AN EFFICIENT CDH-BASED SIGNATURE SCHEME WITH A TIGHT SECURITY REDUCTION

Benoit Chevallier-Mames^{1,2}

 1 Gemplus ARSC/STD/CSE 2 Ecole Normale Supérieure, Paris

— Скурто '05 —

Contents

BACKGROUND

- Signature Scheme
- Proving Security
- Reductionist Security

2 The EDL Scheme

- The Scheme
- The Security of EDL
- Features of EDL
- Other variants of EDL

3 Our Scheme

- Our Scheme
- Features of Our Scheme
- Exact Security of Our Scheme
- Intuition of the Proof of Security

Signature Scheme Proving Security Reductionist Securit

SIGNATURE SCHEME

SIGNATURE SCHEME DEFINITION

A signature scheme SIG = (GENKEY, SIGN, VERIFY) is defined by the three following algorithms:

• • • • • • • • • • • •

Signature Scheme Proving Security Reductionist Securit

SIGNATURE SCHEME

SIGNATURE SCHEME DEFINITION

A signature scheme SIG = (GENKEY, SIGN, VERIFY) is defined by the three following algorithms:

• The key generation algorithm GENKEY.

Signature Scheme Proving Security Reductionist Security

SIGNATURE SCHEME

SIGNATURE SCHEME DEFINITION

A signature scheme SIG = (GENKEY, SIGN, VERIFY) is defined by the three following algorithms:

- The key generation algorithm GENKEY.
- The signing algorithm SIGN.

Signature Scheme Proving Security Reductionist Security

SIGNATURE SCHEME

SIGNATURE SCHEME DEFINITION

A signature scheme SIG = (GENKEY, SIGN, VERIFY) is defined by the three following algorithms:

- The key generation algorithm GENKEY.
- The signing algorithm SIGN.
- The verification algorithm VERIFY.

• • • • • • • • • • •

Signature Scheme Proving Security Reductionist Security

PROVING SECURITY THE ATTACKER MODEL

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

• Total break of the scheme (recovering the private key) – BK

Signature Scheme Proving Security Reductionist Security

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF

Signature Scheme Proving Security Reductionist Security

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- $\bullet\,$ Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

Signature Scheme Proving Security Reductionist Security

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- $\bullet\,$ Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

INFORMATION AVAILABLE TO THE ATTACKER

No message attack – NMA

Signature Scheme Proving Security Reductionist Security

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- $\bullet\,$ Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

INFORMATION AVAILABLE TO THE ATTACKER

- No message attack NMA
- Known message attack KMA

Signature Scheme Proving Security Reductionist Security

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- $\bullet\,$ Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

INFORMATION AVAILABLE TO THE ATTACKER

- No message attack NMA
- Known message attack KMA
- Chosen message attack CMA

Signature Scheme Proving Security Reductionist Security

GOAL OF THE ADVERSARY FOR A SIGNATURE SCHEME

- Total break of the scheme (recovering the private key) BK
- Universal forgery (can sign any message) UF
- Existential forgery (can sign one message) EUF

INFORMATION AVAILABLE TO THE ATTACKER

- No message attack NMA
- Known message attack KMA
- Chosen message attack CMA

Then, the strongest model is EUF-CMA.

Signature Scheme Proving Security Reductionist Security

PROVING SECURITY REDUCTIONIST SECURITY

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

Signature Scheme Proving Security Reductionist Security

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

• *e*-th root problem (*a.k.a.* RSA problem)

Signature Scheme Proving Security Reductionist Security

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- *e*-th root problem (*a.k.a.* RSA problem)
- Factorization

Signature Scheme Proving Security Reductionist Security

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- *e*-th root problem (*a.k.a.* RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH

Signature Scheme Proving Security Reductionist Security

REDUCTION TO HARD PROBLEMS

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- *e*-th root problem (*a.k.a.* RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

Signature Scheme Proving Security Reductionist Security

Reduction to hard problems

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- *e*-th root problem (*a.k.a.* RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

TIGHTNESS OF THE REDUCTION

An attacker that breaks the signature scheme with probability ε and within time τ is transformed into a solver of one hard problem, with probability ε' and within time τ' .

(日) (同) (三) (三)

GEMPLUS

Signature Scheme Proving Security Reductionist Security

Reduction to hard problems

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- *e*-th root problem (*a.k.a.* RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

TIGHTNESS OF THE REDUCTION

An attacker that breaks the signature scheme with probability ε and within time τ is transformed into a solver of one hard problem, with probability ε' and within time τ' .

• The reduction is *loose* if $\frac{\tau'}{\varepsilon'} \ll \frac{\tau}{\varepsilon}$

(日) (同) (三) (三)

GEMPLUS

Signature Scheme Proving Security Reductionist Security

Reduction to hard problems

An attacker that breaks the signature scheme is transformed into a solver of one hard problem.

