m,c,r,\xi)$ such that $r \leftarrow \operatorname{open}(m,c,d)$

NB: <u>adversaries can call these oracles</u> (except for some challenge tags) but do not see ξ

Example:

- ★ Commitment based on DSA (assuming DSA is secure) Pedersen commitment of *r* over a random base $(g', (g')^s)$ such that $(g' \mod q, s) = \operatorname{sign}(m)$
 - signing m is equivalent to equivocating the Pedersen commitment
 - given *m*, it is easy to generate a random $(g', (g')^s)$ pair without K_S
- Commitment based on Cramer-Shoup (standard model)

Proof Step 1: Reducing to a One-Shot Attacker

- ⋆ NB: the protocol uses a single SAS
- ★ a single failing Bob requires a single SAS from a single Alice
 - \rightarrow there must be <u>one</u> crucial instance of Alice and <u>one</u> crucial instance of Bob
- \star given an attack of probability of success *p*, we pick a random instance of Alice and a random instance of Bob and we simulate all others
 - \rightarrow we obtain a one-shot attack with probability of success p/Q_AQ_B

Proof Step 2: Several Cases to Consider

An attacker must interleave the two following lists of actions (6 combinations)

$$\begin{array}{c|c} \operatorname{get} K_P \\ \mathsf{B1} & \pi_b \leftarrow \operatorname{launch}(\cdot, \operatorname{Bob}, \emptyset) \end{array}$$

A1 select m
$$\begin{array}{c|c} \pi_a \leftarrow \operatorname{launch}(\cdot, \operatorname{Alice}, m) \\ c \leftarrow \operatorname{send}(\pi_a, \emptyset) \\ \mathsf{A2} & \operatorname{select} \hat{R}_B \\ d \leftarrow \operatorname{send}(\pi_a, \hat{R}_B) \end{array} \qquad \begin{array}{c|c} \mathsf{B2} & \operatorname{select} \hat{m} || \hat{c} \\ & R_B \leftarrow \operatorname{send}(\pi_b, \hat{m} || \hat{c}) \\ & \mathsf{B3} & \operatorname{select} \hat{d} \\ & \operatorname{send}(\pi_b, \hat{d}) \end{array}$$

A3 authenticate_{\operatorname{Alice}}(\mathsf{SAS}) \leftarrow \operatorname{send}(\pi_a, \emptyset)

B4 send(π_b , authenticate_{Alice}(SAS))

We must consider either extractable or equivocable commitments (2 combinations)

Example: the A1-B2-A2-B3 Equivocable Case

Example: the A1-B2-A2-B3 Extractable Case

LASEC

Other Cases

similar (see Proceedings)

Conclusion

- * secure communications over insecure channels *can* be manually set up by a human operator
- ★ applications: personal area network, peer-to-peer, disaster rescue

LASEC