Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Black-Box Secret Sharing from Primitive Sets in Algebraic Number Fields

Ronald Cramer^{1,2} Serge Fehr¹ Martijn Stam³

¹ CWI (Amsterdam)

² Mathematical Institute, Leiden University

³ Department of Computer Science, University of Bristol

17 August 2005

Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Outline

What is Black Box Secret Sharing?

Threshold Secret Sharing Example: Shamir Secret Sharing Black Box Secret Sharing Schemes

Using Algebraic Number Fields

Weak Black Box Secret Sharing Two Previous Proposals

New Approach: Primitive Sets In Theory In Practice

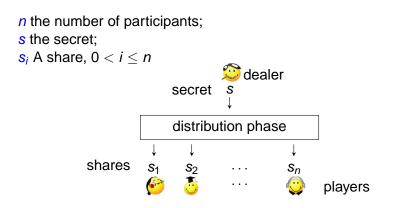
Conclusion

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Threshold Secret Sharing



New Approach: Primitive Sets

Conclusion

Threshold Secret Sharing Requirements

n the number of participants;

t the threshold;

s the secret;

 s_i A share, $0 < i \le n$

Completeness: Any qualified subset A (of at least t + 1 participants) can recover the secret;

Privacy: No non-qualified subset (of at most *t* participants) obtains any Shannon information about the secret.

Share Expansion: The average length of a share:

 $\frac{\sum_{i=1}^{n} (\text{length of } s_i)}{n \times \text{length of } s}$

New Approach: Primitive Sets

Conclusion

Shamir Secret Sharing

Based on polynomial evaluation.

Setting: $s \in \mathbb{F}$, where \mathbb{F} any finite field.

Dealing: Pick $(g_0, \ldots, g_{t-1}) \in \mathbb{F}^t$ at random. Let $g_t = s$.

$$g(x) := g_0 + g_1 x + \cdots + g_t x^t$$

Participant *i* gets share $s_i = g(\alpha_i)$, where $\alpha_i \in \mathbb{F}$. Reconstruction: Lagrange Interpolation,

$$s = g_t = \sum_{i \in A} \left(\prod_{j \in A, j \neq i} \frac{1}{\alpha_i - \alpha_j} \right) s_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Defining Black Box Secret Sharing Schemes

- Shares are computed as Z-linear comb.'s (independent of G) of s ∈ G and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by Z-linear comb.'s (independent of G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Defining Black Box Secret Sharing Schemes

- Shares are computed as Z-linear comb.'s (independent of G) of s ∈ G and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by Z-linear comb.'s (independent of G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Defining Black Box Secret Sharing Schemes

- Shares are computed as Z-linear comb.'s (independent of G) of s ∈ G and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by Z-linear comb.'s (independent of *G*) of the shares, and
- Correctness and Privacy must hold regardless of group G.

(日)

Defining Black Box Secret Sharing Schemes

- Shares are computed as Z-linear comb.'s (independent of G) of s ∈ G and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by Z-linear comb.'s (independent of *G*) of the shares, and
- Correctness and Privacy must hold regardless of group G.

Defining Black Box Secret Sharing Schemes

A linear threshold secret sharing scheme for $s \in G$ where G can be an arbitrary finite abelian group (additive).

- Shares are computed as Z-linear comb.'s (independent of G) of s ∈ G and random group elements. Expansion factor equals the average number of group elements per share.
- Reconstruction works by Z-linear comb.'s (independent of G) of the shares, and
- Correctness and Privacy must hold regardless of group G.

Goal: Minimizing the expansion factor, and keeping the computational cost low.

New Approach: Primitive Sets

Conclusion

Using an Extension Ring

Special Case: Let $f \in \mathbb{Z}[X]$ be irreducible, monic, of degree *m*, define $R = \mathbb{Z}[X]/(f)$, i.e., univariate polynomials over the integers reduced modulo *f*.

Extending the Ring of Integers: R is a ring extension of \mathbb{Z}

Number Field: *R* is an order in the number field $\mathbb{Q}[X]/(f)$. This allows the use of number theoretic means to analyse *R*. In particular, *R* is a free \mathbb{Z} -module.

Tensor Product: The tensor product $R \otimes_{\mathbb{Z}} G$ is isomorphic to G^m .

