
Improved Security Analyses for CBC MACs

Mihir Bellare
University of California, San Diego

Krzysztof Pietrzak
ETH Zürich

Phillip Rogaway
University of California, Davis

August 18, 2005

The CBC function

[n] = {0, 1}n, π : [n]→ [n].

The CBC function CBCπ : [n]∗ → [n] is defined as

CBCπ(M1‖M2‖ . . . ‖M`) = C` where C0 = 0n, Ci = π(Mi⊕Ci−1)

The CBC function

[n] = {0, 1}n, π : [n]→ [n].

The CBC function CBCπ : [n]∗ → [n] is defined as

CBCπ(M1‖M2‖ . . . ‖M`) = C` where C0 = 0n, Ci = π(Mi⊕Ci−1)

M1 M2 M3 M`

⊕ ⊕ ⊕

π π π π

C1 C2 C3 C`

The Encrypted-CBC (ECBC) function

π1 : [n]→ [n], π2 : [n]→ [n].

The ECBC function ECBCπ1,π2
: [n]∗ → [n] is defined as

ECBCπ1,π2
(M) = π2(CBCπ1

(M))

The Encrypted-CBC (ECBC) function

π1 : [n]→ [n], π2 : [n]→ [n].

The ECBC function ECBCπ1,π2
: [n]∗ → [n] is defined as

ECBCπ1,π2
(M) = π2(CBCπ1

(M))

M1 M2 M3 M`

⊕ ⊕ ⊕

π1 π1 π1 π1

π2

C1 C2 C3 C`

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

atk = any has length at most ` n-bit blocks.

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

atk = any has length at most ` n-bit blocks.

atk = eq has length exactly ` n-bit blocks.

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

atk = any has length at most ` n-bit blocks.

atk = eq has length exactly ` n-bit blocks.

atk = pf has length at most ` n-bit blocks and none is the
prefix of another.

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

atk = any has length at most ` n-bit blocks.

atk = eq has length exactly ` n-bit blocks.

atk = pf has length at most ` n-bit blocks and none is the
prefix of another.

M is a prefix of M ′ if M ′ = M‖M ′′ for some M ′′.

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

atk = any has length at most ` n-bit blocks.

atk = eq has length exactly ` n-bit blocks.

atk = pf has length at most ` n-bit blocks and none is the
prefix of another.

M is a prefix of M ′ if M ′ = M‖M ′′ for some M ′′.

A[eq, q, n, `] ⊆ A[pf, q, n, `] ⊆ A[any, q, n, `]

Attack Models
A[atk, q, n, `] all attackers making q queries where each query

atk = any has length at most ` n-bit blocks.

atk = eq has length exactly ` n-bit blocks.

atk = pf has length at most ` n-bit blocks and none is the
prefix of another.

M is a prefix of M ′ if M ′ = M‖M ′′ for some M ′′.

A[eq, q, n, `] ⊆ A[pf, q, n, `] ⊆ A[any, q, n, `]

AdvCBC(A) = Pr[π
$
← Perm(n); ACBCπ ⇒ 1]−Pr[f

$
← Func(n); Af ⇒ 1]

Advatk
CBC(q, n, `) = max

A ∈ A[atk, q, n, `]
AdvCBC(A)

Known Results
Known bounds for CBC

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n

folklore Adv
any
CBC(2, n, 2) ≈ 1

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n

folklore Adv
any
CBC(2, n, 2) ≈ 1

CBCπ(0n) = π(0n) = Y

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n

folklore Adv
any
CBC(2, n, 2) ≈ 1

CBCπ(0n) = π(0n) = Y

CBCπ(0n‖Y) = π(π(0n)⊕ Y) = π(Y ⊕ Y) = π(0n) = Y

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n

folklore Adv
any
CBC(2, n, 2) ≈ 1

Known bounds for ECBC

PR00 Adv
any
ECBC(q, n, `) ≤ c · `2q2/2n

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n

folklore Adv
any
CBC(2, n, 2) ≈ 1

Known bounds for ECBC

PR00 Adv
any
ECBC(q, n, `) ≤ c · `2q2/2n

DGHKR04 Adv
eq
ECBC(q, n, `) ≤ c · q2/2n for ` ≤ 2n/2.

Known Results
Known bounds for CBC

BKR94 Adv
eq
CBC(q, n, `) ≤ c · `2q2/2n

PR00 Adv
pf
CBC(q, n, `) ≤ c · `2q2/2n tight for ` ∈ O(1)

folklore Adv
any
CBC(2, n, 2) ≈ 1

Known bounds for ECBC

PR00 Adv
any
ECBC(q, n, `) ≤ c · `2q2/2n tight for ` ∈ O(1)

DGHKR04 Adv
eq
ECBC(q, n, `) ≤ c · q2/2n for ` ≤ 2n/2.

