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Motivation

Consider the extension field Fpn .

Let g be a generator of F×
pn , and let h ∈ 〈g〉

DLP: Given g and h, compute s such that gs = h

Basic question: Are all extension fields of the same size
equally secure?
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Motivation
Current approaches to the DLP

Two methods:

Pohlig-Hellman reduction + square root algorithm

Index calculus in full multiplicative group F×
pn

Implications:

Use prime order subgroup of size ≥ 160 bits which does
not embed into a subfield

Choose Fpn of size ≥ 1024 bits

Better question: Do these measures alone ensure security?
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Motivation
A pertinent example

Take two “cryptographically secure” fields:

F1 = Fp29
1

F2 = Fp30
2

Assume that:

b29 · log2 p1c = b30 · log2 p2c = 1024

F×
1 and F×

2 both contain prime order subgroups ≥ 160-bits
which do not embed into a proper subfield

Better question still: Are F×
1 and F×

2 equally secure?
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Group decomposition

The identity |F×
pn | = pn − 1 =

∏
d |n Φd(p), with Φd(·) the d-th

cyclotomic polynomial =⇒

Φd(p)|(pd − 1) and so subgroup of this order embeds into
Fpd ⊂ Fpn

subgroup of order Φn(p) can not be attacked by index
calculus in proper subfields of Fpn

subgroup of order Φn(p) is “cryptographically strongest”
subgroup of F×

pn

In particular, |Φn(p)| = O(pφ(n)).
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Motivation
Back to F1 and F2...

Strongest subgroups have orders O(p28
1 ) and O(p8

2)
respectively, so

| log Φ29(p1)|/| log Φ30(p2)| ≈ 3.5

Hence if there is a native attack in these subgroups then it
should be more efficient for F2 than for F1.

Question: How can one exploit properties of these subgroups
in an attack?

Answer: Interpret them as algebraic tori!
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Overview of Results

First direct index calculus attack on Algebraic Tori

Practical upper bounds for the DLP in cryptographically
relevant tori

Fields of the same size previously thought to be equally
secure are not always so
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Background on Algebraic Tori

Consider the degree n extension K = Fqn of k = Fq.

Galois group Gal(K/k) = 〈σ〉 with σ : K −→ K : α 7→ αq

The norm map of K w.r.t. k is defined as

NK/k (α) =
n−1∏
i=0

σi(α) = α(qn−1)/(q−1)

The Fq-rational points on the algebraic torus Tn are

Tn(Fq) = {α ∈ Fqn | NK/kd
(α) = 1 for all k ⊆ kd ( K}

= {α ∈ Fqn |αΦn(q) = 1}

where Φn(x) is the n-th cyclotomic polynomial.

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Rationality

Tn is in fact an algebraic variety over Fq of dimension φ(n)

Definition

Tn is called rational if there exists birational map defined over Fq

ψ : Aφ(n) −→ Tn

Implication: if Tn rational then compression factor n/φ(n)

Theorem: Tn is rational for n = pe1
1 pe2

2 with pi prime

R. Granger, F. Vercauteren DLP on Algebraic Tori
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A Brief History
Torus-based systems in the last decade

System Year Embedding Field Compression
LUC ’95 Fp2 2

Gong-Harn ’99 Fp3 3/2
XTR ’00 Fp6 3

XTR-extension ’01 Fp6m 3
CEILIDH ’03 Fp6 3

T30 ’05 Fp30 30/8

All pairing-based protocols map to tori as well.
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Security Assumptions

Tn(Fq) ⊂ F×
qn =⇒ DLP in Tn(Fq) is no harder than DLP in

F×
qn

The identity xn − 1 =
∏

d |n Φd(x) ∈ Z[x ], plus
Pohlig-Hellman reduction =⇒

DLP in {Td(Fq)}d |n ⇐⇒ DLP in F×
qn

Since other tori embed into subfields, we deduce

DLP in Tn(Fq) ⇐⇒ DLP in F×
qn

Conclusion: weak torus =⇒ weak embedding field
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A Native Algorithm?

Observation: Finite field embedding introduces
redundancy in an attack, so ideally we want to work
directly on the torus. How?

Use affine representation of Tn!