Module Operation: $R \otimes_{\mathbb{Z}} G$ or G^m is an *R*-module. In particular, for $g \in G^m$ and $r \in R$ the product $rg \in G^m$ is properly defined.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Shamir Secret Sharing over a Ring Dealing

Setting: *f* monic irred. of degree *m*, $R = \mathbb{Z}[X]/(f)$ and $s \in G$. Define $S = (s, 0, ..., 0) \in G^m$.

Weak BBSSS: A BBSSS with weak reconstructability in that $\Delta \cdot S \in G^m$, not *s*, can be reconstructed for some $\Delta \in R$.

Adapting Shamir: Use coefficients in G^m , evaluation points in R. Pick $(g_0, \ldots, g_{t-1}) \in (G^m)^t$ at random, let $g_t = S$.

$$g(x) := g_0 + g_1 x + \cdots + g_t x^t$$

Participant *i* gets share $s_i = g(\alpha_i) \in G^m$, where $\alpha_i \in R$.

Privacy: Automatic for the people.

Expansion Factor: If this is all, the expansion factor would be m.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Shamir Secret Sharing over a Ring Reconstruction

Recall Lagrange Interpolation,

$$S = \sum_{i \in A} \left(\prod_{j \in A, j \neq i} \frac{1}{\alpha_i - \alpha_j} \right) s_i$$

Problem: Possibly $(\alpha_i - \alpha_j)^{-1}$ not in *R*. Solution: Multiply both sides with

$$\Delta = \prod_{0 < i < j \le n} (\alpha_i - \alpha_j)$$

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Shamir Secret Sharing over a Ring Reconstruction

Recall Lagrange Interpolation,

$$S = \sum_{i \in A} \left(\prod_{j \in A, j \neq i} \frac{1}{\alpha_i - \alpha_j} \right) s_i$$

Problem: Possibly $(\alpha_i - \alpha_j)^{-1}$ not in *R*.

Solution: Multiply both sides with

$$\Delta = \prod_{0 < i < j \le n} (\alpha_i - \alpha_j)$$

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

Shamir Secret Sharing over a Ring Reconstruction

Recall Lagrange Interpolation,

$$\Delta \cdot S = \sum_{i \in A} \left(\prod_{j \in A, j \neq i} \Delta \frac{1}{\alpha_i - \alpha_j} \right) s_i$$

Problem: Possibly $(\alpha_i - \alpha_j)^{-1}$ not in *R*. Solution: Multiply both sides with

$$\Delta = \prod_{0 < i < j \le n} (\alpha_i - \alpha_j)$$

Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusion

Previous Art

Finding *R* and Δ that allow extraction of *s* from $\Delta \cdot S$.

Desmedt and Frankel: Sufficient condition: Δ invertible in the ring *R*. Expansion factor $\approx n$.

Cramer and Fehr: Idea: Perform two sharings and reconstruct $\Delta_{\alpha} \cdot S$ and $\Delta_{\beta} \cdot S$ with coprime Δ_{α} and Δ_{β} . Provided scheme with expansion factor $\lfloor \log_2 n \rfloor + 2$.

Also proved lower bound of $\lfloor \log_2 n \rfloor - 1$.

Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

The New Scheme in Theory The Underlying Idea

Primitive Element: Let *R* be an integral extension. Then $r \in R$ is called primitive if its only rational integer divisors are 1 and -1, i.e., $r \neq 0 \mod p$ for all primes $p \in \mathbb{Z}$. Such

Primitive Set: Let *R* be as above. Then $\alpha_1, \ldots, \alpha_n \in R$ is a primitive set if its Vandermonde determinant Δ is primitive.

$$\Delta = \prod_{0 < i < j \le n} (\alpha_i - \alpha_j)$$

Using Algebraic Number Fields

New Approach: Primitive Sets

Conclusion

The New Scheme in Theory The Underlying Idea

Primitive Element: Let *R* be an integral extension. Then $r \in R$ is called primitive if its only rational integer divisors are 1 and -1, i.e., $r \neq 0 \mod p$ for all primes $p \in \mathbb{Z}$. Such

Primitive Set: Let *R* be as above. Then $\alpha_1, \ldots, \alpha_n \in R$ is a primitive set if its Vandermonde determinant Δ is primitive.