Adv
eq
CBC(2n/2, n, `) = Θ(1)

Adv
eq
ECBC(2n/2, n, `) = Θ(1)

Our Results

Improve prefix free CBC from `2·q2/2n to:

Theorem

Adv
pf
CBC(q, n, `) ≤ c · ` · q2/2n for ` ≤ 2n/3

Our Results

Improve prefix free CBC from `2·q2/2n to:

Theorem

Adv
pf
CBC(q, n, `) ≤ c · ` · q2/2n for ` ≤ 2n/3

Improve ECBC from c · `2 · q2/2n to:

Theorem

Adv
any
CBC(q, n, `) ≤ c · `1/ ln ln ` · q2/2n for ` ≤ 2n/4

Permutation vs. Functions

CBC = {CBCπ; π
$
← Perm(n)}

CBC′ = {CBCf ; f
$
← Func(n)}

Adv
pf
CBC(q = 2n/4, n, ` = 2n/4) ≈ ` · q2/2n ≤ 2−n/4

Adv
pf
CBC′(q = 2n/4, n, ` = 2n/4) = Θ(1) [Berke04]

ECBC and the Carter-Wegman Paradigm

ECBCπ1,π2
(.) = π2(CBCπ1

(.))

CPn(M, M ′) = Pr[π ← Perm(n); CBCπ(M) = CBCπ(M ′)]

CP
any
n,` = max

M, M ′, |M| ≤ `n, |M ′| ≤ `n
CPn(M, M ′)

Adv
any
ECBC(q, n, `) ≤ q2 · CP

any
n,`

CBC and the Full Collision Probability

M = M1‖M2‖ . . .Mm and M ′ = M ′

1‖M
′

2‖ . . .M ′

m′

M1 M2 M3 Mm

⊕ ⊕ ⊕

π π π π

C1 C2 C3 Cm

M ′

1 M ′

2 M ′

3 M ′

m′

⊕ ⊕ ⊕

π π π π

C ′

1 C ′

2 C ′

3 C ′

m′

CBC and the Full Collision Probability

M = M1‖M2‖ . . .Mm and M ′ = M ′

1‖M
′

2‖ . . .M ′

m′

M1 M2 M3 Mm

⊕ ⊕ ⊕

π π π π

C1 C2 C3 Cm

M ′

1 M ′

2 M ′

3 M ′

m′

⊕ ⊕ ⊕

π π π π

C ′

1 C ′

2 C ′

3 C ′

m′

FCPn(M, M ′) = Pr[π ← Perm(n); C ′

m′ ∈ {C1, . . . , Cm, C ′

1, . . . , C
′

m′−1}]

FCP
pf
n,` = max

M, M ′, |M| ≤ `n, |M ′| ≤ `n
FCPn(M, M ′)

Adv
any
ECBC(q, n, `) ≤ q2 · CP

any
n,`

Adv
pf
CBC(q, n, `) ≤ q2 · FCP

pf
n,` + 4mq2

2n

Adv
any
ECBC(q, n, `) ≤ q2 · CP

any
n,`

Lemma

CP
any
n,` ≤

2d(`)

2n
+

8`4

22n

Where d(`) ≤ `1/ ln ln ` = o(`) is the maximum number of
divisors of any m ≤ `.

Adv
pf
CBC(q, n, `) ≤ q2 · FCP

pf
n,` + 4mq2

2n

Adv
any
ECBC(q, n, `) ≤ q2 · CP

any
n,`

Lemma

CP
any
n,` ≤

2d(`)

2n
+

8`4

22n

Where d(`) ≤ `1/ ln ln ` = o(`) is the maximum number of
divisors of any m ≤ `.

Adv
pf
CBC(q, n, `) ≤ q2 · FCP

pf
n,` + 4mq2

2n

Lemma

FCP
pf
n,` ≤

8`

2n
+

8`4

22n

The Game-Playing Technique [BR05]

On the s
th query F (Ms) Game D1

100 ms ← |Ms |n, C 0
s ← 0n

101 for i ← 1 to ms − 1 do

102 X i
s ← C i−1

s ⊕M i
s

103 if X i
s ∈ Dom(π) then C i

s ← π(X i
s)

104 else π(X i
s)← C i

s

$
← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s

$
←{0, 1}

n

107 ifCms
s ∈Ran(π): bad←1, Cms

s

$
←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s)

109 π(Xms
s)← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

D1 implements CBC.

