Secure Communications over Insecure Channels based on Short Authenticated Strings

Serge Vaudenay
http://lasecwww.epfl.ch/
(PP)
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Crypto’05

Secure Communications

Basic Security Properties

＊Confidentiality（C）：only the legitimate receiver can get X
＊Authentication＋Integrity（ $\mathrm{A}+\mathrm{I}$ ）：only the legitimate sender can insert X and the received message must be equal to X

...based on C+A+l Channels: the Conventional Model

...based on A+I Channels: the Merkle Model 1975

...based on C+A+l Narrowband Channels: the Bellovin-Merritt Model 1992

The Missing Stone

Cryptography Based on Short Authenticated Strings (SAS)

Message Authentication Protocols

* can be used to transmit a public key
* can be used (in both ways) to run the Diffie-Hellman protocol

Communication Model

＊secure channel $(\mathrm{A}+\mathrm{I})$ with low bandwidth

Communication Model：Adversary Capabilities

Regular channels：the adverary can do whatever he／she wants with the messages：modify，create， swap，remove，stall，．．．
（Weak）authenticated channels：the adversary cannot modify nor create messages．He／she can swap，remove，stall，．．．
（Strong）authenticated channels：same plus some additional assumptions！
E．g．messages must be either deliver at once or removed（stall－free channels）．

Application I: Personal Area Network Setup (Bluetooth, UWB, ...)

Application II: Peer-to-Peer PGP Channel Setup

File Authentication

Application III：Disaster Recovery

\star on the road，after a key loss（computer crash，stolen laptop）
\longrightarrow set up of a security association
＊PKI collapse（company bankrupt，main key sold，act of God）
\longrightarrow set up of a security association

Adversarial Model

Goal：to make an instance of Bob output ID，\hat{m} without any instance on Alice on node ID with input \hat{m} ．

Folklore Protocol（Balfanz－Smetters－Stewart－Chi Wong 2002）

$$
\begin{array}{ll}
\text { Alice } & \text { Bob } \\
\text { input: } m &
\end{array}
$$

$$
\xrightarrow{m}
$$

output：Alice，\hat{m}

Security

Theorem 1．If H is a collision resistant hash function onto $\{0,1\}^{k}$ ，the protocol resists to impersonation attempts．
（）provable security，efficient（assuming collision resistance）
）$)$ this requires SAS of at least 160 bits

Gehrmann－Mitchel－Nyberg 2004：The MANA I Protocol

$$
\begin{array}{lr}
\text { Alice } & \text { Bob } \\
\text { input: } m &
\end{array}
$$

pick $K \in_{U}\{0,1\}^{k}$
output：Alice，\hat{m}

Insecurity of MANA I

$$
\begin{array}{lc}
\text { Alice } & \text { Bob } \\
\text { input: } m &
\end{array}
$$

pick $K \in_{U}\{0,1\}^{k} \longrightarrow \cdots$

$$
\mu \leftarrow H_{K}(m) \quad \xrightarrow{\text { authenticate }_{\text {Alice }}(K| | \mu)} \cdots
$$

[find \hat{m} s.t. $H_{K}(m)=H_{K}(\hat{m})$]

$$
\ldots \xrightarrow{\text { authenticate }_{\text {Alice }^{(K \mid \mu)}}(\underline{\mu})}
$$

$$
\text { check } \mu=H_{K}(\hat{m})
$$

output: Alice, \hat{m}

Security of MANA I

Theorem 2．Using a universal hash function family H which produces ℓ－bit codes and in a strong communication model，the maximal probability of success of an impersonation of Alice when limited to Q_{A} runs of Alice＇s protocol and Q_{B} runs of Bob＇s protocol is at most $Q_{A} Q_{B} 2^{-k-\ell}$ ．we can work with SAS of $k+\ell=20$ bitsstrong requirement on the communication model

A SAS－Based Authentication Protocol

SAS-Based Authentication

$$
\begin{aligned}
& \text { Alice Bob } \\
& \text { input: } m \\
& \text { pick } R_{A} \in_{U}\{0,1\}^{k} \\
& (c, d) \leftarrow \operatorname{commit}\left(m, R_{A}\right) \quad \begin{array}{l}
\quad \begin{array}{c}
\| \\
\longleftrightarrow
\end{array} \\
R_{B}
\end{array} \\
& \begin{array}{ll}
\mathrm{SAS} \leftarrow R_{A} \oplus \hat{R}_{B} \quad \begin{array}{l}
\frac{d}{\text { authenticate }_{\text {Alice }}(\mathrm{SAS})}
\end{array} & \begin{array}{l}
\hat{R}_{A} \leftarrow \operatorname{open}(\hat{m}, \hat{c}, \hat{d}) \\
\text { check SAS }=\hat{R}_{A} \oplus R_{B}
\end{array}
\end{array} \\
& \text { output: Alice, } \hat{m}
\end{aligned}
$$

Security

Theorem 3．Under reasonable assumptions on the commitment scheme（either extractable or equivocable），the maximal probability of success of an impersonation of Alice when limited to Q_{A} runs of Alice＇s protocol and Q_{B} runs of Bob＇s protocol is at most $Q_{A} Q_{B} 2^{-k}+\varepsilon$ ．
provable security，efficientwe can work with SAS of 20 bits

