
A point compression method for elliptic curves
defined over GF (2n)

Brian King

Purdue School of Engineering
Indiana Univ. Purdue Univ. at Indianapolis

briking@iupui.edu

Abstract. Here we describe new tools to be used in fields of the form
Gf(2n), that help describe properties of elliptic curves defined over GF (2n).
Further, utilizing these tools we describe a new elliptic curve point com-
pression method, which provides the most efficient use of bandwidth
whenever the elliptic curve is defined by y2 + xy = x3 + a2x

2 + a6 and
the trace of a2 is zero.

1 Introduction

In [5, 9], Koblitz and Miller independently proposed to use elliptic curves over
a finite field to implement cryptographic primitives. The benefits for utilizing
elliptic curves as a public key primitive are well recognized: smaller bandwidth,
fast key exchange and fast signature generation.

The focus of this paper will be with elliptic curves E defined over a field of
the form GF (2n). In particular our contribution will be the development of new
tools to be used in GF (2n) that help describe elliptic curve properties, as well
as we develop a new method for point compression, which is the most efficient
point compression described so far.1 Our result answers a question that Seroussi
raised in [12]. Here Seroussi stated that it may be possible to improve on his
point compression algorithm but that no known efficient method existed. In
addition to the point compression method we provide additional results which
were derived from the tools developed for the point compression method. Integral
to our work is method of halving a point.

2 Background mathematics-binary fields GF (2n) and
elliptic curves

2.1 The trace operator in GF (2n)

The trace function, denoted by Tr, is a homomorphic mapping2 of GF (2n)
onto {0, 1}. The trace of an element α ∈ GF (2n), denoted by Tr(α) can be

1 Point compression provides an improvement on bandwidth.
2 Tr(α + β) = Tr(α) + Tr(β).

computed (see [15]) as Tr(α) =
∑m−1

i=0 α2i

. (In reality, the trace function can
be computed extremely efficiently, see Table 2 in the appendix.) For more in-
formation concerning the Tr() operator and its importance see [7]. It can be
shown that Tr() is a linear operator which returns a 0 or a 1 and satisfies that
Tr(α2) = Tr(α). In GF (2n), where n is odd (which is true for all binary fields
that we are interested in), then Tr(1) = 1 (this can easily be derived given the
above equation). Consequently for all α ∈ GF (2n) with Tr(α) = 0 we have
Tr(α + 1) = 1 and vice versa. For a given b ∈ GF (2n), the quadratic equation
λ2 + λ = b in GF (2n) has a solution if and only if Tr(b) = 0 [7]. Observe that
if λ is a solution to the above quadratic equation, then λ + 1 is also a solution,
and Tr(λ + 1) = Tr(λ) + 1. Hence whenever n is odd, which we always will
assume, for each solvable quadratic equation there is a solution with trace 1 and
a solution with trace 0.

2.2 Elliptic curve operation

For the finite field GF (2n), the standard equation or Weierstrass equation for a
non supersingular elliptic curve is:

y2 + xy = x3 + a2x
2 + a6 (1)

where a2, a6 ∈ GF (2n), a6 6= 0. The points P = (x, y), where x, y ∈ GF (2n),
that satisfy the equation, together with the point O, called the point of infinity,
form an additive abelian group Ea2,a6 . Here addition in Ea2,a6 is defined by: for
all P ∈ Ea2,a6

– P +O = P ,
– for P = (x, y) 6= O, −P = (x, x + y)
– and for all P1 = (x1, y1) , P2 = (x2, y2), both not equal to the identity and

P1 6= −P2, P1 + P2 = P3 = (x3, y3) where x3, y3 ∈ GF (2n) and satisfy:

x3 = λ2 + λ + x1 + x2 + a2

and
y3 = λ(x1 + x3) + x3 + y1

where λ = y1+y2
x1+x2

if P1 6= P2 and λ = x1 + y1
x1

for P1 = P2.
As stated earlier, the elliptic curve Ea2,a6 is given by the equation y2 +xy =

x3 +a2x
2 +a6. If (x, y) ∈ Ea2,a6 and x 6= 0 then y2

x2 + y
x = x+a2 + a6

x2 . By making
the substitution z = y

x we see that z2 + z = x + a2 + a6
x2 . Since this quadratic

equation is solvable, we see that Tr(x + a2 + a6
x2) = 0. Observe that if β satisfies

that Tr(β + a2 + a6
β2) = 0 then there exists a z such that z2 + z = β + a2 + a6

β2 .
By setting y = β · z we see that y2 +βy = β3 +a2β

2 +a6. Hence (β, y) ∈ Ea2,a6 .
And so the condition that a nonzero field element β satisfies Tr(β +a2 + a6

β2) = 0
is both a necessary and sufficient condition to determine if the element is the
x-coordinate of a point on Ea2,a6 .