Observation: Let $\Delta \in R = \mathbb{Z}[X]/(f)$, then $\Delta \cdot S = \Delta(s, 0, ..., 0) = (\delta_0 s, ..., \delta_{m-1} s) \in G^m$. If Δ is primitive, then the δ_i 's are coprime.

 \Rightarrow s can be reconstructed from $\Delta \cdot S$ (alone).

Goal: Find *R* that allows $\alpha_1, \ldots, \alpha_n \in R$ such that Δ is primitive, where *m*, the degree of *R* is as small as possible.

Using Algebraic Number Fields

New Approach: Primitive Sets

Conclusion

The New Scheme in Theory The Underlying Idea

Primitive Element: Let *R* be an integral extension. Then $r \in R$ is called primitive if its only rational integer divisors are 1 and -1, i.e., $r \neq 0 \mod p$ for all primes $p \in \mathbb{Z}$. Such

Primitive Set: Let *R* be as above. Then $\alpha_1, \ldots, \alpha_n \in R$ is a primitive set if its Vandermonde determinant Δ is primitive.

Observation: Let $\Delta \in R = \mathbb{Z}[X]/(f)$, then

 $\Delta \cdot S = \Delta(s, 0, ..., 0) = (\delta_0 s, ..., \delta_{m-1} s) \in G^m$. If Δ is primitive, then the δ_i 's are coprime.

 \Rightarrow s can be reconstructed from $\Delta \cdot S$ (alone).

Goal: Find *R* that allows $\alpha_1, \ldots, \alpha_n \in R$ such that Δ is primitive, where *m*, the degree of *R* is as small as possible.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusion

The New Scheme in Theory (Partial) Solution

Let *f* be monic irreducible and $R = \mathbb{Z}[X]/(f)$. For all primes $p \in \mathbb{Z}$ we can factor *f* modulo *p*

$$f_{
ho}(x)\equiv f mod p\equiv \prod_i f_{
ho,i}^{{f e}_{
ho,i}}$$

where the $f_{p,i}$ are irreducible modulo p of degree $d_{p,i}$. Let $d_p = \max_i d_{p,i}$.

Theorem: There exists a primitive set in R of cardinality

Corollary: For any $t, n \in \mathbb{Z}$ there exists a BBSSS with expansion factor $\lceil \log_2 n \rceil$.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusion

The New Scheme in Theory (Partial) Solution

Let *f* be monic irreducible and $R = \mathbb{Z}[X]/(f)$. For all primes $p \in \mathbb{Z}$ we can factor *f* modulo *p*

$$f_{
ho}(x)\equiv f mod p\equiv \prod_i f_{
ho,i}^{\mathbf{e}_{
ho,i}}$$

where the $f_{p,i}$ are irreducible modulo p of degree $d_{p,i}$. Let $d_p = \max_i d_{p,i}$.

Theorem: There exists a primitive set in R of cardinality

Corollary: For any $t, n \in \mathbb{Z}$ there exists a BBSSS with expansion factor $\lceil \log_2 n \rceil$.

New Approach: Primitive Sets

Conclusion

Proof (Simplified Sketch) Easier case

Let $p \in \mathbb{Z}$ be a prime, write

 $R/\rho R \simeq \mathbb{F}_{\rho}[X]/(f_{\rho,1}^{\epsilon_{\rho,1}}\cdots f_{\rho,\ell_{\rho}}^{\epsilon_{\rho,\ell_{\rho}}}) \simeq \mathbb{F}_{\rho}[X]/(f_{\rho,1}^{\epsilon_{\rho,1}}) \times \cdots \times \mathbb{F}_{\rho}[X]/(f_{\rho,\ell_{\rho}}^{\epsilon_{\rho,\ell_{\rho}}})$

giving the canonical projection

 $R/\rho R \to \mathbb{F}_{\rho}[X]/(f_{\rho,1}) \times \cdots \times \mathbb{F}_{\rho}[X]/(f_{\rho,\ell_{\rho}}) \simeq \mathbb{F}_{\rho^{d_{\rho,1}}} \times \cdots \times \mathbb{F}_{\rho^{d_{\rho,\ell_{\rho}}}}$

If $n \le p^{d_p}$ pick *n* distinct elements from $\mathbb{F}_{p^{d_p}}$ and lift to *R* giving $\alpha_1, \ldots, \alpha_n \in R$ such that $\Delta \not\equiv 0 \mod pR$. For a finite set of primes *p* combine solutions with CRT to one that holds modulo these primes simultaneously. Problem: We need a solution modulo all primes.

