Black-Box Secret Sharing from Primitive Sets in Algebraic Number Fields

Ronald Cramer ${ }^{1,2}$ Serge Fehr ${ }^{1} \quad$ Martijn Stam ${ }^{3}$

${ }^{1} \mathrm{CWI}$ (Amsterdam)
${ }^{2}$ Mathematical Institute, Leiden University
${ }^{3}$ Department of Computer Science, University of Bristol

17 August 2005

Outline

What is Black Box Secret Sharing?
Threshold Secret Sharing
Example: Shamir Secret Sharing Black Box Secret Sharing Schemes

Using Algebraic Number Fields
Weak Black Box Secret Sharing
Two Previous Proposals
New Approach: Primitive Sets
In Theory
In Practice
Conclusion

Threshold Secret Sharing

Dealing

n the number of participants; s the secret;
s_{i} A share, $0<i \leq n$

Threshold Secret Sharing

Requirements

n the number of participants;
t the threshold;
s the secret;
s_{i} A share, $0<i \leq n$
Completeness: Any qualified subset A (of at least $t+1$
participants) can recover the secret;
Privacy: No non-qualified subset (of at most t participants) obtains any Shannon information about the secret.
Share Expansion: The average length of a share:

$$
\frac{\sum_{i=1}^{n}\left(\text { length of } s_{i}\right)}{n \times \text { length of } s}
$$

Shamir Secret Sharing

Based on polynomial evaluation.
Setting: $s \in \mathbb{F}$, where \mathbb{F} any finite field.
Dealing: Pick $\left(g_{0}, \ldots, g_{t-1}\right) \in \mathbb{F}^{t}$ at random. Let $g_{t}=s$.

$$
g(x):=g_{0}+g_{1} x+\cdots+g_{t} x^{t}
$$

Participant i gets share $s_{i}=g\left(\alpha_{i}\right)$, where $\alpha_{i} \in \mathbb{F}$.
Reconstruction: Lagrange Interpolation,

$$
s=g_{t}=\sum_{i \in A}\left(\prod_{j \in A, j \neq i} \frac{1}{\alpha_{i}-\alpha_{j}}\right) s_{i}
$$

Defining Black Box Secret Sharing Schemes

A linear threshold secret sharing scheme for $s \in G$ where G can be an arbitrary finite abelian group (additive).

- Shares are computed as \mathbb{Z}-linear comb.'s (independent of
$G)$ of $s \in G$ and random group elements. Expansion factor
equals the average number of group elements per share.
- Reconstruction works by \mathbb{Z}-linear comb.'s (independent of
G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

Defining Black Box Secret Sharing Schemes

A linear threshold secret sharing scheme for $s \in G$ where G can be an arbitrary finite abelian group (additive).

- Shares are computed as \mathbb{Z}-linear comb.'s (independent of $G)$ of $s \in G$ and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by \mathbb{Z}-linear comb.'s (independent of G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

Defining Black Box Secret Sharing Schemes

A linear threshold secret sharing scheme for $s \in G$ where G can be an arbitrary finite abelian group (additive).

- Shares are computed as \mathbb{Z}-linear comb.'s (independent of $G)$ of $s \in G$ and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by \mathbb{Z}-linear comb.'s (independent of $G)$ of the shares, and
- Correctness and Privacy must hold regardless of group G.

Defining Black Box Secret Sharing Schemes

A linear threshold secret sharing scheme for $s \in G$ where G can be an arbitrary finite abelian group (additive).

- Shares are computed as \mathbb{Z}-linear comb.'s (independent of $G)$ of $s \in G$ and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by \mathbb{Z}-linear comb.'s (independent of G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

Defining Black Box Secret Sharing Schemes

A linear threshold secret sharing scheme for $s \in G$ where G can be an arbitrary finite abelian group (additive).