In a cryptographic application, the elliptic curve will be selected so that
Ea2,a6 will contain a large subgroup of prime order. The cryptographically rele-
vant points will belong to this subgroup of large prime order.

2.3 Point compression algorithms

In [15] an algorithm for point compression is described. We summarize it as
follows. For a party to send a cryptographically relevant elliptic curve point P
they need to send an ordered pair. However, rather than sending an ordered
pair it is possible to send the x coordinate and one-bit of information. The
corresponding y coordinate can be computed using x and this one-bit. This is
because, by equation (1) we have y2

x2 + y
x = x + a2 + a6

x2 . The problem is that
there are two solutions to this equation, one solution has trace 1 and the other
solution has trace 0. Consequently the only information concerning y needed to
transmitted by the sender is the trace of trace of y

x . So if we are given x we can
solve for a λ which satisfies λ2 + λ = x + a2 + a6

x2 . One can determine y from λ,
x and this one-bit. This method has been standardized in [16, 15] and has been
patented. The result is that this method requires n + 1 bits to transmit a point
on an elliptic curve defined over GF (2n).

In [2], Seroussi described an even more efficient point compression algorithm.
Suppose that (x2, y2) ∈ E. Then Tr(x2 + a2 + a6

x2
2
) = 0. Again, we assume that

(x2, y2) is a cryptographically relevant point, that is, it is a point of prime order p.
Since (x2, y2) is of prime order, it is the double of some point (x1, y1). Seroussi, in
[2], demonstrated that this implies that Tr(x2) = Tr(a2). For completeness (as
well as to demonstrate tools that we utilize later) we recreate it here. Suppose
(x2, y2) is the double of some point (x1, y1) ∈ E. Thus x2 = x2

1 + a6
x2
1
. Since

(x1, y1) ∈ E we have Tr(x1 + a2 + a6
x2
1
) = 0. Further since Tr(x2) = Tr(x) we

have
Tr(x1 + a2 +

a6

x2
1

) = Tr(x2
1 + a2 +

a6

x2
1

) = Tr(x2 + a2) = 0.

Therefore Tr(x2) = Tr(a2). It was this property that Seroussi exploits in his
compression algorithm. Let Q = (x2, y2) be the cryptographically relevant point
on the curve E. Consequently Q will belong to a subgroup of prime order and so
Q is the double of some point P . Thus Tr(x2) = Tr(a2). Given a field element
z = (ζn−1, . . . , ζ1, ζ0) in GF (2n), it can be represented by n bits. At least one
of the bits is used to compute trace, let i denote the smallest index such that
ζi is used to compute trace (note that it is very likely that i = 0), see Table 2
for examples on how to efficiently compute the trace for the binary fields used
in the NIST list of elliptic curves. Suppose x2 = (ξn−1, ξn−2,, ξ1, ξ0). Then
to transmit the x-coordinate x2 we only need to send n − 1 bits, since we can
transmit (ξn−1, ξn−2, ...ξi+1, ξi−1,, ξ1, ξ0). Now the receiver knows the curve
and all of its parameters, thus they know i. Further, the receiver knows that
x2 satisfies Tr(x2) = Tr(a2). Consequently the receiver can determine whether
ξi should be a one or a zero. Once the receiver has x2, they solve for z such
that z2 + z = x2 + a2 + a6

x2
. Then y2 can be computed by y2 = x2 · z. The

problem again is that there are two solution to this equation in z, one z-solution
has trace 1 and the other z-solution has trace 0. Thus the only information
needed to transmit y is the trace of the z-value. Hence only one bit needs to be
transmitted to communicate y. Therefore Seroussi has demonstrated that only

n bits are needed to be transmit to a receiver a point on the elliptic curve E
over GF (2n).

2.4 Halving a point

In [6], Knudsen introduced the halving point coordinates and the halving a point
algorithm. Knudsen introduced the concept of halving a point in elliptic curve
over GF (2n) to compute the scalar multiple kP . 3 Knudsen described how to
compute 1

2P given a point P = (x, y) ∈ E, where P is a double of some point.
At the heart of this computation is the representation of a point. Rather that
using the affine coordinates of a point P = (x, y) ∈ E, Knudsen represented P
as P = (x, λP) where λP = x+ y

x , which we refer to halving coordinates. Observe
that given x and λP , y can be computed since y = x(x + λP).
Let Q = (u, λQ) = 1

2P where P = (x, λP). Then Knudsen [6] demonstrated that
the following two equations could determine Q; first λQ can be determined by
solving:

λ2
Q + λQ = a2 + x. (2)

Once one solves for λQ, u can be determined by computing

u =
√

u2 =
√

x(λQ + 1) + y =
√

x(λQ + λP + x + 1). (3)

Observe that Tr(a2 + x) must equal 0, which is true if and only if P is the
double of some point, an observation that is used in both [14, 12]. It is trivial to
demonstrate that the computed (u, λQ) is a “half” of P . Knudsen’s algorithm
requires one square root, one multiplication, one solve (which is the halftrace),
and though not illustrated above, one trace check. So it will be very efficient.