The Game-Playing Technique [BR05]

On the s
th query F (Ms) Game D0

100 ms ← |Ms |n, C 0
s ← 0n

101 for i ← 1 to ms − 1 do

102 X i
s ← C i−1

s ⊕M i
s

103 if X i
s ∈ Dom(π) then C i

s ← π(X i
s)

104 else π(X i
s)← C i

s

$
← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s

$
←{0, 1}

n

107 ifCms
s ∈Ran(π): bad←1, Cms

s

$
←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s)

109 π(Xms
s)← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

D1 implements CBC.

D0 implements a random
function.

The Game-Playing Technique [BR05]

On the s
th query F (Ms) Game D0

100 ms ← |Ms |n, C 0
s ← 0n

101 for i ← 1 to ms − 1 do

102 X i
s ← C i−1

s ⊕M i
s

103 if X i
s ∈ Dom(π) then C i

s ← π(X i
s)

104 else π(X i
s)← C i

s

$
← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s

$
←{0, 1}

n

107 ifCms
s ∈Ran(π): bad←1, Cms

s

$
←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s)

109 π(Xms
s)← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

D1 implements CBC.

D0 implements a random
function.

AdvCBC(A) = Pr[AD0 ⇒ 1]−Pr[AD1 ⇒ 1]

The Game-Playing Technique [BR05]

On the s
th query F (Ms) Game D0

100 ms ← |Ms |n, C 0
s ← 0n

101 for i ← 1 to ms − 1 do

102 X i
s ← C i−1

s ⊕M i
s

103 if X i
s ∈ Dom(π) then C i

s ← π(X i
s)

104 else π(X i
s)← C i

s

$
← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s

$
←{0, 1}

n

107 ifCms
s ∈Ran(π): bad←1, Cms

s

$
←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s)

109 π(Xms
s)← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

D1 implements CBC.

D0 implements a random
function.

AdvCBC(A) = Pr[AD0 ⇒ 1]−Pr[AD1 ⇒ 1] ≤ Pr[AD0 sets bad]

The Game-Playing Technique Cnt.

700 π
$
← Perm(n) Game D7

701 C 0
1 ← C 0

2 ← 0n

702 for i ← 1 to m1 do

703 X i
1 ← C

i−1
1 ⊕M

i
1, C i

1 ← π(X i
1)

704 for i ← 1 to m2 do

705 X i
2 ← C

i−1
2 ⊕M

i
2, C i

2 ← π(X i
2)

706 bad ← X
m2

2 ∈ {X
1
1 , . . . , X

m1

1 ,

707 X 1
2 , . . . , X

m2−1
2 }

The Game-Playing Technique Cnt.

700 π
$
← Perm(n) Game D7

701 C 0
1 ← C 0

2 ← 0n

702 for i ← 1 to m1 do

703 X i
1 ← C

i−1
1 ⊕M

i
1, C i

1 ← π(X i
1)

704 for i ← 1 to m2 do

705 X i
2 ← C

i−1
2 ⊕M

i
2, C i

2 ← π(X i
2)

706 bad ← X
m2

2 ∈ {X
1
1 , . . . , X

m1

1 ,

707 X 1
2 , . . . , X

m2−1
2 }

Pr[AD7 sets bad] = FCPn(M
1
1‖ . . . ‖M1

m1
, M2

1‖ . . . ‖M2
m2

)

The Game-Playing Technique Cnt.

On the sth query F (Ms) Game D1
100 ms ← |Ms |n, C 0

s ← 0n

101 for i ← 1 to ms − 1 do

102 X i
s ← C i−1

s ⊕M i
s

103 if X i
s ∈ Dom(π) then C i

s ← π(X i
s)

104 else π(X i
s)← C i

s

$
← Ran(π)

105 Xms
s ← Cms−1

s ⊕Mms
s

106 Ĉms
s ← Cms

s

$
←{0, 1}

n

107 ifCms
s ∈Ran(π): bad←1, Cms

s

$
←Ran(π)

108 ifXms
s ∈Dom(π): bad←1, Cms

s ←π(Xms
s)

109 π(Xms
s)← Cms

s

110 if bad then return Cms
s

111 return Ĉms
s

.

700 π
$
← Perm(n) Game D7

701 C 0
1 ← C 0

2 ← 0n

702 for i ← 1 to m1 do

703 X i
1 ← C

i−1
1 ⊕ M

i
1, C i

1 ← π(X i
1)

704 for i ← 1 to m2 do

705 X i
2 ← C

i−1
2 ⊕ M

i
2, C i

2 ← π(X i
2)

706 bad ← X
m2

2 ∈ {X
1
1 , . . . , X

m1

1 ,

707 X 1
2 , . . . , X

m2−1
2 }

Pr[AD1 sets bad] ≤ q2 · Pr[AD7 sets bad] +
4`q2

2n

Adv
pf
CBC(q, n, `) ≤ q2 · FCP

pf
n,` +

4`q2

2n

Adv
any
ECBC(q, n, `) ≤ q2 · CP

any
n,`

Lemma

CP
any
n,` ≤

2d(`)

2n
+

8`4

22n

Where d(`) ≤ `1/ ln ln ` = o(`) is the maximum number of
divisors of any m ≤ `.

