ON CODES, MATROIDS AND

 SECURE MULTI-PARTY COMPUTATION FROM LINEAR SECRET SHARING SCHEMESR. Cramer, V. Daza, I. Gracia, J. Jiménez Urroz, G. Leander, J. Martí-Farré, C. Padró

CWI Amsterdam, UPC Barcelona, Ruhr-University Bochum

SHAMIR'S SECRET SHARING SCHEME

In Shamir's (d, n)-threshold scheme, we have n players and $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{K}$
$f(x)=a_{0}+a_{1} x+\cdots+a_{d-1} x^{d-1} \in \mathbb{K}[x]$ a random polynomial $\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ are shares for the secret value $f\left(x_{0}\right) \in \mathbb{K}$

Shamir 1979

It has a (d,n)-threshold access structure

It is linear and ideal

If $n \geq 2 d-1$, it is multiplicative,
if $n \geq 3 d-2$, it is strongly multiplicative

SHAMIR'S SECRET SHARING SCHEME IS MULTIPLICATIVE

$\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ shares for the secret $k=f\left(x_{0}\right)$
($g\left(x_{1}\right), \ldots, g\left(x_{n}\right)$) shares for the secret $k^{\prime}=g\left(x_{0}\right)$
Then, for every subset $A \subset P$ with $2 d-1$ players

$$
k k^{\prime}=f\left(x_{0}\right) g\left(x_{0}\right)=\sum_{i \in A} \lambda_{i, A} f\left(x_{i}\right) g\left(x_{i}\right)
$$

The values $\left(\lambda_{i, A}\right)_{i \in A}$ do not depend on the random choice of f, g
If $n \geq 2 d-1$, Shamir's scheme is multiplicative
If $n \geq 3 d-2$, it is strongly multiplicative: for every unqualified subset $B \notin \Gamma$, the shares of the players in $A=P-B$ are enough to compute the multiplication

SHAMIR'S SECRET SHARING SCHEME AND MULTI-PARTY COMPUTATION

Since Shamir's scheme is linear, shares for $\mu k+\mu^{\prime} k^{\prime} \in \mathbb{K}$
can be found by computing the same
linear combination on shares of k and k^{\prime}
Since Shamir's scheme is multiplicative, shares for the product $k k^{\prime} \in \mathbb{K}$ can be obtained from shares of k and k^{\prime}

By using those properties, a multi-party computation protocol secure against an adversary controlling
up to $d-1$ players is obtained
Passive adversary if $n \geq 2 d-1$, active adversary if $n \geq 3 d-2$

$$
\begin{array}{r}
\text { Ben-Or \& Goldwasser \& Wigderson } 1988 \\
\text { Chaum \& Crépeau \& Damgård } 1988
\end{array}
$$

GENERAL SECURE MULTI-PARTY COMPUTATION (1)

How to find an efficient multi-party computation protocol for a general (non-threshold) adversary?

Theorem There exists a MPC protocol for an adversary structure $\mathcal{A} \subset P$ if and only if \mathcal{A} is \mathcal{Q}_{2} for a passive adversary ($n \geq 2 d-1$ if threshold) \mathcal{A} is \mathcal{Q}_{3} for an active adversary ($n \geq 3 d-2$ if threshold)

Hirt \& Maurer 1997

GENERAL SECURE MULTI-PARTY COMPUTATION (2)

Theorem For an (active) adversary $\mathcal{A} \subset P$, one can efficiently obtain a MPC protocol from any (strongly) multiplicative linear secret sharing scheme with access structure Γ with $\Gamma \cap \mathcal{A}=\emptyset$

In the active case, strong multiplication is not needed if a negligible error probability is admitted

$$
\text { Cramer \& Damgård \& Maurer } 2000
$$

Corollary For a threshold adversary, Shamir's scheme provides efficient MPC protocols

MULTIPLICATIVE LINEAR SECRET SHARING SCHEMES

For an access structure Γ, the values $\lambda_{\mathbb{K}}(\Gamma), \mu_{\mathbb{K}}(\Gamma), \mu_{\mathbb{K}}^{\prime}(\Gamma)$ are, respectively, the complexities of the best \mathbb{K}-LSSS, \mathbb{K}-MLSSS, \mathbb{K}-SMLSSS for Γ
$\lambda_{\mathbb{K}}(\Gamma)=\mu_{\mathbb{K}}(\Gamma)=\mu_{\mathbb{K}}^{\prime}(\Gamma)=n$ if Γ is a threshold structure
Theorem If Γ is \mathcal{Q}_{2}, then $\mu_{\mathbb{K}}(\Gamma) \leq 2 \lambda_{\mathbb{K}}(\Gamma)$
Cramer \& Damgård \& Maurer 2000
Corollary In the passive case, a MPC protocol for a \mathcal{Q}_{2} adversary structure \mathcal{A} is efficiently obtained from any LSSS with \mathcal{Q}_{2} access structure Γ with $\Gamma \cap \mathcal{A}=\emptyset$

OPEN PROBLEMS ON MULTIPLICATIVE LINEAR SECRET SHARING SCHEMES

Open Problem Is it possible to efficiently construct a strongly multiplicative LSSS from any LSSS?
Or, is $\mu_{\mathbb{K}}^{\prime}(\Gamma)$ polynomial on $\lambda_{\mathbb{K}}(\Gamma)$?

Open Problem In which situations can we remove the factor 2 in $\mu_{\mathbb{K}}(\Gamma) \leq 2 \lambda_{\mathbb{K}}(\Gamma)$?