The primary focus in [6] was with elliptic curves with a cofactor of 2, but
Knudsen did not limit his work to only such curves. He provided formulae for the
case when the cofactor is 2, as well as when the cofactor is 2L (where L > 1). In
[4], an improvement of Knudsen’s halving algorithm for curves with a cofactor
of 2L where L > 1 was demonstrated.
Integral to our work will be the following algorithms.

SOLVE(s) HALF(P = (xP , λP)
if Tr(s) 6= 0 if Tr(xP + a2) 6= 0

return No solution return No half point
let ζ be an arbitrary solution to λQ = SOLVE(xP + a2)

the equation w2 + w = s uQ =
√

xP (λQ + λP + xP + 1)
return ζ return (uQ, λQ)

In the SOLVE equation, there are two solutions to the quadratic equation. So
when ζ is assigned to be an arbitrary solution it meant that any one of the
3 Independently, Schroepel [11] also developed the method of halving a point to per-

form cryptographic computations on an elliptic curve.

two solutions is returned. The Theorem described below demonstrates that not
only will the HALF algorithm produce a half when the input point that can
be halved, but that for any input the HALF algorithm will produce the correct
output.

Theorem 1. Let P ∈ E then
(i) If Q = HALF(P) then Q ∈ E and 2Q = P .
(ii) If HALF(P) returns No half point then for all Q ∈ E, 2Q 6= P .

The proof is left as an exercise.

3 Some observations

Recall that when (x2, y2) ∈ E with x2 6= 0, we must have Tr(x2 + a2 + a6
x2
2
) = 0.

Further, if (x2, y2) is a double of some point then Tr(x2) = Tr(a2). Therefore
if (x2, y2) is a double of some point then Tr(a6

x2
2
) = 0. This condition can be

shown to be both necessary and sufficient to imply that a point is the double
of some point in E. The argument is as follows: Suppose Tr(a6

x2
2
) = 0 where

(x2, y2) ∈ E. Since Tr(x2 + a2 + a6
x2
2
) = 0 we see that Tr(x2) = Tr(a2). Consider

the equation x2+ a6
x2 = x2. Observe that if x satisfies this equation then x satisfies

Tr(x2 + a2 + a6
x2) = Tr(x2 + a2) = Tr(x + a2 + a6

x2) = 0. Thus there exists a y
such that (x, y) ∈ E. Now this equation x2 + a6

x2 = x2 is solvable, since it reduces
to solving x4 + x2x

2 = a6 which is x2
2t

2 + x2
2t = a6 by letting x2 = x2t. This last

equation reduces to t2 + t = a6
x2
2
. Since a6

x2
2

has trace 0, this is solvable. Once t is

found, solve for x by letting x2 = x2t and computing x =
√

x2.
Consequently the requirement for a point on E to be a double can be solely

expressed as a condition existing between x and the parameter a6. Of course the
condition that given x there is some y such that (x, y) ∈ E can be stated as:
Tr(x + a2 + a6

x2) = 0. Suppose a6 is some fixed nonzero field element of GF (2n),
and that x0 be an arbitrary nonzero field element of GF (2n) where Tr(a6

x2
0
) = 0.

Then x0 is the x-coordinate for a double of some point for ALL elliptic curves
Ea2,a6 which satisfy Tr(a2) = Tr(x0).

3.1 A characterization of nonzero elements in GF (2n)

Let a6 be a fixed nonzero field element in GF (2n).
Let x ∈ GF (2n) with x 6= 0, we define the characterization of x to be the

binary ordered pair (Tr(x), T r(a6
x2)). The characterization of x will be helpful to

identifying the x-coordinate of points that belong to an elliptic curve or its twist,
as well as identifying field elements that are the x-coordinate of points which
are doubles. The four possible characterizations are: (1,0), (0,1), (1,1) and (0,0).
Those field elements which have characterization of (1,0) and (0,0) represent the
field elements which are possible x-coordinates of the double of some elliptic
curve point. (Whether a field element is an x-coordinate of a double depends on

the trace of a2. If Tr(a2) = 0 then it would be those field element with character
(0,0), whereas if Tr(a2) = 1 then it would be those field element with character
(1,0).)

Now consider the element
√

a6

x . The characterization of
√

a6

x is

(Tr(
√

a6

x
), T r(

a6
√

a6

x

2)) = (Tr(
√

a6

x
), T r(x2)).