Adv
pf
CBC(q, n, `) ≤ q2 · FCP

pf
n,` + 4mq2

2n

Lemma

FCP
pf
n,` ≤

8`

2n
+

8`4

22n

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

4 5 5 3

⊕ ⊕ ⊕

π π π π

0

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1

4 5 5 3

⊕ ⊕ ⊕

π π π π

0

C1

7

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2

4 5 5 3

⊕ ⊕ ⊕

π π π π

0

C1

7
C2

7

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2 C3

4 5 5 3

⊕ ⊕ ⊕

π π π π

0

C1

7
C2

7 C3
5

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2 C3 C4

4 5 5 3

⊕ ⊕ ⊕

π π π π

0

C1

7
C2

7 C3
5 C4

4

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2 C3 C4

4 5 5 3

⊕ ⊕ ⊕

π π π π

C ′

1

0

C1

7
C2

7 C3
5 C4

4

C ′

1

4

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2 C3 C4

4 5 5 3

⊕ ⊕ ⊕

π π π π

C ′

1 C ′

2

Accident: C ′

2 = C2

0

C1

7
C2

7 C3
5 C4

4

C ′

1

4

5

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2 C3 C4

4 5 5 3

⊕ ⊕ ⊕

π π π π

C ′

1 C ′

2 C ′

3

Accident: C ′

2 = C2 Induced Collision: C ′

3 = C3

0

C1

7
C2

7 C3
5 C4

4

C ′

1

4

5

5

A Graph-Based Representation of CBC

[DGHKR04]

7 7 5 4

⊕ ⊕ ⊕

π π π π

C1 C2 C3 C4

4 5 5 3

⊕ ⊕ ⊕

π π π π

C ′

1 C ′

2 C ′

3 C ′

4

Accident: C ′

2 = C2 Induced Collision: C ′

3 = C3

0

C1

7
C2

7 C3
5 C4

4

C ′

1

4

5

5

C ′

4

3

Structure Graph Gπ, Acc(Gπ) = 1

Structure Graphs

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3

0

C1

7
C2

7 C3
5 C3

4

C ′

1

4

C ′

2
5 C ′

3
5 C ′

4
3

Acc(H) = 0

Structure Graphs

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3 Acc(H) = 3

0

C1

7
C2

7 C3
5

4

C ′

1

4

5

C ′

3

5 3

Structure Graphs

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3 Acc(H) = 3

0

C1

7
C2

7 C3
5

4

C ′

1

4

5

C ′

3

5 3

Lemma

Pr[π
$
← Perm(n); Gπ = H] ≤ (2n − 2`)−Acc(H)

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3

CPn(M, M ′) = Pr[π
$
← Perm(n); CBCπ(M) = CBCπ(M ′)]

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3

CPn(M, M ′) = Pr[π
$
← Perm(n); CBCπ(M) = CBCπ(M ′)]

= Pr[π
$
← Perm(n); Gπ satisfies C4 = C ′

4]

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3

CPn(M, M ′) = Pr[π
$
← Perm(n); CBCπ(M) = CBCπ(M ′)]

= Pr[π
$
← Perm(n); Gπ satisfies C4 = C ′

4]

0

C1

7
C27 C35 C44

C ′

1

4

C ′

2
5 C ′

3
5

3

M = 7‖7‖5‖4 M ′ = 4‖5‖5‖3 ` = 4

CPn(M, M ′) = Pr[Gπ satisfies C4 = C ′

4]

≤ Pr[Acc(Gπ) = 1 and Gπ satisfies C4 = C ′

4]+Pr[Acc(Gπ) ≥ 2]

≤
#G [with 1 accident where C4 = C ′

4]

2n − 2 · `
+

8 · `2

22n

Lemma

Pr[π
$
← Perm(n); Gπ = H] ≤ (2n − 2`)−Acc(H)

M, M ′ with m = |M|, m′ = |M ′|, ` = max(m, m′).

CPn(M, M ′) ≤
#G [with 1 acc. where Cm = C ′

m′]

2n − 2 · `
+

8 · `2

22n

Lemma

#[G with 1 acc. where Cm = C ′

m′] ≤ d(`)

Where d(`) ≤ `1/ ln ln ` = o(`) is the maximum number of
divisors of any m ≤ `, e.g. d(15) = 6 as 12 ≤ 15 has 6
divisors 1, 2, 3, 4, 6, 12.

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

0

1

2

3

0

1 2

0

1

0

Questions?

