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Abstract. We provide unconditional constructions of concurrent sta-
tistical zero-knowledge proofs for a variety of non-trivial problems (not
known to have probabilistic polynomial-time algorithms). The problems
include Graph Isomorphism, Graph Nonisomorphism, Quadratic Resid-
uosity, Quadratic Nonresiduosity, a restricted version of Statistical Dif-
ference, and approximate versions of the (coNP forms of the) Shortest
Vector Problem and Closest Vector Problem in lattices.

For some of the problems, such as Graph Isomorphism and Quadratic
Residuosity, the proof systems have provers that can be implemented in
polynomial time (given an NP witness) and have O(log n) rounds, which
is known to be essentially optimal for black-box simulation.

To the best of our knowledge, these are the first constructions of
concurrent zero-knowledge proofs in the plain, asynchronous model (i.e.,
without setup or timing assumptions) that do not require complexity
assumptions (such as the existence of one-way functions).

1 Introduction

In the two decades since their introduction [2], zero-knowledge proofs have taken
on a central role in the study of cryptographic protocols, both as a basic building
block for more complex protocols and as a testbed for understanding important
new issues such as composability (e.g., [3]) and concurrency (e.g., [4]). The “clas-
sic” constructions of zero-knowledge proofs came primarily in two flavors. First,
there were direct constructions of zero-knowledge proofs for specific problems,
such as QUADRATIC RESIDUOSITY [2] and GRAPH ISOMORPHISM [5]. Second,
there were general constructions of zero-knowledge proofs for entire classes of
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problems, such as all of NP [5].% Both types of results have played an important
role in the development of the field.

The general results of the second type show the wide applicability of zero
knowledge, and are often crucial in establishing general feasibility results for
other cryptographic problems, such as secure multiparty computation [8, 5] and
CCA-secure public-key encryption [9-11]. However, they typically are too in-
efficient to be used in practice. The specific results of the first type are often
much more efficient, and are therefore used in (or inspire) the construction of
other efficient cryptographic protocols, e.g., identification schemes [12] and again
CCA-secure public-key encryption [13-15]. Moreover, the specific constructions
typically do not require any unproven complexity assumptions (such as the ex-
istence of one-way functions), and yield a higher security guarantee (such as
statistical zero-knowledge proofs).’ The fact that the proof systems are uncon-
ditional is also of conceptual interest, because they illustrate the nontriviality of
the notion of zero knowledge even to those who are unfamiliar with (or who do
not believe in the existence of) one-way functions.%

Concurrent zero knowledge. In recent years, a substantial effort has been de-
voted to understanding the security of cryptographic protocols when many exe-
cutions are occurring concurrently (with adversarial scheduling). As usual, zero-
knowledge proofs led the way in this effort, with early investigations of concur-
rency for relaxations of zero knowledge dating back to Feige’s thesis [22], and
the recent interest being sparked by the work of Dwork, Naor, and Sahai [4],
which first defined the notion of concurrent zero knowledge. Research on con-
current zero knowledge has been very fruitful, with a sequence of works leading to
essentially tight upper and lower bounds on round complexity for black-box sim-
ulation [23-28], and partly motivating the first non-black-box-simulation zero-
knowledge proof [29]. However, these works are primarily of the second flavor
mentioned in the first paragraph. That is, they are general feasibility results,
giving protocols for all of NP. As a result, these protocols are fairly inefficient
(in terms of computation and communication), rely on unproven complexity
assumptions, and only yield computational zero knowledge (or, alternatively,
computational soundness).

There have been a couple of works attempting to overcome these deficiencies.
Di Crescenzo [30] gave unconditional constructions of concurrent zero-knowledge

% See the textbook [6] and survey [7] by Oded Goldreich for a thorough introduction
to zero-knowledge proofs.

Of course, this partition into two types of zero-knowledge protocols is not a precise
one. For example, there are some efficient zero-knowledge proofs for specific problems
that use complexity assumptions (e.g., [16] and there are some general results that
are unconditional (e.g., [17-19]).