- Shares are computed as \mathbb{Z}-linear comb.'s (independent of $G)$ of $s \in G$ and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by \mathbb{Z}-linear comb.'s (independent of G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

Goal: Minimizing the expansion factor, and keeping the computational cost low.

Using an Extension Ring

Special Case: Let $f \in \mathbb{Z}[X]$ be irreducible, monic, of degree m, define $R=\mathbb{Z}[X] /(f)$, i.e., univariate polynomials over the integers reduced modulo f.
Extending the Ring of Integers: R is a ring extension of \mathbb{Z} Number Field: R is an order in the number field $\mathbb{Q}[X] /(f)$. This allows the use of number theoretic means to analyse R. In particular, R is a free \mathbb{Z}-module.
Tensor Product: The tensor product $R \otimes_{\mathbb{Z}} G$ is isomorphic to G^{m}.
Module Operation: $R \otimes_{\mathbb{Z}} G$ or G^{m} is an R-module.
In particular, for $g \in G^{m}$ and $r \in R$ the product $r g \in G^{m}$ is properly defined.

Shamir Secret Sharing over a Ring Dealing

Setting: f monic irred. of degree $m, R=\mathbb{Z}[X] /(f)$ and $s \in G$.
Define $S=(s, 0, \ldots, 0) \in G^{m}$.
Weak BBSSS: A BBSSS with weak reconstructability in that
$\Delta \cdot S \in G^{m}$, not s, can be reconstructed for some $\Delta \in R$.
Adapting Shamir: Use coefficients in G^{m}, evaluation points in R.
Pick $\left(g_{0}, \ldots, g_{t-1}\right) \in\left(G^{m}\right)^{t}$ at random, let $g_{t}=S$.

$$
g(x):=g_{0}+g_{1} x+\cdots+g_{t} x^{t}
$$

Participant i gets share $s_{i}=g\left(\alpha_{i}\right) \in G^{m}$, where $\alpha_{i} \in R$.
Privacy: Automatic for the people.
Expansion Factor: If this is all, the expansion factor would be m.

Shamir Secret Sharing over a Ring

Reconstruction

Recall Lagrange Interpolation,

$$
S=\sum_{i \in A}\left(\prod_{j \in A, j \neq i} \frac{1}{\alpha_{i}-\alpha_{j}}\right) s_{i}
$$

Problem: Possibly $\left(\alpha_{i}-\alpha_{j}\right)^{-1}$ not in R.
Solution: Multiply both sides with

Shamir Secret Sharing over a Ring

Reconstruction

Recall Lagrange Interpolation,

$$
S=\sum_{i \in A}\left(\prod_{j \in A, j \neq i} \frac{1}{\alpha_{i}-\alpha_{j}}\right) s_{i}
$$

Problem: Possibly $\left(\alpha_{i}-\alpha_{j}\right)^{-1}$ not in R.
Solution: Multiply both sides with

Shamir Secret Sharing over a Ring

 ReconstructionRecall Lagrange Interpolation,

$$
\Delta \cdot S=\sum_{i \in A}\left(\prod_{j \in A, j \neq i} \Delta \frac{1}{\alpha_{i}-\alpha_{j}}\right) s_{i}
$$

Problem: Possibly $\left(\alpha_{i}-\alpha_{j}\right)^{-1}$ not in R.
Solution: Multiply both sides with

$$
\Delta=\prod_{0<i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)
$$

Previous Art

Finding R and Δ that allow extraction of s from $\Delta \cdot S$.
Desmedt and Frankel: Sufficient condition: Δ invertible in the ring R. Expansion factor $\approx n$.
Cramer and Fehr: Idea: Perform two sharings and reconstruct $\Delta_{\alpha} \cdot S$ and $\Delta_{\beta} \cdot S$ with coprime Δ_{α} and Δ_{β}.
Provided scheme with expansion factor $\left\lfloor\log _{2} n\right\rfloor+2$.
Also proved lower bound of $\left\lfloor\log _{2} n\right\rfloor-1$.