Since Tr(x2) = Tr(x) we see that the characterization of
√

a6

x is equal to
(Tr(a6

x2), T r(x)) which is a permutation of the characterization of x. The element
√

a6

x is of interest for the following reason: Let T2 = (0,
√

a6) then independent
of the trace value of a2 we will always have T2 ∈ Ea2,a6 . Further T2 = −T2 If x
represents the x-coordinate of some point P ∈ Ea2,a6 then the x-coordinate of
P + T2 is

√
a6

x .
Observe that if x is an x-coordinate of some point on the elliptic curve

Ea2,a6 then the characterization of x satisfies (Tr(x), T r(a6
x2)) = (Tr(x), T r(x)+

Tr(a2)). Further the sum of the characterization coordinates of x equals Tr(a2).
We can define an equivalence relation R on GF (2n) \ {0} by: for each x, y ∈

GF (2n) \ {0} we say xRy provided y = x or y =
√

a6

x . Each equivalence class
contains two elements except for the equivalence class for 4

√
a6, which possesses

one element. Therefore there are (2n − 2)/2 + 1 = 2n−1 equivalence classes for
GF (2n) \ {0}.

For all i, j ∈ {0, 1} we define

A(i,j) = {x ∈ GF (2n) \ {0, 4
√

a6} : x has characterization (i, j) }.

For all x ∈
(
A(i,j) ∪ A(1+i,1+j)

)
, x will be the x-coordinate of some point on

the elliptic curve Ea2,a6 where Tr(a2) = i + j. In fact for all P ∈ Ea2,a6 \ O, if
xP 6∈ {0, 4

√
a6} then xP ∈

(
A(i,j) ∪ A(1+i,1+j)

)
. Of course A(i+j,0) will contain

elements which are the x-coordinate of a double of some point in Ea2,a6 and
A(1+i+j,1) will contain elements which are the x-coordinate of a point in Ea2,a6

which are not doubles.
Let P1, P2 ∈ Ea2,a6 . Then the following can be established by utilizing the

definition of point addition in Ea2,a6 . If xP1 ∈ A(i+j,0) and xP2 ∈ A(i+j,0) and
P1 +P2 6= O then xP1+P2 ∈ A(i+j,0). If xP1 ∈ A(i+j,0) and xP2 ∈ A(1+i+j,1) then
xP1+P2 ∈ A(1+i+j,1).

Since we have that for each x, the characterization of a6√
x

is the permutation
of the characterization of x, this implies that |A0,1| = |A1,0| and that both |A0,0|
and |A1,1| are even. Also since half of the elements in GF (2n) have trace 0 and
the remaining elements have trace 1, we can infer that if Tr(a6) = 1 then the
number of elements of GF (2n) which have trace 0 is 1 + |A0,1|+ |A0,0|, whereas
the number of elements which have trace 1 is 1 + |A1,0| + |A1,1|. Thus when
Tr(a6) = 1 we have |A0,0| = |A1,1|. If Tr(a6) = 0 then the number of elements
of GF (2n) which have trace 0 is 1+1+|A0,1|+|A0,0| and the number of elements
which have trace 1 is |A1,0| + |A1,1|. Therefore when Tr(a6) = 0 we see that
|A1,1| = |A0,0|+ 2.

Theorem 2. The number of points on an elliptic curve Ea2,a6 satisfies:
(i) |Ea2,a6 | = 1 + 1 + 2 · |A0,1|+ 2 · |A1,0| = 1 + 1 + 2 · 2 · |A1,0| = 2 + 4 · |A1,0|

provided that Tr(a2) = 1
(ii) |Ea2,a6 | = 4 + 4 · |A0,0| provided that Tr(a2) = 0 and Tr(a6) = 1
(iii) |Ea2,a6 | = 8 + 4 · |A0,0| provided that Tr(a2) = 0 and Tr(a6) = 0

Proof. The proof of (i): Suppose Tr(a2) = 1. The elliptic curve Ea2,a6 will
include the point of infinity, and the point (0,

√
a6). In addition, for each x ∈

(A(1,0) ∪A(0,1)) there will exist two values of y such that (x, y) ∈ Ea2,a6 . Lastly
recall that |A(1,0)| = |A(0,1)|. Therefore |Ea2,a6 | = 1 + 1 + 2 · |A0,1|+ 2 · |A1,0| =
1 + 1 + 2 · 2 · |A1,0| = 2 + 4 · |A1,0|.

The proofs of (ii) and (iii) follow from a similar counting argument.

Recall that |A(i,i)| is even for i = 0, 1. Therefore an elliptic curve will have a
cofactor of 2 iff Tr(a2) = 1 and 1 + 2 · |A(0,1)| is prime. An elliptic curve will
have a cofactor of 4 iff Tr(a2) = 0, Tr(a6) = 1 and 1 + |A(0,1)| is prime. For
L > 2, an elliptic curve will have cofactor of 2L iff Tr(a2) = 0, Tr(a6) = 0 and
1 + |A(0,0)|/2L−2 is prime.

As described by the above theorem the number of points on an elliptic curve,
depends on the characterization of elements in GF (2n) and the trace of the ellip-
tic curve parameters a2 and a6. If we fix the parameter a6 and vary the parameter
a2 then the characterization for each x in GF (2n) will be fixed. Therefore we
have the following (this same result is provided in [2]).