New Approach: Primitive Sets

Conclusion

Proof (Simplified Sketch) Easier case

Let $p \in \mathbb{Z}$ be a prime, write

 $R/pR \simeq \mathbb{F}_{\rho}[X]/(f_{\rho,1}^{\epsilon_{\rho,1}}\cdots f_{\rho,\ell_{\rho}}^{\epsilon_{\rho,\ell_{\rho}}}) \simeq \mathbb{F}_{\rho}[X]/(f_{\rho,1}^{\epsilon_{\rho,1}}) \times \cdots \times \mathbb{F}_{\rho}[X]/(f_{\rho,\ell_{\rho}}^{\epsilon_{\rho,\ell_{\rho}}})$

giving the canonical projection

$$R/\rho R \to \mathbb{F}_{\rho}[X]/(f_{\rho,1}) \times \cdots \times \mathbb{F}_{\rho}[X]/(f_{\rho,\ell_{\rho}}) \simeq \mathbb{F}_{\rho^{d_{\rho,1}}} \times \cdots \times \mathbb{F}_{\rho^{d_{\rho,\ell_{\rho}}}}$$

If $n \le p^{d_p}$ pick *n* distinct elements from $\mathbb{F}_{p^{d_p}}$ and lift to *R* giving $\alpha_1, \ldots, \alpha_n \in R$ such that $\Delta \not\equiv 0 \mod pR$. For a finite set of primes *p* combine solutions with CRT to one that holds modulo these primes simultaneously. Problem: We need a solution modulo all primes.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_1, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_i such that

$$\Delta_i = \Delta_{i-1} \prod_{j < i} (\alpha_j - \alpha_i)$$

\neq 0 mod *p* for all *p*.

Fix one coordinate: Set one coordinate of α_i such that the induction hypothesis holds for almost all primes.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_1, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_i such that

$$\Delta_i(\mathbf{x}) = \Delta_{i-1} \prod_{j < i} (\alpha_j - \mathbf{x})$$

\neq 0 mod *p* for all *p*.

Fix one coordinate: Set one coordinate of α_i such that the induction hypothesis holds for almost all primes.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_1, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_i such that

$$\Delta_i(\mathbf{x}) = \Delta_{i-1} \prod_{j < i} (\alpha_j - \mathbf{x})$$

 $\neq 0 \mod p$ for all p.

Fix one coordinate: Set one coordinate of α_i such that the induction hypothesis holds for almost all primes.

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusion

The Proof (Simplified Sketch)

Induction: Use finite induction on the interpolation points. Suppose that $\alpha_1, \ldots, \alpha_{i-1}$ are already succesfully chosen, construct α_i such that

$$\Delta_i(\mathbf{x}) = \Delta_{i-1} \prod_{j < i} (\alpha_j - \mathbf{x})$$

 $\neq 0 \mod p$ for all p.

Fix one coordinate: Set one coordinate of α_i such that the induction hypothesis holds for almost all primes.

New Approach: Primitive Sets

The Proof (Simplified Sketch)

Rewrite α_i : Write down α_i in basis of *R*, so

$$\alpha_i = a_0 + a_1 X + \dots + a_{m-1} X^{m-1}$$

Consider the coefficients a_j as unknowns A_j . Rewrite Δ_i : Write down Δ_i in basis of R in unknowns A_i .

$$\Delta_i = \Delta_{i-1}(G_0(A_0, A_1, \dots, A_{m-1}) + \dots + G_{m-1}(A_0, \dots, A_{m-1})X^{m-1})$$

Use Algebra: $\Delta_i \equiv 0 \mod p$ iff $G_j(A_0, \dots, A_{m-1}) \equiv 0 \mod p$ for all *j*. Then also all linear combinations of the polynomials G_j . Find Univariate Polynomial: Construct a univariate polynomial $P(A_0) \in \mathbb{Z}[A_0]$ that is a linear comb. of the G_j . Pick a non-root: Then instantiate with a_0 such that $P(a_0) \neq 0$ as integer. Then for all *p* not dividing $P(a_0)$ we have that $\Delta_i \neq 0 \mod p$.