The New Scheme in Theory

The Underlying Idea

Primitive Element: Let R be an integral extension. Then $r \in R$ is called primitive if its only rational integer divisors are 1 and -1 , i.e., $r \not \equiv 0 \bmod p$ for all primes $p \in \mathbb{Z}$. Such

Primitive Set: Let R be as above. Then $\alpha_{1}, \ldots, \alpha_{n} \in R$ is a primitive set if its Vandermonde determinant Δ is primitive.

$$
\Delta=\prod_{0<i<j \leq n}\left(\alpha_{i}-\alpha_{j}\right)
$$

The New Scheme in Theory

The Underlying Idea

Primitive Element: Let R be an integral extension. Then $r \in R$ is called primitive if its only rational integer divisors are 1 and -1 , i.e., $r \not \equiv 0 \bmod p$ for all primes $p \in \mathbb{Z}$. Such

Primitive Set: Let R be as above. Then $\alpha_{1}, \ldots, \alpha_{n} \in R$ is a primitive set if its Vandermonde determinant Δ is primitive.
Observation: Let $\Delta \in R=\mathbb{Z}[X] /(f)$, then
$\Delta \cdot S=\Delta(s, 0, \ldots, 0)=\left(\delta_{0} s, \ldots, \delta_{m-1} s\right) \in G^{m}$. If Δ is primitive, then the δ_{i} 's are coprime.
$\Rightarrow s$ can be reconstructed from $\Delta \cdot S$ (alone).
where m, the degree of R is as small as possible.

The New Scheme in Theory

The Underlying Idea

Primitive Element: Let R be an integral extension. Then $r \in R$ is called primitive if its only rational integer divisors are 1 and -1 , i.e., $r \not \equiv 0 \bmod p$ for all primes $p \in \mathbb{Z}$. Such

Primitive Set: Let R be as above. Then $\alpha_{1}, \ldots, \alpha_{n} \in R$ is a primitive set if its Vandermonde determinant Δ is primitive.
Observation: Let $\Delta \in R=\mathbb{Z}[X] /(f)$, then $\Delta \cdot S=\Delta(s, 0, \ldots, 0)=\left(\delta_{0} s, \ldots, \delta_{m-1} s\right) \in G^{m}$. If Δ is primitive, then the δ_{i} 's are coprime.
$\Rightarrow s$ can be reconstructed from $\Delta \cdot S$ (alone).
Goal: Find R that allows $\alpha_{1}, \ldots, \alpha_{n} \in R$ such that Δ is primitive, where m, the degree of R is as small as possible.

The New Scheme in Theory

(Partial) Solution
Let f be monic irreducible and $R=\mathbb{Z}[X] /(f)$.
For all primes $p \in \mathbb{Z}$ we can factor f modulo p

$$
f_{p}(x) \equiv f \bmod p \equiv \prod_{i} f_{p, i}^{e_{p, i}}
$$

where the $f_{p, i}$ are irreducible modulo p of degree $d_{p, i}$.
Let $d_{p}=\max _{i} d_{p, i}$.
Theorem: There exists a primitive set in R of cardinality

Corollary: For any $t, n \in \mathbb{Z}$ there exists a BBSSS with expansion
factor $\left\lceil\log _{2} n\right\rceil$

The New Scheme in Theory

 (Partial) SolutionLet f be monic irreducible and $R=\mathbb{Z}[X] /(f)$.
For all primes $p \in \mathbb{Z}$ we can factor f modulo p

$$
f_{p}(x) \equiv f \bmod p \equiv \prod_{i} f_{p, i}^{e_{p, i}}
$$

where the $f_{p, i}$ are irreducible modulo p of degree $d_{p, i}$.
Let $d_{p}=\max _{i} d_{p, i}$.
Theorem: There exists a primitive set in R of cardinality

$$
\min _{p \text { prime, }} p^{d_{p}}
$$

Corollary: For any $t, n \in \mathbb{Z}$ there exists a BBSSS with expansion factor $\left\lceil\log _{2} n\right\rceil$.

