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A[atk, q, n, `] all attackers making q queries where each query
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atk = eq has length exactly ` n-bit blocks.

atk = pf has length at most ` n-bit blocks and none is the
prefix of another.

M is a prefix of M ′ if M ′ = M‖M ′′ for some M ′′.

A[eq, q, n, `] ⊆ A[pf, q, n, `] ⊆ A[any, q, n, `]

AdvCBC(A) = Pr[π
$
← Perm(n); ACBCπ ⇒ 1]−Pr[f

$
← Func(n); Af ⇒ 1]

Advatk
CBC(q, n, `) = max

A ∈ A[atk, q, n, `]
AdvCBC(A)
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Theorem

Adv
pf
CBC(q, n, `) ≤ c · ` · q2/2n for ` ≤ 2n/3

Improve ECBC from c · `2 · q2/2n to:

Theorem

Adv
any
CBC(q, n, `) ≤ c · `1/ ln ln ` · q2/2n for ` ≤ 2n/4



Permutation vs. Functions

CBC = {CBCπ; π
$
← Perm(n)}

CBC′ = {CBCf ; f
$
← Func(n)}

Adv
pf
CBC(q = 2n/4, n, ` = 2n/4) ≈ ` · q2/2n ≤ 2−n/4

Adv
pf
CBC′(q = 2n/4, n, ` = 2n/4) = Θ(1) [Berke04]



ECBC and the Carter-Wegman Paradigm

ECBCπ1,π2
(.) = π2(CBCπ1

(.))

CPn(M, M ′) = Pr[π ← Perm(n); CBCπ(M) = CBCπ(M ′)]

CP
any
n,` = max

M, M ′, |M| ≤ `n, |M ′| ≤ `n
CPn(M, M ′)

Adv
any
ECBC(q, n, `) ≤ q2 · CP

any
n,`
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FCPn(M, M ′) = Pr[π ← Perm(n); C ′

m′ ∈ {C1, . . . , Cm, C ′

1, . . . , C
′

m′−1}]

FCP
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M, M ′, |M| ≤ `n, |M ′| ≤ `n
FCPn(M, M ′)
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The Game-Playing Technique [BR05]

On the s
th query F (Ms) Game D1

100 ms ← |Ms |n, C 0
s ← 0n

101 for i ← 1 to ms − 1 do

102 X i
s ← C i−1

s ⊕M i
s

103 if X i
s ∈ Dom(π) then C i

s ← π(X i
s )

104 else π(X i
s )← C i

s

$
← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s

$
←{0, 1}

n

107 ifCms
s ∈Ran(π): bad←1, Cms

s

$
←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s )

109 π(Xms
s )← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

D1 implements CBC.
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The Game-Playing Technique Cnt.

700 π
$
← Perm(n) Game D7

701 C 0
1 ← C 0

2 ← 0n
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i
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The Game-Playing Technique Cnt.

On the sth query F (Ms) Game D1
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M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3 ` = 4

CPn(M, M ′) = Pr[Gπ satisfies C4 = C ′

4]

≤ Pr[Acc(Gπ) = 1 and Gπ satisfies C4 = C ′

4]+Pr[Acc(Gπ) ≥ 2]

≤
#G [ with 1 accident where C4 = C ′

4]

2n − 2 · `
+

8 · `2

22n

Lemma

Pr[π
$
← Perm(n); Gπ = H] ≤ (2n − 2`)−Acc(H)



M, M ′ with m = |M|, m′ = |M ′|, ` = max(m, m′).

CPn(M, M ′) ≤
#G [ with 1 acc. where Cm = C ′

m′ ]

2n − 2 · `
+

8 · `2

22n

Lemma

#[G with 1 acc. where Cm = C ′

m′ ] ≤ d(`)

Where d(`) ≤ `1/ ln ln ` = o(`) is the maximum number of
divisors of any m ≤ `, e.g. d(15) = 6 as 12 ≤ 15 has 6
divisors 1, 2, 3, 4, 6, 12.
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Questions?


