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Focus of this Talk

I Information theoretically secure one-way secret-key
agreement.

I A special class of random variables.

I Circuit polarization.

Thomas Holenstein and Renato Renner ETH Zürich
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Setting
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X1, . . . , Xn Y1, . . . , Yn
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Z1, . . . , Zn
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Setting

Alice Bob

X1, . . . , Xn Y1, . . . , Yn

Eve

Z1, . . . , Zn

M

SA SB

Pr[SA = SB ] ≥ 1− 2−k Given M , Z1, . . . , Zn:
∆(SA, U) ≤ 2−k

Thomas Holenstein and Renato Renner ETH Zürich
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Example

Alice Bob

0 1 0 1 1 1 0 0 1 ? 1 ? 1 0

? 1 0 ? 1 ? ? ?

Eve
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Example

Alice Bob

0 1 0 1 1 1 0 0 1 ? 1 ? 1 0

? 1 0 ? 1 ? ? ?

Eve
C ←R Code

(0 1 0 1 1 1 0)⊕ C

, Seed
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Bob can find C , Eve still has some uncertainity about C .
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Example

Alice Bob

0 1 0 1 1 1 0 0 1 ? 1 ? 1 0

? 1 0 ? 1 ? ? ?

Eve
C ←R Code

(0 1 0 1 1 1 0)⊕ C , Seed

SA

SB

Bob can find C , Eve still has some uncertainity about C .

Alice and Bob apply a strong extractor to C to get the key.

Thomas Holenstein and Renato Renner ETH Zürich
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One-Way Key Rate

If H(X |Z ) > H(X |Y ), then one-way key agreement is possible:

Information Reconciliation
Use enough instances of the random variables and
an appropriate error correcting code with rate
close to the capacity. This gives Alice and Bob a
common string with some privacy.

Privacy Amplification
Use an extractor to extract the key.

Rate achieved with this protocol: H(X |Z )− H(X |Y ).
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Preprocessing Helps

H(X |Z ) > H(X |Y ) is not a necessary condition:

X Y Z
00 0 0
01 0 1
10 1 0
11 1 1

H(X |Z ) = H(X |Y ) = 1.

Forgetting helps: Alice forgets the second bit, gets U :

H(U |Z ) = 1, H(U |Y ) = 0.

Sending helps: Alice sends the second bit (V ) to Bob:

H(X |ZV ) = 1, H(X |YV ) = 0.

Thomas Holenstein and Renato Renner ETH Zürich
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Preprocessing Helps

Forgetting and sending is sufficient:

Theorem (Ahlswede, Csiszár, 1993)

The key rate for one-way communication is

S→(X ; Y |Z ) = max
(U,V )↔X↔YZ

H(U |ZV )− H(U |YV ).

A proof of optimality can be found in [AC93] and is sketched
in the paper.

(Remark: In the paper it is also shown how this rate can be
achieved with poly-time Alice and Bob.)

Thomas Holenstein and Renato Renner ETH Zürich
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A Class of Random Variables: D(α, β)

I Alice and Bob have bits X and Y with correlation α:

Pr[X = Y ] ≥ 1 + α

2
.

I With probability β, Information about X is leaked to Eve.
Otherwise, Eve stays ignorant.

Standard Example:

X ∈R {0, 1}

pflip = 1−α
2

Y ∈ {0, 1}
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A Class of Random Variables: D(α, β)

I Alice and Bob have bits X and Y with correlation α:

Pr[X = Y ] ≥ 1 + α

2
.

I With probability β, Information about X is leaked to Eve.
Otherwise, Eve stays ignorant.

Standard Example:

X ∈R {0, 1}

pflip = 1−α
2

Y ∈ {0, 1}Z ∈ {0, 1,⊥}

perasure = 1− β

Thomas Holenstein and Renato Renner ETH Zürich
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Key-Rate for the Class D(α, β)

Let PXYZ ∈ D(α, β) be α-correleated, leakage β. Can
“forgetting” increase H(U |ZV )− H(U |YV )?

Thomas Holenstein and Renato Renner ETH Zürich
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Key-Rate for the Class D(α, β)

Let PXYZ ∈ D(α, β) be α-correleated, leakage β. Can
“forgetting” increase H(U |ZV )− H(U |YV )?

Yes: X

pflip = λ

U
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Key-Rate for the Class D(α, β)

Let PXYZ ∈ D(α, β) be α-correleated, leakage β. Can
“forgetting” increase H(U |ZV )− H(U |YV )?

Yes: X

pflip = λ

U

0
0.5 1

−0.02

−0.04

λ

H(U |Z )− H(U |Y )

Example: (α = 0.8, β = 0.59)

Thomas Holenstein and Renato Renner ETH Zürich
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Key-Rate for the Class D(α, β)

If Alice gets a random bit, Bob a “binary symmetric”
noisy version, Eve an “erasure channel” noisy
version, then adding noise hurts Eve more than Bob,
i.e., increases H(U |ZV )− H(U |YV ).