Theorem 3. Let γ ∈ GF (2n) such that Tr(γ) = 0 then for all a2, a6 we have

|Ea2+γ,a6 | = |Ea2,a6 |

Proof. For a fixed a2 and a γ with Tr(γ)=0, we have Tr(a2 + γ) = Tr(a2)

A consequence of this theorem is that if Ea2,a6 represents a cryptographically
relevant elliptic curve defined over GF (2n). Then there exists 2n−1 many cryp-
tographically relevant curves defined over the same field. In [13], it was shown
that these curves are isomorphic to each other.

Let a2, a6 ∈ GF (2n). Then this fixes some elliptic curve Ea2,a6 . Let γ ∈
GF (2n) where Tr(γ) = 0. Then [13] has established that both Ea2,a6 and
Ea2+γ,a6 are isomorphic. But we will see that we can make even more inferences
concerning the isomorphism. Suppose that Ea2,a6 has a cofactor of 2L. Then for
all P = (x, y) ∈ Ea2,a6 , there exists a ζ ∈ GF (2n) such that (x, ζ) ∈ Ea2+γ,a6 . It
can be shown that ζ = y +x ·Solve(γ). That is, (x, y +x ·Solve(γ)) ∈ Ea2+γ,a6 .
Let λ = y+x·Solve(γ)

x , then λ2 + λ = y2

x2 + y
x + Solve2(γ) + Solve(γ) = x +

a2 + a6
x2 + γ = x + (a2 + γ) + a6

x2 . It is obvious by the tools that we have devel-
oped, that the point P = (x, y) ∈ Ea2,a6 is a double of some point iff the point
(x, y + x · Solve(γ)) ∈ Ea2+γ,a6 is a double of some point in Ea2+γ,a6 . Further
whenever P = (x, y) ∈ G ⊂ Ea2,a6 (where G is the subgroup of large prime
order), then (x, y + x · Solve(γ)) belongs to a subgroup of Ea2+γ,a6 of the same
prime order as G. Thus we see that not only are Ea2,a6 and Ea2+γ,a6 isomorphic,
when Tr(γ) = 0, but that this isomorphism is trivial to compute.

Consequently the only relevant parameters to consider for a2 are 0 and 1
(as long as n is odd). In the WTLS specification of WAP [16], an elliptic curve
identified as curve 4 in the specification, is defined where the a2 parameter is
described in Table 1 (see below). Since the Tr(a2) = 1, this curve is isomorphic
to E1,a6 where the parameter a6 is given in Table 1. The elliptic curve E1,a6

has a subgroup of large prime order, the same as the order given in Table 1.
This subgroup of E1,a6 has a generator G′ = (g′x, g′y) where g′x = Gx and g′y =
Gy + Gx ·SOLVE(072546B5435234A422E0789675F432C89435DE5243). From
an implementation point of view it is much more efficient to use the elliptic curve
E1,a6 then the curve described in Table 1, for whenever one has to perform a field
multiplication with a2, if a2 = 1 then it is free. This type of field multiplication
would always be needed when one implements the elliptic curve using a projective
point representation. Thus the parameters of curve 4 in WTLS specification
should be changed to reflect this.

generating polynomial t163 + t8 + t2 + t + 1

a2 072546B5435234A422E0789675F432C89435DE5242

a6 00C9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9

order of the generator
G = (Gx, Gy) 0400000000000000000001E60FC8821CC74DAEAFC1

Gx 07AF69989546103D79329FCC3D74880F33BBE803CB

Gy 01EC23211B5966ADEA1D3F87F7EA5848AEF0B7CA9F

cofactor 2
Table 1

4 An improved point compression method

Let G denote the set of points of prime order and let T2 = (0,
√

a6).
If Tr(a2) = 0 then x2 + a6

x2 = 0 is solvable, with solution x = 4
√

a6. Now
characterization of 4

√
a6 is (Tr(4

√
a6), T r(a6

(4√a6)2
) = (Tr(a6), T r(a6)). Thus T2 is

the double of some point with an x-coordinate of 4
√

a6. Let Q1 and Q3 denote
the two points of E which are 1

2T2.
Suppose Tr(a6) = 1 and Tr(a2) = 0. Then the x-coordinates of Q1 and Q3

have characterization (Tr(a6), T r(a6)) = (1, 1). Therefore both Q1 and Q3 are
not doubles of any points. Thus we see that there exists a subgroup of order 4
which contains O, Q1, T2, and Q3. Let P ∈ G \ {O}, then the characterization
of xP is (0,0) and the characterization of xP+T2 is (0,0). The characterizations
of xP+Q1 and xP+Q3 are (1,1), this follows from that fact that both Q1 and Q3

are NOT DOUBLEs of any points. Observe that given an point P = (x, y) in G,
the field element