It should be noted that the results of [20,21] show that the existence of a zero-
knowledge proof for a problem outside BPP implies some weak form of one-way
function. Still, appreciating something like the perfect zero-knowledge proof sys-
tem for GRAPH ISOMORPHISM [5] only requires believing that there is no worst-case
polynomial-time algorithm for GRAPH ISOMORPHISM, as opposed to appreciating
notions of average-case complexity as needed for standard one-way functions.
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proofs in various timing models. That is, his protocols assume that the honest
parties have some synchronization and may employ delays in the protocol, and
thus do not work in the standard, asynchronous model (and indeed he states
such a strengthening as an open problem). Micciancio and Petrank [31] gave
an efficient (in terms of computation and communication) transformation from
honest-verifier zero-knowledge proofs to concurrent zero-knowledge proofs. How-
ever, their transformation relies on the Decisional Diffie-Hellman assumption,
and yields only computational zero knowledge.

Our Results. We give the first unconditional constructions of concurrent zero-
knowledge proofs in the standard, asynchronous model. Our proof systems are
statistical zero knowledge and statistically sound (i.e. they are interactive proofs,
not arguments [32]). Specifically, our constructions fall into two categories:

1. Efficient proof systems for certain problems in NP, including QUADRATIC
RESIDUOSITY, GRAPH ISOMORPHISM and a restricted form of quadratic non-
residuosity for Blum integers, which we call BLuM QUADRATIC NONRESID-
UosSITY. These proof systems all have prover strategies that can be imple-
mented in polynomial time given an NP witness and have O(logn) rounds,
which is essentially optimal for black-box simulation [27].

2. Inefficient proof systems for other problems, some of which are not known
to be in NP. These include QUADRATIC NONRESIDUOSITY, GRAPH NON-
ISOMORPHISM, the approximate versions of the complements of the CLOS-
EST VECTOR PROBLEM and SHORTEST VECTOR PROBLEM in lattices, and
a restricted version of STATISTICAL DIFFERENCE (the unrestricted version
is complete for statistical zero knowledge [33]). These proof systems have
a polynomial number of rounds, and do not have polynomial-time prover
strategies. These deficiencies arise from the fact that our construction be-
gins with a public-coin, honest-verifier zero-knowledge proof for the problem
at hand, and the only such proofs known for the problems listed here have
a polynomial number of rounds and an inefficient prover strategy.

Techniques. One of the main tools for constructing zero-knowledge proofs are
commitment schemes, and indeed the only use of complexity assumptions in the
construction of zero-knowledge proofs for all of NP [5] is to obtain a commitment
scheme (used by the prover to commit to the NP witness, encoded as, e.g., a
3-coloring of a graph). Our results rely on a relaxed notion of commitment,
called an instance-dependent commitment scheme,” which is implicit in [35] and
formally defined in [36,34,19]. Roughly speaking, for a language L (or, more
generally, a promise problem), a instance-dependent commitment scheme for L
is a commitment protocol where the sender and receiver algorithms also depend
on the instance x. The security requirements of the protocol are relaxed so that
the hiding property is only required when =z € L, and the binding property is
only required when x ¢ L (or vice-versa).

" Previous works [34,19] have referred to this as “problem-dependent” commitment
scheme, but this new terminology of “instance-dependent” seems more accurate.



As observed in [36], many natural problems, such as GRAPH ISOMORPHISM
and QUADRATIC RESIDUOSITY, have simple, unconditional instance-dependent
commitment schemes. This is useful because in many constructions of zero-
knowledge proofs (such as that of [5]), the hiding property of the commitment
scheme is only used to establish the zero-knowledge property and the binding
property of the commitment scheme is only used to establish soundness. Since,
by definition, the zero-knowledge property is only required when the input x
is in the language, and the soundness condition is only required when z is not
in the language, it suffices to use a instance-dependent commitment scheme.
Specifically, if a language L € NP (or even L € IP) has a instance-dependent
commitment scheme, then L has a zero-knowledge proof [36] (see also [34,19]).