Question: Can we do better than this?

Answer: No. Use

H(U |ZV )− H(U |YV ) =

H(Z |UV )− H(Y |UV )− (H(Z |V )− H(Y |V )),

to prove optimality (see paper for details).
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Introduction Class of Random Variables Circuit Polarization Conclusions

Key-Rate for the Class D(α, β)

If Alice gets a random bit, Bob a “binary symmetric”
noisy version, Eve an “erasure channel” noisy
version, then adding noise hurts Eve more than Bob,
i.e., increases H(U |ZV )− H(U |YV ).

Question: Can we do better than this?

Answer: No. Use

H(U |ZV )− H(U |YV ) =

H(Z |UV )− H(Y |UV )− (H(Z |V )− H(Y |V )),

to prove optimality (see paper for details).

Thomas Holenstein and Renato Renner ETH Zürich
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Key-Rate for the Class D(α, β)

Theorem

For α-correlated random variables which leak information with
probability β the key rate is:

S→(X ; Y |Z ) =

{
maxλ gα,β(λ) ≥ (α2−β)2

7
α2 > β

0 otherwise.

0
0.5 1−0.02

−0.04

gα,β(λ) α = 0.8, β = 0.59

Thomas Holenstein and Renato Renner ETH Zürich
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Honest Verifier Statistical Zero Knowledge

Zero Knowledge Proof of Graph-Nonisomorphism

G0 G1
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Honest Verifier Statistical Zero Knowledge

Zero Knowledge Proof of Graph-Nonisomorphism

G0 G1

Verifier

Choose π, b

Prover

Find b

π(Gb)

b

Check answer

Thomas Holenstein and Renato Renner ETH Zürich



Introduction Class of Random Variables Circuit Polarization Conclusions

HVSZK: Circuits

Consider the following circuits:

C0 : Input: Randomness. Output: A permutation of G0

C1 : Input: Randomness. Output: A permutation of G1

G0 � G1 ⇒ ∆(C0, C1) = 1

G0
∼= G1 ⇒ ∆(C0, C1) = 0

Thomas Holenstein and Renato Renner ETH Zürich
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HVSZK: Circuits

Theorem (Sahai, Vadhan)

Any promise problem in HVSZK can be mapped to a pair of
circuits (C0, C1) such that:

I For yes-instances: ∆(C0, C1) ≥ 1− 2−k .

I For no-instances: ∆(C0, C1) ≤ 2−k .

The proof first constructs circuits with

I Yes-instances: ∆(C0, C1) ≥ α.

I No-instances: ∆(C0, C1) ≤ β.

and then polarizes these circuits.

Thomas Holenstein and Renato Renner ETH Zürich
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A HVSZK-Protocol for ∆(C0, C1) ≥ α

Given: pair (C0, C1) such that

I ∆(C0, C1) ≥ α or

I ∆(C0, C1) ≤ β,

where α2 > β.

Verifier Prover

Choose X1, . . . , Xn

Find Y1, . . . , Yn

Find SB

CX1 , . . . CXn

OWSKA(X1, . . . , Xn)

SB

Check if SA = SB

Thomas Holenstein and Renato Renner ETH Zürich
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A HVSZK-Protocol for ∆(C0, C1) ≥ α

Given: pair (C0, C1) such that

I ∆(C0, C1) ≥ α or
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where α2 > β.

Verifier Prover

Choose X1, . . . , Xn
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Circuit Polarization and OWSKA

Theorem

Oblivious circuit polarization and OWSKA for D(α, β) is
equivalent.

Proof:
I OWSKA implies (oblivious) circuit polarization (as

above).
I Oblivious circuit polarization implies OWSKA (similar).

Corollary

Oblivious circuit polarization is possible if and only if α2 > β.

Notes:
I Conjectured in Vadhan’s PhD thesis.
I Does not hold for non-oblivious polarization.

Thomas Holenstein and Renato Renner ETH Zürich
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Conclusions

I One-way secret-key agreement for α-correlated random
variables with leakage β is possible if and only if α2 > β.

I Oblivious circuit polarization is the same as one-way
secret-key agreement for α-correlated random variables
with leakage β.

I Also in the paper: immunization of public-key
bit encryption schemes (cf. [Dwork, Naor, Reingold,
EC 04] – this paper is also the origin of
OWSKA/Polarization-equivalence).

I Security proof of the OWSKA protocol in the paper uses
smooth Rényi-entropy [cf. Renner, Wolf, AC 05].

Thomas Holenstein and Renato Renner ETH Zürich
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smooth Rényi-entropy [cf. Renner, Wolf, AC 05].

Thomas Holenstein and Renato Renner ETH Zürich
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