Proof (Simplified Sketch)

Easier case

Let $p \in \mathbb{Z}$ be a prime, write
$R / p R \simeq \mathbb{F}_{p}[X] /\left(f_{p, 1}^{\epsilon_{p, 1}} \cdots f_{p, \ell_{p}}^{\epsilon_{p, \ell_{p}}}\right) \simeq \mathbb{F}_{p}[X] /\left(f_{p, 1}^{\epsilon_{p, 1}}\right) \times \cdots \times \mathbb{F}_{p}[X] /\left(f_{p, \ell_{p}}^{\epsilon_{p, \ell_{p}}}\right)$
giving the canonical projection
$R / p R \rightarrow \mathbb{F}_{p}[X] /\left(f_{p, 1}\right) \times \cdots \times \mathbb{F}_{p}[X] /\left(f_{p, \ell_{p}}\right) \simeq \mathbb{F}_{p^{d_{p, 1}}} \times \cdots \times \mathbb{F}_{p^{d_{p, \ell_{p}}}}$
If $n \leq p^{d_{p}}$ pick n distinct elements from $\mathbb{F}_{p^{d_{p}}}$ and lift to R giving $\alpha_{1}, \ldots, \alpha_{n} \in R$ such that $\Delta \not \equiv 0 \bmod p R$.
that holds modulo these primes simultaneously.
Problem: We need a solution modulo all primes.

Proof (Simplified Sketch)

Easier case

Let $p \in \mathbb{Z}$ be a prime, write
$R / p R \simeq \mathbb{F}_{p}[X] /\left(f_{p, 1}^{\epsilon_{p}, 1} \cdots f_{p, \ell_{p}}^{\epsilon_{p, \ell_{p}}}\right) \simeq \mathbb{F}_{p}[X] /\left(f_{p, 1}^{\epsilon_{p, 1}}\right) \times \cdots \times \mathbb{F}_{p}[X] /\left(f_{p, \ell_{p}}^{\epsilon_{p} \ell_{p}}\right)$
giving the canonical projection
$R / p R \rightarrow \mathbb{F}_{p}[X] /\left(f_{p, 1}\right) \times \cdots \times \mathbb{F}_{p}[X] /\left(f_{p, \ell_{p}}\right) \simeq \mathbb{F}_{p^{d_{p, 1}}} \times \cdots \times \mathbb{F}_{p^{d_{p, \ell_{p}}}}$
If $n \leq p^{d_{\rho}}$ pick n distinct elements from $\mathbb{F}_{p^{d_{\rho}}}$ and lift to R giving $\alpha_{1}, \ldots, \alpha_{n} \in R$ such that $\Delta \not \equiv 0 \bmod p R$.
For a finite set of primes p combine solutions with CRT to one that holds modulo these primes simultaneously.
Problem: We need a solution modulo all primes.

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_{1}, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_{i} such that

$$
\Delta_{i}=\Delta_{i-1} \prod_{j<i}\left(\alpha_{j}-\alpha_{i}\right)
$$

$\not \equiv 0 \bmod p$ for all p.

> Fix one coordinate: Set one coordinate of α_{i} such that the induction hypothesis holds for almost all primes.
> CRT: Use Chinese Remainder Theorem to fix α_{i} for the finite number of remaining primes.

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_{1}, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_{i} such that

$$
\Delta_{i}(x)=\Delta_{i-1} \prod_{j<i}\left(\alpha_{j}-x\right)
$$

$\not \equiv 0 \bmod p$ for all p.
Fix one coordinate: Set one coordinate of α_{i} such that the induction hypothesis holds for almost all primes.
CRT: Use Chinese Remainder Theorem to fix α_{i} for the finite number of remaining primes.