Existing constructions of concurrent zero-knowledge proofs [24,27,28] also
rely on commitment schemes (and this is the only complexity assumption used).
Thus it is natural to try to use instance-dependent commitments to construct
them. However, these protocols use commitments not only from the prover to
the verifier, but also from the verifier to the prover. Naturally, for the latter type
of commitments, the roles of the hiding and binding property are reversed from
the above — the hiding property is used to prove soundness and the binding
property is used to prove (concurrent) zero knowledge. Thus, it seems that we
need not only a instance-dependent commitment as above, but also one where
the security properties are reversed (i.e. binding when x € L, and hiding when
x ¢ L).

Our first observation is that actually we only need to implement the com-
mitment schemes from the verifier to the prover. This is because the concurrent
zero-knowledge proof system of Prabhakaran, Rosen and Sahai [28] is constructed
by a general compiler that converts any public-coin zero-knowledge proof into a
concurrent zero-knowledge proof, and this compiler only uses commitments from
the verifier to the prover. (Intuitively, the verifier commits to its messages in an
initial “preamble” stage, which is designed so as to allow concurrent simulation.)
Since all the problems we study are unconditionally known to have public-coin
zero-knowledge proofs, we only need to implement the compiler. So we are left
with the task finding instance-dependent commitments that are binding when
x € L and hiding when 2 ¢ L. Thus, for the rest of the paper, we use this as our
definition of instance-dependent commitment.

This idea works directly for some problems, such as GRAPH NONISOMOR-
PHISM and QUADRATIC NONRESIDUOSITY. For these problems, we have instance-
dependent commitments with the desired security properties, and thus we can
directly use these commitments in the compiler of [28]. Unfortunately, for the
complement problems, such as GRAPH ISOMORPHISM and QUADRATIC RESIDU-
OSITY, we only know of instance-dependent commitments that are hiding when
x € L, and binding when = ¢ L.

Thus, for some of our results, we utilize a more sophisticated variant of
instance-dependent commitments, due to Bellare, Micali, and Ostrovsky [35].
Specifically, they construct something like a instance-dependent commitment
scheme for the GRAPH ISOMORPHISM problem, but both the hiding and binding



properties are non-standard. For example, the binding property is as follows:
they show that if x € L and the sender can open a commitment in two different
ways, then it is possible for the sender to extract an NP witness for x € L.
Thus we call these witness-binding commitments. Intuitively, when we use such
commitments, we prove concurrent zero knowledge by the following case analysis:
either the verifier is bound to its commitments, in which case we can simulate our
proof system as in [28], or the simulator can extract a witness, in which case it
can be simulated by running the honest prover strategy. In reality, however, the
analysis does not break into such a simple case analysis, because the verifier may
break the commitment scheme in the middle of the protocol. Thus we require
that, in such a case, an already-begun simulation can be “continued” once we
are given an NP witness. Fortunately, the classic (stand-alone) proof systems
for GRAPH ISOMORPHISM and QUADRATIC RESIDUOSITY turn out to have the
needed “witness-completable simulation” property.

An additional contribution of our paper is to provide abstractions and gen-
eralizations of all of the above tools that allow them to be combined in a mod-
ular way, and may facilitate their use in other settings. First, we show how the
“preamble” of the Prabhakaran—Rosen—Sahai concurrent zero-knowledge proof
system [28] can be viewed as a way to transform any commitment scheme into
one that is “concurrently extractable,” in the sense that we are able to simulate
the concurrent execution of many sessions between an adversarial sender and
the honest receiver in a way that allows us to extract the commitments of the
sender in every session. This may be useful in constructing other concurrently
secure protocols (not just proof systems). Second, we provide general defini-
tions of witness-binding commitment schemes as well as witness-completable
zero-knowledge proofs as possessed by GRAPH ISOMORPHISM and QUADRATIC
RESIDUOSITY and as discussed above.