- *e*-th root problem (*a.k.a.* RSA problem)
- Factorization
- Computational Diffie Hellman problem (being given g^x and g^a , find g^{ax}) CDH
- Discrete Logarithm (being given g^x and g, find x) DL

TIGHTNESS OF THE REDUCTION

An attacker that breaks the signature scheme with probability ε and within time τ is transformed into a solver of one hard problem, with probability ε' and within time τ' .

- The reduction is *loose* if $\frac{\tau'}{\varepsilon'} \ll \frac{\tau}{\varepsilon}$
- The reduction is tight if $\frac{\tau'}{\varepsilon'} \sim \frac{\tau}{\varepsilon}$

(日) (同) (三) (三)

GEMPLUS

The Scheme The Security of EDL Features of EDL Other variants of EDL

THE EDL SIGNATURE SCHEME

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

u = g^k (can be computed online)
 h = H(m, r)
 z = h^x
 v = h^k
 c = G(g, h, y, z, u, v)
 s = k + cx mod q

The signature on m is $\sigma = (z, r, s, c)$.

• • • • • • • • • • •

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

- $u = g^k$ (can be computed online) • $h = \mathcal{H}(m, r)$ • $z = h^x$ • $v = h^k$ • $c = \mathcal{G}(g, h, y, z, u, v)$
- $s = k + cx \mod q$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

< ロ > < 同 > < 三 > < 三

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

• $u = g^k$ (can be computed online) • $h = \mathcal{H}(m, r)$ • $z = h^x$ • $y = b^k$

•
$$c = \mathcal{G}(g, h, y, z, u, v)$$

• $s = k + cx \mod q$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message *m*, one computes $h' = \mathcal{H}(m, r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

Correctness:

< ロ > < 同 > < 三 > < 三

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

u = g^k (can be computed online)
h = H(m, r)
z = h^x

$$v = h^{k}$$

$$c = \mathcal{G}(g, h, y, z, u, v)$$

$$s = k + cx \mod a$$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

Correctness: $h' = \mathcal{H}(m, r) = h$

< □ > < 同 > < 回 > < Ξ > < Ξ

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

• $u = g^k$ (can be computed online)

$$h = \mathcal{H}(m, r)$$

$$z = h$$

6

6

$$v = h$$

$$c = \mathcal{G}(g, h, y, z, u, v)$$

$$s = k + cx \mod q$$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

CORRECTNESS: $u' = g^{s} y^{-c} = g^{k+cx} y^{-c} = g^{k+cx} g^{-cx} = g^{k} = u$

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92], [JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

- u = g^k (can be computed online)
 h = H(m, r)
 z = h^x
- $v = h^k$ • $c = \mathcal{G}(g, h, y, z, u, v)$ • $s = k + cx \mod q$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

CORRECTNESS: $v' = {h'}^s z^{-c} = h^{k+cx} z^{-c} = h^{k+cx} h^{-cx} = h^k = v$

The Scheme The Security of EDL Features of EDL Other variants of EDL

The EDL signature scheme

It is independently proposed in [CP92],[JS99] and proved in [GJ03] is defined as follows.

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

- $u = g^k$ (can be computed online) • $h = \mathcal{H}(m, r)$ • $z = h^x$
- $v = h^k$ • $c = \mathcal{G}(g, h, y, z, u, v)$ • $s = k + cx \mod q$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, r), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

CORRECTNESS: So $c = \mathcal{G}(g, h', y, z, u', v')$

• • • • • • • • • • • •

The Scheme The Security of EDL Features of EDL Other variants of EDL

THE SECURITY OF EDL

SECURITY OF EDL

The scheme is extremely secure:

The Scheme The Security of EDL Features of EDL Other variants of EDL

THE SECURITY OF EDL

SECURITY OF EDL

The scheme is extremely secure:

• Attacker model: EUF-CMA.

The Scheme The Security of EDL Features of EDL Other variants of EDL

THE SECURITY OF EDL

SECURITY OF EDL

The scheme is extremely secure:

- Attacker model: EUF-CMA.
- Hard problem: Computational Diffie Hellman

The Scheme The Security of EDL Features of EDL Other variants of EDL

THE SECURITY OF EDL

SECURITY OF EDL

The scheme is extremely secure:

- Attacker model: EUF-CMA.
- Hard problem: Computational Diffie Hellman
- The reduction is tight, in the random oracle model

The Scheme The Security of EDL Features of EDL Other variants of EDL

FEATURES OF EDL

EDL:

• Tight reduction to the CDH problem in the random oracle model

The Scheme The Security of EDL Features of EDL Other variants of EDL

FEATURES OF EDL

EDL:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group

The Scheme The Security of EDL Features of EDL Other variants of EDL

FEATURES OF EDL

EDL:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p + 2\ell_q + \ell_r$, which is for subgroup of \mathbb{Z}_p : 1024 + 2 * 176 + 111 = 1487 bits, and for elliptic curve groups: 3 * 176 + 111 = 639 bits

