CRYPTO 2012

Aug 19 – 23
Santa Barbara
California
USA

 

 

 

Substitution-Permutation Networks, Pseudorandom Functions, and Natural Proofs

 

Eric Miles (Northeastern University)

Emanuele Viola (Northeastern University)

 

Abstract:
This paper takes a new step towards closing the troubling gap between pseudorandom functions (PRF) and their popular, bounded-input-length counterparts. This gap is both quantitative, because these counterparts are more efficient than PRF in various ways, and methodological, because these counterparts usually fit in the substitution-permutation network paradigm (SPN) which has not been used to construct PRF.


We give several candidate PRF F_i that are inspired by the SPN paradigm. This paradigm involves a “substitution function” (S-box). Our main candidates are:


1. F_1 : {0,1}^n -> {0,1}^n is an SPN whose S-box is a random function on b bits, given as part of the seed. We prove unconditionally that F_1 resists attacks that run in time at most 2^{Omega(b)}. Setting b = omega(log n) we obtain an inefficient PRF, which however seems to be the first such construction using the SPN paradigm.


2. F_2 : {0,1}^n -> {0,1}^n is an SPN where the S-box is (patched) field inversion, a common choice in practical constructions. F_2 is computable with Boolean circuits of size n * log^{O(1)} n, and in particular with seed length n * log^{O(1)} n. We prove that this candidate has exponential security 2^{Omega(n)} against linear and differential cryptanalysis.


3. F_3 : {0,1}^n -> {0,1} is a non-standard variant on the SPN paradigm, where “states” grow in length. F_3 is computable with size n^{1+eps}, for any eps > 0, in the restricted circuit class TC0 of unbounded fan-in majority circuits of constant-depth. We prove that F_3 is almost $3$-wise independent.


4. F_4 : {0,1}^n -> {0,1} uses an extreme setting of the SPN parameters (one round, one S-box, no diffusion matrix). The S-box is again (patched) field inversion. We prove that this candidate is a small-bias generator (for tests of weight up to 2^{0.9n}).


Assuming the security of our candidates, our work also narrows the gap between the “Natural Proofs barrier” [Razborov & Rudich; JCSS '97] and existing lower bounds, in three models: unbounded-depth circuits, TC0 circuits, and Turing machines. In particular, the efficiency of the circuits computing F_3 is related to a result by Allender and Koucky [JACM '10] who show that a lower bound for such circuits would imply a lower bound for TC0.

 

 

 

Back to Conference Program