Perspective. The recent works of Micciancio and Vadhan [34] and Vadhan [19]
hypothesized that every problem that has a statistical (resp., computational)
zero-knowledge proof has a instance-dependent commitment scheme.® There are
several pieces of evidence pointing to this possibility:

1. A restricted form of a complete problem for statistical zero knowledge has a
instance-dependent commitment scheme [34].

2. If instance-dependent commitments exist for all problems with statistical
zero-knowledge proofs, then instance-dependent commitments exist for all
of problems with (general, computational) zero-knowledge proofs [19].

8 Actually, the works of [34] and [19] refer to instance-dependent commitments where
the hiding property holds on YES instances and the binding property on NO instances,
which is opposite of what we use. For statistical zero knowledge, this does not mat-
ter because the class of problems having statistical zero-knowledge proofs is closed
under complement [17]. But for computational zero knowledge, it means that out-
line presented here might yield a concurrent zero-knowledge argument system rather
than a proof system.



3. Every problem that has (general, computational) zero-knowledge proofs also
has inefficient instance-dependent commitments. These commitments are in-
efficient in the sense that the sender algorithm is not polynomial-time com-
putable [19]. Unfortunately we cannot use these commitments in our proto-
cols in this paper, because our verifier plays the role of the sender.

If the above hypothesis turns out to be true, then our work suggests that
we should be able prove that any problem that has a zero-knowledge proof has
a concurrent zero-knowledge protocol: simply plug the hypothesized instance-
dependent commitment scheme into our constructions. (We do not claim this as
a theorem because in this paper, we restrict our attention to instance-dependent
commitment schemes that are noninteractive and perfectly binding for simplicity,
but the hypothesis mentioned above make no such restriction.)

Outline. Section 2 details some nonstandard notations that are used in this pa-
per. In Sect. 3, we abstract the preamble stage in the Prabhakaran-Rosen-Sahai
concurrent zero-knowledge protocol [28, Sect. 3.1], showing how it transforms
any noninteractive commitment scheme into one satisfying a desirable extraction
property. In Sect. 4, we apply this transformation to instance-dependent commit-
ments, and thereby obtaining some of our concurrent zero-knowledge proofs. In
Sect. 5, we extend this transformation to problems with witness-binding commit-
ments, and thereby obtaining concurrent zero-knowledge proofs for QUADRATIC
RESIDUOSITY and GRAPH ISOMORPHISM. Many details and proofs are contained
in the full version of this paper [1].

2 Preliminaries

For the most part, we use standard notations found in the theoretical cryptogra-
phy and complexity theory literature. In the next few paragraphs, we highlight
several nonstandard notations used.

Transcript and output of interactive protocols. For an interactive protocol (A, B),
let (A, B)(z) denote the random variable representing the output of B after
interaction with A on common input z. In addition, let views (z) denote the
random variable representing the content of the random tape of B together with
the messages received by B from A during the interaction on common input x.

Commiitted-verifier zero knowledge. Prabhakaran, Rosen and Sahai [28], in their
works on concurrent zero knowledge, showed that adding a 5(log n)-round pream-
ble to a specific form of zero-knowledge protocol (the Hamiltonicity protocol)
results in a concurrent zero-knowledge proof system, assuming the existence of
a collection of claw-free functions. Alon Rosen, in his PhD thesis, noted that the
preamble can be added to a more general form of zero-knowledge protocol, which
he informally defines as challenge-response zero knowledge [37, Sect. 4.8.1]. We
formalize this notion and call it committed-verifier zero knowledge.



Definition 1 (committed-verifier zero knowledge). A committed-verifier
Vin, where m = (my,ma,...,myg), is a deterministic verifier that always sends
m; as its i-th round message.

An interactive proof (P, V') for (promise) problem II is perfect (resp., statis-
tical, computational) committed-verifier zero knowledge (CVZK) if there exists
a probabilistic polynomial-time simulator S such that for all committed verifier
Vin, the ensembles {view{jm () }eemy and {S(x,m)}eecmy, are perfectly (resp.,
statistically, computationally) indistinguishable.