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_{1}, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_{i} such that

$$
\Delta_{i}(x)=\Delta_{i-1} \prod_{j<i}\left(\alpha_{j}-x\right)
$$

$\not \equiv 0 \bmod p$ for all p.
Fix one coordinate: Set one coordinate of α_{i} such that the induction hypothesis holds for almost all primes.
CRT: Use Chinese Remainder Theorem to fix α_{i} for the finite number of remaining primes.

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_{1}, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_{i} such that

$$
\Delta_{i}(x)=\Delta_{i-1} \prod_{j<i}\left(\alpha_{j}-x\right)
$$

$\not \equiv 0 \bmod p$ for all p.
Fix one coordinate: Set one coordinate of α_{i} such that the induction hypothesis holds for almost all primes.
CRT: Use Chinese Remainder Theorem to fix α_{i} for the finite number of remaining primes.

The Proof (Simplified Sketch)

Rewrite α_{i} : Write down α_{i} in basis of R, so

$$
\alpha_{i}=a_{0}+a_{1} X+\cdots+a_{m-1} X^{m-1}
$$

Consider the coefficients a_{j} as unknowns A_{j}.

The Proof (Simplified Sketch)

Rewrite α_{i} : Write down α_{i} in basis of R, so

$$
\alpha_{i}=a_{0}+a_{1} X+\cdots+a_{m-1} X^{m-1}
$$

Consider the coefficients a_{j} as unknowns A_{j}.
Rewrite Δ_{i} : Write down Δ_{i} in basis of R in unknowns A_{i}.

$$
\Delta_{i}=\Delta_{i-1}\left(G_{0}\left(A_{0}, A_{1}, \ldots, A_{m-1}\right)+\cdots+G_{m-1}\left(A_{0}, \ldots, A_{m-1}\right) X^{m-1}\right)
$$

The Proof (Simplified Sketch)

Rewrite α_{i} : Write down α_{i} in basis of R, so

Consider the coefficients a_{j} as unknowns A_{j}
Rewrite Δ_{i} : Write down Δ_{i} in basis of R in unknowns A_{i}.

$$
\Delta_{i}=\Delta_{i-1}\left(G_{0}\left(A_{0}, A_{1}, \ldots, A_{m-1}\right)+\cdots+G_{m-1}\left(A_{0}, \ldots, A_{m-1}\right) X^{m-1}\right)
$$

Use Algebra: $\Delta_{i} \equiv 0 \bmod p$ iff $G_{j}\left(A_{0}, \ldots, A_{m-1}\right) \equiv 0 \bmod p$ for all j. Then also all linear combinations of the polynomials G_{j}.

The Proof (Simplified Sketch)

Rewrite α_{i} : Write down α_{i} in basis of R, so

Consider the coefficients a_{j} as unknowns A_{j}.
Rewrite Δ_{j} : Write down Δ_{i} in basis of R in unknowns A_{j}.

Use Algebra: $\Delta_{i} \equiv 0 \bmod p$ iff $G_{j}\left(A_{0}, \ldots, A_{m-1}\right) \equiv 0 \bmod p$ for all j. Then also all linear combinations of the polynomials G_{j}.
Find Univariate Polynomial: Construct a univariate polynomial $P\left(A_{0}\right) \in \mathbb{Z}\left[A_{0}\right]$ that is a linear comb. of the G_{j}.

The Proof (Simplified Sketch)

Rewrite α_{i} : Write down α_{i} in basis of R, so

Consider the coefficients a_{j} as unknowns A_{j}.
Rewrite Δ_{i} : Write down Δ_{i} in basis of R in unknowns A_{i}

Use Algebra: $\Delta_{i} \equiv 0 \bmod p$ iff $G_{j}\left(A_{0}\right.$,
Find Univariate Polynomial: Construct a univariate polynomial $P\left(A_{0}\right) \in \mathbb{Z}\left[A_{0}\right]$ that is a linear comb. of the G_{j}.
Pick a non-root: Then instantiate with a_{0} such that $P\left(a_{0}\right) \neq 0$ as integer. Then for all p not dividing $P\left(a_{0}\right)$ we have that $\Delta_{i} \not \equiv 0 \bmod p$.