Or, with some restrictions:

Suppose Γ is self-dual (\equiv minimally \mathcal{Q}_{2}) with $\lambda_{\mathbb{K}}(\Gamma)=n$ Is there a finite field $\mathbb{L} \supset \mathbb{K}$ such that $\mu_{\mathbb{L}}(\Gamma)=\lambda_{\mathbb{L}}(\Gamma)=n$?

OUR RESULTS

We find a connection between the first open problem and efficient error-correction in linear codes

The second open problem is proved to be equivalent to an open problem on Matroid Theory and we take the first steps to solve it

LINEAR CODES AND LINEAR SECRET SHARING SCHEMES

A LSSS can be represented by a $d \times(\lambda+1)$ matrix M

$$
\left(x_{1}, \ldots, x_{d}\right)\left(\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\pi_{0} & \pi_{1} & \cdots & \pi_{n} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right)=\left(k, s_{1}, \ldots, s_{n}\right)
$$

where the linear mappings $\pi_{i}: E \rightarrow E_{i}$ define the LSSS
M can be seen as a generator matrix of a linear code with dimension $d=\operatorname{dim} E$ and length $\lambda+1$.

RECONSTRUCTING THE SECRET IN THE PRESENCE OF ERRORS

Let $\left(k, s_{1}, \ldots, s_{n}\right)$ be a distribution of shares by a LSSS. Suppose that some shares have been corrupted:
$\left(c_{1}, \ldots, c_{n}\right)=\left(s_{1}+e_{1}, \ldots, s_{n}+e_{n}\right)$, where $A=\left\{i \in P: e_{i} \neq 0\right\} \notin \Gamma$

Can the secret k be reconstructed from $\left(c_{1}, \ldots, c_{n}\right)$?

Yes, if Γ is \mathcal{Q}_{3}. But, efficiently?

Theorem Yes, if the scheme is strongly multiplicative

Proof Similar to Pellikaan's generalization of
Berlekamp-Welch decoding algorithm for Reed-Solomon codes

MATROIDS, CODES AND IDEAL SECRET SHARING SCHEMES

An ideal \mathbb{K}-LSSS is represented by a $d \times(n+1)$ matrix M

$$
\left(x_{1}, \ldots, x_{d}\right)\left(\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\pi_{0} & \pi_{1} & \cdots & \pi_{n} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right)=\left(k, s_{1}, \ldots, s_{n}\right)
$$

M can be seen as a generator matrix of a linear code with dimension $d=\operatorname{dim} E$ and length $n+1$.

Besides, M defines a \mathbb{K}-representable matroid \mathcal{M} All generator matrices of a code define the same matroid

A matroid defines an access structure:
$A \in \Gamma \Longleftrightarrow \pi_{0} \in\left\langle\pi_{i} \mid i \in A\right\rangle \Longleftrightarrow \operatorname{rank}(A \cup\{0\})=\operatorname{rank}(A)$

DUALITY

The dual code: Let \mathcal{C} be a $[n+1, d]$-linear code with generator matrix M and parity check matrix $N\left(M N^{\top}=0\right)$ The dual code \mathcal{C}^{\perp} is the $[n+1, n-d+1]$-linear code with generator matrix N.

The dual matroid: $B \subset Q$ basis of $\mathcal{M}^{*} \Longleftrightarrow Q-B$ basis of \mathcal{M}

The dual access structure: $A \in \Gamma^{*} \Longleftrightarrow P-A \notin \Gamma$

TWO EQUIVALENT OPEN PROBLEMS

Self-dual code \longrightarrow SD matroid \longleftrightarrow SD access structure
Open Problem
Let Γ be a self-dual access structure with $\lambda_{\mathbb{K}}(\Gamma)=n$
Does there exist a finite field $\mathbb{L} \supset \mathbb{K}$
such that $\mu_{\mathbb{L}}(\Gamma)=\lambda_{\mathbb{L}}(\Gamma)=n$?
Open Problem
Let \mathcal{M} be a \mathbb{K}-representable self-dual matroid
Do there exist a finite field $\mathbb{L} \supset \mathbb{K}$ and a
self-dual code \mathcal{C} representing \mathcal{M} over \mathbb{L} ?
The answer is affirmative for: uniform matroids $U_{d, 2 d}$, self-dual binary ($\mathbb{K}=\mathbb{Z}_{2}$) matroids, $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$

A NEW FAMILY OF SELF-DUALLY REPRESENTABLE MATROIDS

Definition A matroid \mathcal{M} is bipartite if there is a partition $Q=X_{1} \cup X_{2}$ such that every permutation $\sigma: Q \rightarrow Q$ with $\sigma\left(X_{1}\right)=X_{1}$ is an automorphism of \mathcal{M}.

Theorem All bipartite matroids are representable

$$
\text { Padró \& Sáez 1998, Ng \& Walker } 2001
$$

Theorem Every self-dual bipartite matroid is represented by a self-dual code

The proof deals with polynomial equations
So, some Algebraic Geometry has been used

A NEW FAMILY OF SELF-DUALLY REPRESENTABLE MATROIDS

Therefore, we have found a wide new family of self-dually representable matroids

Most of them are indecomposable

This family is a natural step from self-dual uniform matroids

The techniques in the proof may be useful for future research on that open problem

CONCLUSION

We have studied two open problems about the multiplicative property of linear secret sharing schemes

We have done that by using some connections to Code Theory and Matroid Theory

Strong multiplication in LSSS implies efficient error correction

The other open problem is proved to be equivalent to a challenging open problem on Matroid Theory

Some steps have been taken on its solution