This CVZK property is closely related to notion of honest-verifier zero knowl-
edge (HVZK) in that any CVZK protocol is also trivially HVZK. Conversely, any
public-coin HVZK protocol can be converted into a public-coin CVZK protocol
by allowing the prover to send random coins m’ before the verifier’s public-coin
message m, and making the prover respond to m’ @ m (instead of just m).

Lemma 2. Promise problem II has public-coin (perfect/statistical/computa-
tional) CVZK proofs if and only if it has public-coin (perfect/statistical/computa-
tional) HVZK proofs.

3 Concurrently-Extractable Commitment Scheme

3.1 Overview

A key component in our concurrent zero-knowledge protocols is a commit-
ment scheme with a concurrent extractability property. We call this scheme
concurrently-extractable commitment (CEC) scheme. The notion of concurrent
extractability informally means that we are able to simulate the concurrent exe-
cution of many sessions between an adversarial sender and the honest receiver in
a way that allows us to extract the commitments of the sender in every session.

This notion of concurrent extractability is inspired by the rewinding and
simulation strategy of the Prabhakaran-Rosen-Sahai (PRS) [28] concurrent zero-
knowledge protocol. The PRS protocol essentially consists of two stages, the
preamble (first) stage and the main (second) stage [28, Sect. 3.1]. The concurrent
zero knowledge feature of the protocol comes from the preamble stage, in which
the verifier is required to commit to the messages that it will use in the main
stage. Our goal in this section is to modularize the PRS protocol by abstracting
this key feature (preamble stage) that allows for concurrent security.

3.2 Definitions

Standard commitment schemes. A standard (interactive) commitment scheme
typically consists of a sender S, a receiver R and a verification algorithm Verify.
A message bit m € {0,1} is given as private input to S, and the common
input to both is 1™, where n is the security parameter. After the interaction
(S(m), R)(1™), R outputs a commitment string ¢ and S outputs a decommitment
pair (m,d). (Without loss of generality, we can assume that ¢ is R’s view of the
interaction and d is S’s coin tosses.) The verification algorithm Verify checks that
(m,d) is a valid decommitment of ¢ by accepting if it is, and rejecting otherwise.



Commitment schemes with partial verification. To extend standard commit-
ments to concurrently extractable ones, we require an additional verification
procedure denoted as Partial-Verify, which is needed for the special binding prop-
erty (see Definition 6).

Definition 3. A commitment scheme with partial verification consists of prob-
abilistic polynomial-time algorithms (S, R, Verify, Partial-Verify) such that the fol-
lowing conditions hold.

1. After the interaction (S(m),R)(1™), R outputs a commitment string ¢ and
S outputs a decommitment pair (m,d).

2. For all (c,(m,d)) — (S(m), R)(1™), we have that Verify(c,m,d) = 1.
3. For all ¢, m and d, Verify(c,m,d) = 1 implies Partial-Verify(c, m,d) = 1.

A decommitment (m,d) to ¢ with Verify(c,m,d) = 1 is called a full decom-
mitment, whereas if we have only that Partial-Verify(c,m,d) = 1, it is called a
partial decommitment. Note that a standard commitment scheme is a special
case of the above definition by imposing Partial-Verify = Verify.

Remark 4. Our above notion of a commitment scheme with partial verification
shares some similarities with mercurial commitments, a notion recently defined
in [38]. For our notion, we have a single kind of commit phase that has two
kinds of decommitments, a full decommitment and a partial decommitment. For
mercurial commitments, the hard commitments correspond to our single commit
phase, and thus has two kinds of decommitments; standard decommitments and
tease. Standard decommitments and tease correspond to full decommitments and
partial decommitments, respectively. Mercurial commitments also have a notion
of soft commitments (that cannot be opened with standard decommitments, but
can be teased to any value), which we do not require. Mercurial commitments
were defined as a primitive for constructing zero-knowledge sets [39].