The Proof (Simplified Sketch)

Rewrite α_{i} : Write down α_{i} in basis of R, so

$$
\alpha_{i}=a_{0}+a_{1} X+\cdots+a_{m-1} X^{m-1}
$$

Consider the coefficients a_{j} as unknowns A_{j}.
Rewrite Δ_{i} : Write down Δ_{i} in basis of R in unknowns A_{i}.

$$
\Delta_{i}=\Delta_{i-1}\left(G_{0}\left(A_{0}, A_{1}, \ldots, A_{m-1}\right)+\cdots+G_{m-1}\left(A_{0}, \ldots, A_{m-1}\right) X^{m-1}\right)
$$

Use Algebra: $\Delta_{i} \equiv 0 \bmod p$ iff $G_{j}\left(A_{0}, \ldots, A_{m-1}\right) \equiv 0 \bmod p$ for all j. Then also all linear combinations of the polynomials G_{j}.
Find Univariate Polynomial: Construct a univariate polynomial $P\left(A_{0}\right) \in \mathbb{Z}\left[A_{0}\right]$ that is a linear comb. of the G_{j}.
Pick a non-root: Then instantiate with a_{0} such that $P\left(a_{0}\right) \neq 0$ as integer. Then for all p not dividing $P\left(a_{0}\right)$ we have that $\Delta_{i} \not \equiv 0 \bmod p$.

The New Scheme in Practice

Relevant Complexities

Cramer \& Fehr: α_{i} 's may be chosen with coeffs in $\{0,1\}$, but $f(X)$'s coeffs seem to be bound to bitlength n. $\rightsquigarrow O \tilde{O}\left(n^{3}\right)$
Cramer, Fehr \& Stam: Evidence that α_{i} 's may be chosen with coeffs in $\{0,1\}$ and $f(X)$ with coeffs in $\{-1,0,1\}$ (Shown for n up to 4096, but no general proof).
$\rightsquigarrow \tilde{O}\left(n^{2}\right)$

The New Scheme in Practice

Relevant Complexities

Cramer \& Fehr: α_{i} 's may be chosen with coeffs in $\{0,1\}$, but $f(X)$'s coeffs seem to be bound to bitlength n.
$\rightsquigarrow \tilde{O}\left(n^{3}\right)$
Cramer, Fehr \& Stam: Evidence that α 's may be chosen with coeffs in $\{0,1\}$ and $f(X)$ with coeffs in $\{-1,0,1\}$ (Shown for n up to 4096, but no general proof).

The New Scheme in Practice

Relevant Complexities

Cramer \& Fehr: α_{i} 's may be chosen with coeffs in $\{0,1\}$, but $f(X)$'s coeffs seem to be bound to bitlength n.
$\rightsquigarrow \tilde{O}\left(n^{3}\right)$
Cramer, Fehr \& Stam: Evidence that α_{i} 's may be chosen with coeffs in $\{0,1\}$ and $f(X)$ with coeffs in $\{-1,0,1\}$ (Shown for n up to 4096, but no general proof).
$\rightsquigarrow \tilde{O}\left(n^{2}\right)$

Conclusion

- Constructing black box secret sharing schemes is intricately entwined with finding certain number fields (orders).
- DF: Initially invertible Δ;
- CF: Huge improvement using coprime Δ_{α} and Δ_{β};
- New: Further improvement using primitive Δ. Additive factor of at most 2 away from the best known lower bound.
- Proved existence of number fields with sufficiently large primitive sets. Efficiency is questionable.
- But experimental results indicate 'good' ones are around abundantly.
- Provided tight lower and upper bounds on the amount of random elements required.