√
a6

x is the x-coordinate of an EC point which is in the coset
G + T2. Now all points R ∈ G + T2 do have a half but all of its halves do not
have a half. Therefore if we found a y such that R = (xR, y) ∈ E, and then set
λ = xR + y

xR
(so that R = (xR, λ) using Knudsen’s definition [6]) and compute

(u, λU) = HALF(xR, λ) then HALF(u, λU) = No half point.
If Tr(a6) = 0 and Tr(a2) = 0, then the half of T2 is Q1 and Q3, and both

Q1 and Q3 are doubles. So there exists a subgroup of order 2m+1 which contains

Q1, T2, Q3. Thus 1
2m T2 ∈ E, but 1

2m T2 does not have a half. Again if P = (x, y) ∈
G then

√
a6

x is the x-coordinate of P +T2. If we compute y such that (
√

a6

x , y) ∈ E,
set λ =

√
a6

x + y√
a6
x

then repeatedly call the HALF function eventually we will

arrive at No half point, i.e. HALFm+1(
√

a6

x , λ) = No half point.

4.1 A point compression for Ea2,a6 when Tr(a2) = 0

Let α ∈ GF (2n) and represent α = (ρn−1, . . . , ρ1, ρ0). Let i denote the smallest
subscript such that ρi is used to compute trace of r (for most fields i will be 0).
Let ζ = (ξn−1, ..., ξ0) ∈ GF (2n) such that Tr(ζ) = 0 (which equals Tr(a2)=0).
If a sender Alice wishes to transmit ζ to the receiver Bob they should send
compress(ζ) = (ξn−1, ..ξi+1, ξi−1, ..., ξ0) which is merely ζ where we have re-
moved the ith term. If a receiver Bob receives compress(ζ) then Bob will be
able to reconstruct ζ. Since Bob knows all parameters of the elliptic curve he
knows both Tr(a2) = 0 and the smallest subscript i which is used to compute
the trace. Thus Bob knows which bit ξi was omitted, by guessing ξi = 0 and
computing the trace of the corresponding field element, Bob can verify whether
his guess was correct. His guess was correct if the trace value equals Tr(a2).
Otherwise, if the trace value doesn’t equal Tr(a2), then Bob knows the correct
ζ satisfied ξi = 1. Thus n − 1 bits are required to communicate an element
ζ ∈ GF (2n) where Tr(ζ) = 0 and where Tr(a2) = 0.

If a receiver is able to compute the x-coordinate of point P then the receiver
will compute y as follows: first compute z = SOLVE(x+a2 + a6

x2) then compute
y = x · z. The problem is that there are two solutions to SOLVE(x + a2 + a6

x2),
one with trace 0 and the other with trace 1. So the sender must communicate
the trace of y

x which we will denote as ε. If z = SOLVE(x + a2 + a6
x2) and if

Tr(z) = β then y = x · z, else if Tr(z) 6= ε then y = x · (z + 1).
We now describe how to accomplish a point compression of n − 1 bits. Let

T2 denote the point (0,
√

a6) ∈ E, then T2 has a half since Tr(a2) = 0. Let
P = (x, y) be a cryptographically relevant point on E. Then P belongs to G a
subgroup of prime order, thus the trace of x is 0. The goal is that the sender
will submit to the receiver n − 1 bits such that the receiver will be able to
expand these bits to compute P . The sender and the receiver share the elliptic
curve parameters, and both know the underlying field. Now for the sender to
send P = (x, y), they do the following: If y

x has trace 0 the sender sets ζ = x,
else if Tr(y

x) = 1 the sender sets ζ =
√

a6

x . 4 Then since Tr(a2) = 0 we have
Tr(ζ) = 0. Thus to transmit ζ the sender sends compress(ζ) which is n−1 bits.
When the receiver receives compress(ζ) they will be able to reconstruct ζ as
described above, since Tr(ζ) = 0. At this time they compute y by first solving
z = SOLVE(ζ+a2+ a6

ζ2) where z satisfies Tr(z) = 0. They then set y = ζ ·z. Since
Tr(a2) = 0 there exists an m such that 1

2m T2 ∈ E (here T2 = (0,
√

a6)) but 1
2m T2

does not have a half. Since the receiver knows all elliptic curve parameters they

4 x√
a6

is the x coordinate of the point P + T2, when Tr(x) = 0 we have Tr(
√

a6
x

) = 0.

know m. The receiver computes HALFm+1(ζ, ζ + y
ζ), if a point is returned, then

the receiver knows P = (x, y) = (ζ, y). However if HALFm+1(ζ, ζ + y
ζ) returns

No half point then ζ =
√

a6

x . So they compute x by x =
√

a6

ζ . Then they compute

z = SOLVE(x + a2 + a6
x2) = SOLVE(

√
a6

ζ + a2 + ζ2) but this time they select z
so that z has trace 1. Finally they compute y by y = x · z. Many of the elliptic
curves for which Tr(a2) = 0, will have a cofactor of 4 which implies that m
will be 1. That is, if Tr(a2) = 0 and the cofactor of the elliptic curve is 4, then
T2 belongs to a subgroup of order 4, thus 1

2T2 exists but 1
22 T2 does not exist.