Problem: Tn not a UFD, so no natural notion of
smoothness

Solution: Impose a notion of smoothness algebraically
(Gaudry 2004)

Define a factor base in Tn which generates ‘enough’ of Tn,
and which also permits an algebraic decomposition
Then use standard index calculus technique
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The Torus T2(Fqm)

Let Fq2m = Fqm [γ]/(γ2 − δ), with δ ∈ Fqm \ Fq non-square (q
odd)

For α = α0 + γα1 ∈ Fq2m , the norm is

NK/k (α) = α · σ(α) = (α0 + γα1)(α0 − γα1) = α2
0 − δα2

1

By definition, the torus T2(Fqm) is given by

T2(Fqm) = {x + γy ∈ Fq2m : x2 − δy2 = 1}.

T2 is of dimension 1, #T2(Fqm) = qm + 1 and rational, with

ψ : A(Fqm) −→ T2(Fqm) : z 7→ z − γ

z + γ

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Index Calculus for T2(Fqm)

DLP: let 〈P〉 = T2(Fqm) and Q = Ps, compute s

Let Fqm = Fq[t ]/(f (t)) with f ∈ Fq[t ] irreducible of degree m

Decomposition base containing q elements:

F =

{
a− γ

a + γ
: a ∈ Fq

}
⊂ T2(Fqm)

Index calculus:
Generate random combinations R = P j ·Qk

Try to decompose R over F
Collect more than q relations and find s using linear algebra

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Decomposition for T2(Fqm)

Since (ResFqm /Fq T2)(Fq) is m-dimensional, given

R = P j ·Qk ∈ T2(Fqm), want to find m elements Pi ∈ F with

P1 · · · · · Pm = R

Using the rationality of T2, we can equivalently write

m∏
i=1

(
ai − γ

ai + γ

)
=

r − γ

r + γ

Note: ai ∈ Fq are unknown, r ∈ Fqm is known

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Decomposition for T2(Fqm)

Denote σi(a1, . . . ,am) the i-th symmetric polynomial, then

σm − σm−1γ + · · ·+ (−1)mγm

σm + σm−1γ + · · ·+ γm =
r − γ

r + γ

Since γ2 = δ ∈ Fqm , we finally obtain

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)γ

b0(σ1, . . . , σm) + b1(σ1, . . . , σm)γ
=

r − γ

r + γ

Polynomials b0 and b1 are linear in σi for i = 1, . . . ,m

Using affine representation, we obtain 1 equation over Fqm

b0(σ1, . . . , σm)− b1(σ1, . . . , σm)r = 0

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Decomposition for T2(Fqm)

Writing out on basis of {1, t , . . . , tm−1} of Fqm gives

m linear equations over Fq in the m unknowns σi

Factor p(x) := xm − σ1xm−1 + σ2xm−2 − · · ·+ (−1)mσm

over Fq

If p(x) splits completely, found a relation!

Note: p(x) splits with probability 1/m!.

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Complexity of T2-algorithm

Complexity of the T2-algorithm to compute DLOGs in
T2(Fqm) is

O(m! · q · (m3 + m2 log q) + m3q2) operations in Fq

Index calculus in F×
q2m runs in time Lq2m(1/2, c)

For q ' m!, the T2 algorithm runs in time Lqm(1/2, c′)

R. Granger, F. Vercauteren DLP on Algebraic Tori
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The Torus T6(Fqm)

For qm ≡ 2 or 5 (mod 9), let x = ζ3 and y = ζ9 + ζ−1
9

Fq3m = Fqm [y ] and Fq6m = Fq3m [x ]

By definition, the Fqm -rational points on T6 are

T6(Fqm) = {α ∈ Fq6m |NFq6m /Fq3m
(α) = 1, NFq6m /Fq2m

(α) = 1}

T6 has dimension 2, #T6(Fqm) = Φ6(qm) = q2m − qm + 1

Birational map ψ : A2(Fqm) −→ T6(Fqm)

ψ(α1, α2) =
1 + α1y + α2(y2 − 2) + (1− α2

1 − α2
2 + α1α2)x

1 + α1y + α2(y2 − 2) + (1− α2
1 − α2

2 + α1α2)x2

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Index Calculus for T6(Fqm)