Tag－Based Commitment Schemes

Set up：$\left(K_{P}, K_{S}\right) \leftarrow \operatorname{setup}()$
Commit：$\quad(c, d) \leftarrow \operatorname{commit}(m, r)$ commit to r of k bits with tag m
Decommit：$r \leftarrow \operatorname{open}(m, c, d)$ whenever r is such that (c, d) is a possible output of commit (m, r)

Hiding Game

Adversary		Challenger
	K_{P}	setup（）
select m	m	pick r
	c	commit（ m, r ）
compute r^{\prime}		
win if $r^{\prime}=r$		
$\operatorname{Pr}[$ win $] \leq 2^{-k}+\varepsilon$		

Binding Game

Extractable Commitment Based on a Random Oracle

Extract: $r \leftarrow \operatorname{extract}_{K_{S}}(m, c)$ whenever there exists d such that $r \leftarrow$ open (m, c, d)

NB: adversaries can call this oracle (except for some challenge tags)

Commit: to commit on r with tag m :

1. pick a random e, set $d=r \| e$
2. send $m \| d$ to a random oracle H
3. get c

Decommit: check that $H(m \| d)=c$, parse $d=r \| e$ and output r
Extract: look at the history of oracle calls and from c get d (provided no collision occured)
\longrightarrow Instanciation: take $H=$ SHA1 and hope it makes sense...

Equivocable Commitment in CRS Model Based on a Signature Scheme（MacKenzie－Yang 2004）

Simulate commit：$(c, \xi) \leftarrow \operatorname{simcommit}_{K_{S}}(m)$
Equivocate：$d \leftarrow$ equivocate $_{K_{S}}(m, c, r, \xi)$ such that $r \leftarrow \operatorname{open}(m, c, d)$

NB：adversaries can call these oracles（except for some challenge tags）but do not see ξ

Example：
＊Commitment based on DSA（assuming DSA is secure）
Pedersen commitment of r over a random base $\left(g^{\prime},\left(g^{\prime}\right)^{s}\right)$ such that $\left(g^{\prime} \bmod q, s\right)=\operatorname{sign}(m)$
－signing m is equivalent to equivocating the Pedersen commitment
－given m ，it is easy to generate a random $\left(g^{\prime},\left(g^{\prime}\right)^{s}\right)$ pair without K_{S}
＊Commitment based on Cramer－Shoup（standard model）

Proof Step 1：Reducing to a One－Shot Attacker

＊NB：the protocol uses a single SAS
＊a single failing Bob requires a single SAS from a single Alice
\rightarrow there must be one crucial instance of Alice and one crucial instance of Bob
＊given an attack of probability of success p ，we pick a random instance of Alice and a random instance of Bob and we simulate all others
\rightarrow we obtain a one－shot attack with probability of success $p / Q_{A} Q_{B}$

Proof Step 2：Several Cases to Consider

An attacker must interleave the two following lists of actions（6 combinations）

	get K_{P}
B1	$\pi_{b} \leftarrow \operatorname{launch}(\cdot$, Bob，$\emptyset)$

A1	select m	B2	$\operatorname{select} \hat{m} \\| \hat{c}$
	$\pi_{a} \leftarrow \operatorname{launch}(\cdot$, Alice，$m)$		$R_{B} \leftarrow \operatorname{send}\left(\pi_{b}, \hat{m} \\| \hat{c}\right)$
	$c \leftarrow \operatorname{send}\left(\pi_{a}, \emptyset\right)$		
A2	select \hat{R}_{B}	B3	$\operatorname{select} \hat{d}$
	$d \leftarrow \operatorname{send}\left(\pi_{a}, \hat{R}_{B}\right)$		$\operatorname{send}\left(\pi_{b}, \hat{d}\right)$

A3 authenticate Alice $(\mathrm{SAS}) \leftarrow \operatorname{send}\left(\pi_{a}, \oslash\right)$
B4 $\operatorname{send}\left(\pi_{b}\right.$, authenticate $\left._{\text {Alice }}(S A S)\right)$
We must consider either extractable or equivocable commitments（2 combinations）

Example: the A1-B2-A2-B3 Equivocable Case

```
One-Shot Attacker
(A1) }\stackrel{\stackrel{c}{c}}{\stackrel{\mp@subsup{K}{P}{}}{\leftrightarrows}
```

Simulator
$\stackrel{K_{P}}{\longleftarrow} \quad \operatorname{setup}()$
$c \leftarrow \operatorname{simcommit}(m)$
(B2) $\xrightarrow{\hat{m}|\mid \hat{c}}$
$\begin{array}{cc} \\ \text { (A2) } & \text { pick } R_{B} \\ \stackrel{R_{B}}{\leftrightarrows} & R_{A} \leftarrow \hat{R}_{A} \oplus R_{B} \oplus \hat{R}_{B}\end{array}$
(B3) $\xrightarrow{\hat{d}}$

Example：the A1－B2－A2－B3 Extractable Case

Other Cases

similar（see Proceedings）

Conclusion

* secure communications over insecure channels can be manually set up by a human operator
* applications: personal area network, peer-to-peer, disaster rescue