The Scheme The Security of EDL Features of EDL Other variants of EDL

FEATURES OF EDL

EDL:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p + 2\ell_q + \ell_r$, which is for subgroup of \mathbb{Z}_p : 1024 + 2 * 176 + 111 = 1487 bits, and for elliptic curve groups: 3 * 176 + 111 = 639 bits
- No online possibility (or [ST01] technique, that makes signature longer and cost more time to sign and verify)

The Scheme The Security of EDL Features of EDL Other variants of EDL

OTHER VARIANTS OF EDL

OTHER VARIANTS OF EDL

• Katz-Wang scheme ([KW03]), based on the Decisional Diffie-Hellman (DDH)

The Scheme The Security of EDL Features of EDL Other variants of EDL

OTHER VARIANTS OF EDL

OTHER VARIANTS OF EDL

- Katz-Wang scheme ([KW03]), based on the Decisional Diffie-Hellman (DDH)
- Katz-Wang scheme ([KW03]), based on the CDH, with shorter signatures

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

Our Scheme

EDL is defined as follows:

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in M$, one first randomly chooses $r \in \{0, 1\}^{\ell_r}$ and $k \in \mathbb{Z}_q$, then

•
$$u = g^k$$

• $h = \mathcal{H}(m, r)$
• $z = h^x$
• $v = h^k$
• $c = \mathcal{G}(g, h, y, z, u, v)$
• $s = k + cx \mod q$

The signature on m is $\sigma = (z, r, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, r, s, c)$ on a message *m*, one computes $h' = \mathcal{H}(m, r), \ u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

Image: A matrix and a matrix

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

Our Scheme

Step 1 of our construction is defined as follows (Appendix B):

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses

$$k \in \mathbb{Z}_q$$
, then

•
$$u = g^{\kappa}$$

• $h = \mathcal{H}(m, u)$
• $z = h^{\kappa}$
• $v = h^{k}$
• $c = \mathcal{G}(g, h, y, z, u, v)$
• $s = k + cx \mod q$

١.

The signature on *m* is $\sigma = (z, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, s, c)$ on a message m, one computes $h' = \mathcal{H}(m, u), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(g, h', y, z, u', v')$.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

Our Scheme

Our scheme is defined as follows (Section 4):

KEY GENERATION: The private key is a random number $x \in \mathbb{Z}_q$. The corresponding public key is $y = g^x$.

SIGNATURE: To sign a message $m \in \mathcal{M}$, one first randomly chooses

$$k \in \mathbb{Z}_q$$
, then

$$u = g^{k}$$

$$h = \mathcal{H}(u)$$

$$z = h^{k}$$

$$c = \mathcal{G}(m, g, h, y, z, u, v)$$

$$s = k + cx \mod q$$

The signature on *m* is $\sigma = (z, s, c)$.

VERIFICATION: To verify a signature $\sigma = (z, s, c)$ on a message *m*, one computes $h' = \mathcal{H}(u), u' = g^s y^{-c}$ and $v' = h'^s z^{-c}$. The signature σ is accepted iff $c = \mathcal{G}(m, g, h', y, z, u', v')$.

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

FEATURES OF OUR SCHEME

OUR SCHEME:

• Tight reduction to the CDH problem in the random oracle model

Our Scheme

Features of Our Scheme

FEATURES OF OUR SCHEME

OUR SCHEME:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

FEATURES OF OUR SCHEME

OUR SCHEME:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p + 2\ell_q$, which is for subgroup of \mathbb{Z}_p : 1024 + 2 * 176 = 1376 bits (-7%), and for elliptic curve groups: 3 * 176 = 528 bits (-17%)

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

FEATURES OF OUR SCHEME

OUR SCHEME:

- Tight reduction to the CDH problem in the random oracle model
- Short keys, short group
- Signature size is $\ell_p + 2\ell_q$, which is for subgroup of \mathbb{Z}_p : 1024 + 2 * 176 = 1376 bits (-7%), and for elliptic curve groups: 3 * 176 = 528 bits (-17%)
- Online possibility

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

EXACT SECURITY OF OUR SCHEME

We have the following theorem:

Theorem

Let A be an adversary which can produce, with success probability ε , an existential forgery under a chosen-message attack within time τ , after q_h queries to the hash oracles and q_s queries to the signing oracle, in the random oracle model. Then the computational Diffie-Hellman problem can be solved with success probability ε' within time τ' , with

$$arepsilon' \geq arepsilon - 2 q_s igg(rac{q_s + q_h}{q} igg)$$

and

$$au' \lesssim au + (6 q_s + q_h) au_0$$

where τ_0 is the time for an exponentiation in $G_{g,q}$.