New Approach: Primitive Sets

Conclusion

The Proof (Simplified Sketch)

Rewrite α_i : Write down α_i in basis of *R*, so

$$\alpha_i = a_0 + a_1 X + \dots + a_{m-1} X^{m-1}$$

Consider the coefficients a_j as unknowns A_j . Rewrite Δ_i : Write down Δ_i in basis of R in unknowns A_i .

$$\Delta_i = \Delta_{i-1}(G_0(A_0, A_1, \dots, A_{m-1}) + \dots + G_{m-1}(A_0, \dots, A_{m-1})X^{m-1})$$

Use Algebra: $\Delta_i \equiv 0 \mod p$ iff $G_j(A_0, \dots, A_{m-1}) \equiv 0 \mod p$ for all *j*. Then also all linear combinations of the polynomials G_j . Find Univariate Polynomial: Construct a univariate polynomial $P(A_0) \in \mathbb{Z}[A_0]$ that is a linear comb. of the G_j . Pick a non-root: Then instantiate with a_0 such that $P(a_0) \neq 0$ as integer. Then for all *p* not dividing $P(a_0)$ we have that $\Delta_i \neq 0 \mod p$.

New Approach: Primitive Sets

Conclusion

The Proof (Simplified Sketch)

Rewrite α_i : Write down α_i in basis of *R*, so

$$\alpha_i = a_0 + a_1 X + \dots + a_{m-1} X^{m-1}$$

Consider the coefficients a_j as unknowns A_j .

Rewrite Δ_i : Write down Δ_i in basis of *R* in unknowns A_i .

$$\Delta_i = \Delta_{i-1}(G_0(A_0, A_1, \dots, A_{m-1}) + \dots + G_{m-1}(A_0, \dots, A_{m-1})X^{m-1})$$

Use Algebra: $\Delta_i \equiv 0 \mod p$ iff $G_j(A_0, \ldots, A_{m-1}) \equiv 0 \mod p$ for all *j*. Then also all linear combinations of the polynomials G_j . Find Univariate Polynomial: Construct a univariate polynomial $P(A_0) \in \mathbb{Z}[A_0]$ that is a linear comb. of the G_j . Pick a non-root: Then instantiate with a_0 such that $P(a_0) \neq 0$ as integer. Then for all *p* not dividing $P(a_0)$ we have that $\Delta_i \neq 0 \mod p$.

New Approach: Primitive Sets

Conclusion

The Proof (Simplified Sketch)

Rewrite α_i : Write down α_i in basis of *R*, so

 $\alpha_i = a_0 + a_1 X + \dots + a_{m-1} X^{m-1}$

Consider the coefficients a_j as unknowns A_j . Rewrite Δ_i : Write down Δ_i in basis of R in unknowns A_i .

 $\Delta_i = \Delta_{i-1}(G_0(A_0, A_1, \dots, A_{m-1}) + \dots + G_{m-1}(A_0, \dots, A_{m-1})X^{m-1})$

Use Algebra: $\Delta_i \equiv 0 \mod p$ iff $G_j(A_0, \ldots, A_{m-1}) \equiv 0 \mod p$ for all *j*. Then also all linear combinations of the polynomials G_j . Find Univariate Polynomial: Construct a univariate polynomial $P(A_0) \in \mathbb{Z}[A_0]$ that is a linear comb. of the G_j .

Pick a non-root: Then instantiate with a_0 such that $P(a_0) \neq 0$ as integer. Then for all p not dividing $P(a_0)$ we have that $\Delta_i \neq 0 \mod p$.

New Approach: Primitive Sets

Conclusion

The Proof (Simplified Sketch)

Rewrite α_i : Write down α_i in basis of *R*, so

 $\alpha_i = a_0 + a_1 X + \dots + a_{m-1} X^{m-1}$

Consider the coefficients a_j as unknowns A_j . Rewrite Δ_j : Write down Δ_j in basis of R in unknowns A_j .

$$\Delta_i = \Delta_{i-1}(G_0(A_0, A_1, \dots, A_{m-1}) + \dots + G_{m-1}(A_0, \dots, A_{m-1})X^{m-1})$$

Use Algebra: $\Delta_i \equiv 0 \mod p$ iff $G_j(A_0, \ldots, A_{m-1}) \equiv 0 \mod p$ for all *j*. Then also all linear combinations of the polynomials G_j .