All binary elliptic curves in the NIST recommended list of curves [10] for which
Tr(a2) = 0 have cofactors of 4.

Theorem 4. Let Ea2,a6 be an elliptic curve defined over GF (2n) where Tr(a2) =
0 then there exists an efficient point compression algorithm that will allow a
sender to transmit n− 1 bits to send a point on the curve of prime order.

Consequently, we see that this point compression method requires less bandwidth
than the patented compression methods described in [2, 15] whenever Tr(a2) =
0.

4.2 Point compression algorithm for Ea2,a6 where Tr(a2) = 1

Thus we see that if Tr(a2) = 0 there exists a point compression method that
is superior to the previous point compression methods. It would be preferred
to provide a point compression method which is the most efficient, and which
utilizes comparable techniques for all cases. And so we now describe a point
compression method for the case Tr(a2) = 1. For the case Tr(a2) = 1 we will
demonstrate a method which is as efficient as the method by Seroussi, the benefit
is that the form is comparable to the method that we described above.

Let P = (x, y) be a cryptographically relevant point on E. Then P belongs
to G a subgroup of prime order. Thus the characterization of x is (0,1). The
method is such that the sender will submit to the receiver n bits such that the
receiver will be able to expand these bits to compute P . Given x, one computes
z = SOLVE(x + a2 + a6

x2) since there are two solutions one needs to know the
correct trace value of the z-solution. y then satisfies y = zx. To provide a unified
approach to point compression we suggest that if Tr(y

x) = 0 the sender sets
ζ = x, otherwise if Tr(y

x) = 1 the sender sets ζ =
√

a6

x .
Suppose a sender and a receiver exchange an elliptic curve point. If the

receiver receives ζ where Tr(ζ) = 0 then the exchanged point P = (x, y) is
such that x = ζ and y satisfies Tr(y

x) = 0. First the receiver computes λ =
SOLVE(ζ + a2 + a6

ζ2) where Tr(λ) = 0. Then the receiver sets y = x · λ. If
the receiver receives ζ where Tr(ζ) = 1 then the exchanged point P = (x, y)
is such that x =

√
a6

ζ and y satisfies Tr(y
x) = 1. First the receiver computes

λ = SOLVE(
√

a6

ζ + a2 + ζ2) where Tr(λ) = 1. Then the receiver sets y = x · λ.
The efficiency (here we measure it in terms of the number of field operations

that need to be computed) is as efficient (perhaps slightly more efficient) than

Seroussi’s method [12]. In our method the receiver will perform (in the worst
case) two trace checks, an inversion, a square, a multiply and a SOLVE. The
receiver may have precomputed and stored the

√
a6. Although in [4], it was

demonstrated that a square root can be computed as nearly as efficient as a
square (even when using a polynomial basis to represent a field element) for
many fields GF (2n). In Seroussi’s method a bit needs to be guessed, inserted
into the stream, a trace check, a bit may need to be changed, a square, a multiply,
an inversion, a SOLVE, and one more trace check.

5 Attacking a users key using invalid ECC parameters

Our last observation concerning utilizing the tools that we have developed in this
paper, is its use to efficiently check an elliptic curve parameter. It is important
that during a key exchange a receiver checks elliptic curve parameters before
utilizing these parameters with their private key [1]. One important parameter
check is to verify that a received point is a point of prime order. Here we will
assume that the sender and receiver are performing some type of elliptic curve
key exchange and that the receiver receives a point Jreceived = (x, y). The re-
ceiver has private key k and will compute kJreceived = (a, b). In the end both
receiver and sender will have derived (a, b). Of course they will hash a. If the
receiver does not check that Jreceived is of prime order then the sender may be
able to detect a bit of the receivers key k.

We will describe the attack and the remedy for the case when the elliptic
curve parameter a2 satisfies Tr(a2) = 0. Let G represent the subgroup of E
of prime order. The attack made by the sender is as follows. The sender sends
a point Jreceived ∈ G + T2, of course the x-coordinate of Jreceived has trace 0.
The only way the receiver can determine that J belongs to the coset G + T2,
is to compute pJreceived where p is the prime order of G. If the receiver does
not check the order of Jreceived then when the receiver computes kJreceived, if
k0 = 0 then kJreceived ∈ G, if k0 = 1 then kJreceived belongs to the coset G+T2.
Thus the low bit of the key is vulnerable to this attack. A solution is that if G
is a subgroup of order p then the receiver should compute pJreceived to verify
that it is the identity O, but this will be at a cost of performance. If an elliptic
curve has a cofactor of 2m (which is true for all curves in [10, 16]), then there
is an efficient method which will allow us to distinguish between a point in G
and a point in the coset G + T2. The alternative (the efficient check) is to first
determine m such that 1

2m T2 ∈ E but where 1
2m T2 does not have a half. Then

the receiver computes Halfm+1(x, x + y
x). If the result is a point then element

was of prime order, otherwise it belonged to the coset.
In some cases this parameter check will be trivial. For example suppose that

the elliptic curve has a cofactor of 2. Then a parameter check is trivial, simply
determine if (x, y) ∈ E and Tr(x) = 1.