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

•
$$u' = g^{s} y^{-c}$$

• $v' = h'^{s} z^{-c}$

So, in the exponent world,

- $k = \hat{s} \hat{c}x \mod q$
- $k' = \hat{s} \hat{c}x' \mod q$

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

•
$$u' = g^{s} y^{-c}$$

• $v' = h'^{s} z^{-c}$

So, in the exponent world,

- $k = \hat{s} \hat{c}x \bmod q$
- $large k' = \hat{s} \hat{c}x' \mod q$

Then, if $x \neq x'$, we have $\hat{c} = \mathcal{G}(\hat{m}, g, \hat{h}, y, \hat{h}^{x'}, g^k, \hat{h}^{k'}) = \frac{k-k'}{x'-x} \mod q$.

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

u' = g^s y^{-c}
 v' = h'^s z^{-c}

So, in the exponent world,

- $k = \hat{s} \hat{c}x \mod q$
- $large k' = \hat{s} \hat{c}x' \mod q$

Then, if $x \neq x'$, we have $\hat{c} = \mathcal{G}(\hat{m}, g, \hat{h}, y, \hat{h}^{x'}, g^k, \hat{h}^{k'}) = \frac{k-k'}{x'-x} \mod q$.

This is impossible to find with a probability $\frac{q_G}{q}$. Apart this negligible error, we know that x = x' (btw, k = k'), and so that $\hat{z} = \hat{h}^x$.

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Imagine a forger returns a forge $(\hat{z}, \hat{s}, \hat{c})$, we compute corresponding \hat{u} , \hat{v} . As in *EDL*, we write $\hat{u} = g^k$, $\hat{v} = \hat{h}^{k'}$ and $\hat{z} = \hat{h}^{x'}$ (we do not know k, k', x, x').

As the signature is valid,

u' = g^s y^{-c}
 v' = h'^s z^{-c}

So, in the exponent world,

- $k = \hat{s} \hat{c}x \mod q$
- $k' = \hat{s} \hat{c}x' \mod q$

Then, if $x \neq x'$, we have $\hat{c} = \mathcal{G}(\hat{m}, g, \hat{h}, y, \hat{h}^{x'}, g^k, \hat{h}^{k'}) = \frac{k-k'}{x'-x} \mod q$.

This is impossible to find with a probability $\frac{q_G}{q}$. Apart this negligible error, we know that x = x' (btw, k = k'), and so that $\hat{z} = \hat{h}^x$.

CONCLUSION:

- the forger is able to find a new h and its corresponding h^{\times}
- or the forger is able to reuse an h that was given by the simulator/actual signer

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

TWO CASES:

- the forger is able to find a new h and its corresponding h^{\times}
- or the forger is able to reuse an h that was given by the simulator/actual signer

Image: A math a math

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Two Cases:

- the forger is able to find a new h and its corresponding h^{\times}
- or the forger is able to reuse an h that was given by the simulator/actual signer

In case 1, the proof shows that the attacker can be used to solve a CDH (g, g^a, g^x) : roughly, the simulator returns to hash queries $h = (g^a)^d$, for a random d. Then, he deduces the answer of the CDH challenge $\hat{z}^{1/d} = \hat{h}^{x/d} = ((g^a)^d)^{x/d} = g^{ax}$.

Image: A math a math

Our Scheme Features of Our Scheme Exact Security of Our Scheme Intuition of the Proof of Security

INTUITION OF THE PROOF OF SECURITY

Two Cases:

- the forger is able to find a new h and its corresponding h^{\times}
- or the forger is able to reuse an h that was given by the simulator/actual signer

In case 1, the proof shows that the attacker can be used to solve a CDH (g, g^a, g^x) : roughly, the simulator returns to hash queries $h = (g^a)^d$, for a random d. Then, he deduces the answer of the CDH challenge $\hat{z}^{1/d} = \hat{h}^{x/d} = ((g^a)^d)^{x/d} = g^{ax}$.

In case 2, the proof shows that the attacker can be used to solve a DL (or collision on \mathcal{H} or \mathcal{G} hash functions). As $h = \mathcal{H}(u) = \hat{h} = \mathcal{H}(\hat{u})$, $u = \hat{u}$. So $u = g^s y^{-c} = \hat{u} = g^s y^{-\hat{c}}$. If $c \neq \hat{c}$, we recover the DL as $x = \frac{s-\hat{s}}{c-\hat{c}} \mod q$.

()

CONCLUSION

CONCLUSION:

• More details in the paper, or in its full version, at http://eprint.iacr.org/2005/035

・ロト ・回ト ・ヨト

CONCLUSION

CONCLUSION:

- More details in the paper, or in its full version, at http://eprint.iacr.org/2005/035
- Thank you

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A