Find Univariate Polynomial: Construct a univariate polynomial $P(A_0) \in \mathbb{Z}[A_0]$ that is a linear comb. of the G_j . Pick a non-root: Then instantiate with a_0 such that $P(a_0) \neq 0$ as integer. Then for all p not dividing $P(a_0)$ we have that $\Delta_i \neq 0 \mod p$.

New Approach: Primitive Sets

Conclusion

The Proof (Simplified Sketch)

Rewrite α_i : Write down α_i in basis of *R*, so

$$\alpha_i = a_0 + a_1 X + \dots + a_{m-1} X^{m-1}$$

Consider the coefficients a_j as unknowns A_j . Rewrite Δ_i : Write down Δ_i in basis of R in unknowns A_i .

$$\Delta_i = \Delta_{i-1}(G_0(A_0, A_1, \dots, A_{m-1}) + \dots + G_{m-1}(A_0, \dots, A_{m-1})X^{m-1})$$

Use Algebra: $\Delta_i \equiv 0 \mod p$ iff $G_j(A_0, \ldots, A_{m-1}) \equiv 0 \mod p$ for all *j*. Then also all linear combinations of the polynomials G_j . Find Univariate Polynomial: Construct a univariate polynomial $P(A_0) \in \mathbb{Z}[A_0]$ that is a linear comb. of the G_j . Pick a non-root: Then instantiate with a_0 such that $P(a_0) \neq 0$ as integer. Then for all *p* not dividing $P(a_0)$ we have that $\Delta_i \not\equiv 0 \mod p$.

Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusion

The New Scheme in Practice Relevant Complexities

Cramer & Fehr: α_i 's may be chosen with coeffs in $\{0, 1\}$, but f(X)'s coeffs seem to be bound to bitlength *n*.

 $\rightsquigarrow \tilde{O}(n^3)$

Cramer, Fehr & Stam: Evidence that α_i 's may be chosen with coeffs in $\{0, 1\}$ and f(X) with coeffs in $\{-1, 0, 1\}$ (Shown for *n* up to 4096, but no general proof).

 $\rightsquigarrow \tilde{O}(n^2)$

Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusion

The New Scheme in Practice Relevant Complexities

Cramer & Fehr: α_i 's may be chosen with coeffs in $\{0, 1\}$, but f(X)'s coeffs seem to be bound to bitlength *n*.

 $\rightsquigarrow \tilde{O}(n^3)$

Cramer, Fehr & Stam: Evidence that α_i 's may be chosen with coeffs in $\{0, 1\}$ and f(X) with coeffs in $\{-1, 0, 1\}$ (Shown for *n* up to 4096, but no general proof).

 $\rightsquigarrow \tilde{O}(n^2)$

Using Algebraic Number Fields

New Approach: Primitive Sets

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Conclusion

The New Scheme in Practice Relevant Complexities

Cramer & Fehr: α_i 's may be chosen with coeffs in $\{0, 1\}$, but f(X)'s coeffs seem to be bound to bitlength *n*.

 $\rightsquigarrow \tilde{O}(n^3)$

Cramer, Fehr & Stam: Evidence that α_i 's may be chosen with coeffs in $\{0, 1\}$ and f(X) with coeffs in $\{-1, 0, 1\}$ (Shown for *n* up to 4096, but no general proof).

 $\rightsquigarrow \tilde{O}(n^2)$

Using Algebraic Number Fields

New Approach: Primitive Sets

Conclusion

Conclusion

- Constructing black box secret sharing schemes is intricately entwined with finding certain number fields (orders).
 - DF: Initially invertible Δ;
 - CF: Huge improvement using coprime Δ_{α} and Δ_{β} ;
 - New: Further improvement using primitive Δ. Additive factor of at most 2 away from the best known lower bound.
- Proved existence of number fields with sufficiently large primitive sets. Efficiency is questionable.
- But experimental results indicate 'good' ones are around abundantly.
- Provided tight lower and upper bounds on the amount of random elements required.