DLP: let 〈P〉 = T6(Fqm) and Q = Ps, find s

Let Fqm = Fq[t ]/(f (t)) with f ∈ Fq[t ] irreducible of degree m

Decomposition base consists of ψ(at ,0) for a ∈ Fq

F =

{
1 + (at)y + (1− (at)2)x
1 + (at)y + (1− (at)2)x2 : a ∈ Fq

}
Since (ResFqm /Fq T6)(Fq) is 2m-dimensional, to decompose

R = P j ·Qk , want to find P1, . . . ,P2m ∈ F such that

P1 · · · · · P2m = R

R. Granger, F. Vercauteren DLP on Algebraic Tori
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Decomposition for T6(Fqm)

Let Pi = ψ(ai t ,0) with ai ∈ Fq, then

2m∏
i=1

(
1 + (ai t)y + (1− (ai t)2)x
1 + (ai t)y + (1− (ai t)2)x2

)
= R = ψ(r1, r2)

Rewriting this using elementary symmetric polynomials σi

gives

b0 + b1y + b2(y2 − 2)

c0 + c1y + c2(y2 − 2)
=

1 + r1y + r2(y2 − 2)

1− r2
1 − r2

2 + r1r2

bk and ck are quadratic polynomials in the σi for
i = 1, . . .2m
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Decomposition for T6(Fqm)

Writing out on basis of {1, t , . . . , tm−1} of Fqm gives 3m
quadratic equations over Fq in the 2m unknowns σi

Use Gröbner basis algorithms to compute the solutions σi

Factor p(x) := x2m −σ1x2m−1 +σ2x2m−2−· · ·+(−1)2mσ2m

over Fq

If p(x) splits completely, found a relation!

Note: p(x) splits with probability 1/(2m)!
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Complexity of T6-algorithm

Complexity of the T6-algorithm to compute DLOGs in
T6(Fqm) is

O((2m)! · q · (212m + 32m log q) + m3q2) operations in Fq

Index calculus in F×
q6m runs in Lq6m(1/2, c)

For q ' (2m)!212m, the T6 algorithm runs in time
Lqm(1/2, c′)
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T6 Experimental Results

log2 of expected running times (s) of the T6-algorithm and
Pollard-Rho in a subgroup of size 2160

m
log2 |Fp6m | log2 |T6(Fpm)| ρ 1 2 3 4 5

200 67 18 25 18 14 20 29
300 100 34 42 36 21 24 32
400 134 52 59 54 32 29 36
500 167 66 75 71 44 33 39
600 200 66 93 88 55 40 42
700 234 66 109 105 67 48 46
800 267 66 127 122 78 57 51
900 300 68 144 139 90 65 56

1000 334 69 161 156 101 74 60
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Application to T30(Fp)

A T30(Fp) cryptosystem was proposed at EUROCRYPT 2005
with the following parameters:

p = 2527138379, and so |Fp30 | ≈ 2937

T30(Fp) contains a subgroup of order ≈ 2160

Since Φ30(x)|Φ6(x5), we have the inclusion T30(Fp) ⊂ T6(Fp5),
and hence one can attack the former via the latter.

Question: What does this mean in practice?
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Application to T30(Fp)

To solve the DLP in T30(Fp):

Pollard rho time is 268 seconds

Our time is 258 seconds

Note:

This is with a non-optimised Magma implementation

Does not use the large prime variants of Thériault,
Gaudry-Thomé-Thériault and Nagao

Conclusion:

One should increase the base field size to thwart attack

For this field size, possibly no advantage of T30 over T6
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Summary

New algorithm to solve DLP in T2(Fqm) and T6(Fqm)

Exploits compact representation of algebraic tori

Upper bounds on the hardness of the DLP in Fqm for m > 1

Security of the DLP in Fq30 is questionable via T6(Fq5)

Does not influence security of MNT curves over Fp

Does not influence security of XTR over Fp
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Future work

Complexity of general algorithm with Diem’s choice of
factor base

Possibility of using 2m disjoint factor bases

P1 · · · · · P2m = R with Pi ∈ Fi ,Fi ∩ Fj = ∅ for i 6= j

Speeding up repeated Gröbner basis computation?
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