6 Conclusion

Our work has provided several new tools in GF (2n) that provided great insight
into elliptic curve defined over GF (2n). It has provided a new way to view the
number of points on an elliptic curve. As well as provide us a mean to choose
more efficient elliptic curve parameters (for example curve 4 in the WTLS list).
Our main result is new point compression method which is superior to prior
methods whenever Tr(a2) = 0. Lastly we have demonstrated how the halving
algorithm can be utilized to check elliptic curve parameters.

References

1. Adrian Antipa, Daniel R. L. Brown, Alfred Menezes, Ren Struik, Scott A. Vanstone:
“Validation of Elliptic Curve Public Keys”. Public Key Cryptography - PKC 2003
211-223

2. I.F. Blake, Nigel Smart, and G. Seroussi, Elliptic Curves in Cryptography. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1999.

3. Darrel Hankerson, Julio Lopez Hernandez and Alfred Menezes. “Software Imple-
mentation of Elliptic Curve Cryptography over Binary Fields”. In CHES 2000. p.
1-24.

4. B. King and B. Rubin. “Revisiting the point halving algorithm”. Technical Report.
5. Neal Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, Vol. 48,

No. 177, 1987, 203-209.
6. Erik Woodward Knudsen. “Elliptic Scalar Multiplication Using Point Halving”. In

Advances in Cryptology - ASIACRYPT ’99. LNCS Vol. 1716, Springer, 1999, p.
135-149

7. R. Lidl and H. Niederreiter. Finite Fields, Second edition, Cambridge University
Press, 1997.

8. Alfred Menezes,Elliptic Curve Public Key Cryptosystems, Kluwer Academic Pub-
lishers, 1993.

9. Victor S. Miller, “Use of Elliptic Curves in Cryptography”, In Advances in Cryp-
tology CRYPTO 1985,Springer-Verlag, New York, 1985, pp 417-42

10. NIST, Recommended elliptic curves for federal use, http://www.nist.gov
11. Rich Schroeppel. “Elliptic Curves: Twice as Fast!”. InRump session of CRYPTO

2000.
12. G. Seroussi. “Compact Representation of Elliptic Curve Points over F2n”, HP Labs

Technical Reports , http://www.hpl.hp.com/techreports/98/HPL-98-94R1.html ,
pg. 1-6.

13. J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag.New York. 1986.
14. N. P. Smart. A note on the x-coordinate of points on an elliptic curve in charac-

teristic two. Information Processing Letters, 80(?):261–263, October 2001
15. IEEE P1363 Appendix A. http://www.grouper.org/groups/1363
16. WTLS Specification, http://www.wapforum.org

7 Appendix

7.1 NIST recommended curves in GF (2n)

In July 1999 NIST releases a list of recommended but not required curves to
use for Elliptic curve cryptography when dealing with federal agencies. Today

several of these curve have been adopted by many standards. Our interest is in
those curves over the binary field GF (2n). The curves listed are: K-163, B-163,
K-233, B-233, K-283, B-283, K-409, B-409,K-571, and B-571 where the K-***
refers to a Koblitz curve whose Weierstrass equation if of the form

y2 + xy = x3 + a2x
2 + 1

and B-*** refer to a “random curve” whose Weierstrass equation is of the form

y2 + xy = x3 + x2 + b

For Koblitz curve K-163 the coefficient a = 1, for the remaining Koblitz curves
K-233, K-283, K-409, and K-571 the coefficient a = 0. Thus K-163 the Tr(a2) = 1
and for the other four Koblitz curves K-233, K-283, K-409, and K-571 the
Tr(a2) = 0. The table provided below demonstrate a very efficient way to per-
form a trace check when utilizing a NIST curve. We have reproduced this table,
which was originally given in [4].

Curve types Generating polynomial condition for µ ∈ GF (2n)
to satisfy Tr(µ) = 0

K-163, B-163 p(t) = t163 + t7 + t6 + t3 + 1 µ0 = µ157

K-233, B-233 p(t) = t233 + t74 + 1 µ0 = µ159

K-283, B-283 p(t) = t283 + t12 + t7 + t5 + 1 µ0 = µ277

K-409, B-409 p(t) = t409 + t87 + 1 µ0 = 0
K-571, B-571 p(t) = t571 + t10 + t5 + t2 + 1 µ0 + µ561 + µ569 = 0

Table 2