Statistical hiding and perfect binding. Definition 3 only refers to the syntax of
a commitment scheme, and does not impose any security requirements (e.g.,
hiding and binding). For that, we have the following two definitions.

Definition 5 (hiding). A commitment scheme with partial wverification
(S, R, Verify, Partial-Verify) is statistically hiding if for every adversarial receiver
R*, the ensembles {{(S(0), R*Y(1") }nen and {(S(1), R*)(1™)}nen are statistically
indistinguishable.

The above definition is restricted to statistically hiding since for the purposes
of our paper, we will only need to consider statistically hiding commitments. It is
straightforward to extend Definition 5 to encompass perfect and computational
hiding. Next, we define the perfectly binding property for commitment schemes
with partial verification. This perfectly binding notion will be used throughout
Sect. 4.



Definition 6 (binding). A commitment scheme with partial verification
(S, R, Verify, Partial-Verify) is perfectly binding if for every commitment ¢, there
do mnot exist decommitments (m,d) and (m',d") such that m # m' and
Verify(c, m, d) = Partial-Verify(c,m’,d") = 1.

Intuitively the above definition says that a partial decommitment of ¢ to
a message m is a proof that ¢ can only be full decommitted to m. Also, ob-
serve that Definition 6 implies that the scheme is binding with respect to Verify
alone. That is, there do not exist ¢, (m,d) and (m',d’) with m # m' and
Verify(c, m, d) = Verify(c,m’,d’) = 1. But the scheme need not be binding with
respect to Partial-Verify alone. Hence, the binding property specified in Defini-
tion 6 is a natural extension of the binding property of standard commitments
(where Partial-Verify = Verify).

Concurrent simulatability with extractability. The commitment scheme with par-
tial verification (as in Definition 3) will be used as a building block for our con-
current zero-knowledge protocols in Sects. 4 and 5. For these concurrent zero-
knowledge protocols, the prover P and adversarial verifier V* will play the role
of the receiver R and concurrent adversarial sender S, respectively. Therefore, we
will need to simulate the concurrent interaction between R and S, but it turns
out this alone is not sufficient. We will also need the simulator to determine
partial decommitments of S in every completed session that it has simulated.
This property is called concurrent extractability, a notion we formalize next.

Definition 7. A commitment scheme with partial verification
(S, R, Verify, Partial-Verify) is concurrently extractable if there exists a proba-
bilistic polynomial-time simulator Sim such that for every Q < poly(n), and for
every concurrent adversary S that ezecutes at most Q@ concurrent sessions, we
have:

1. (Statistical simulation) The output of Sim®(17,19Q) is statistically indistin-
guishable to the output of S in the concurrent interaction (R, S)(1™).

2. (Concurrent extractability) Whenever Sim queries S on a transcript T, for
every completed session s in T with a commitment c[s|, it provides partial
decommitment (m/[s], d[s]) such that Partial-Verify(m/[s], c[s], d[s]) = 1.

For short, we call this a concurrently-extractable commitment scheme. Also,
Sim s called the concurrently-extracting simulator.

Note that we require that the concurrent extractability property hold for all
adversaries S, even computationally unbounded ones. The only limitation on
S is that it executes at most polynomial sessions, which is a natural restric-
tion since it is infeasible to simulate a superpolynomial number of sessions in
polynomial time. In addition, the simulator is only required to provide partial
decommitments for every completed session. This suffices because a valid partial
decommitment (m,d) of a commitment ¢ effectively binds it to the message m
if we insist on a full decommitment later on (see Definition 6).



3.3 Construction of Concurrently-Extractable Commitments

A circuit Com: {0,1} x {0,1}™ — {0,1}"™ can be viewed as a generic (nonin-
teractive) commitment scheme, with n being the security parameter. The com-
mitment to a message bit m is Com(m;r), where r — {0,1}" is a uniformly
chosen random key. Likewise, the decommitment of ¢ to a bit m is a pair (m,r)
such that ¢ = Com(m;r). Note that this definition only refers to the syntax of a
commitment scheme and does not impose any security requirements (i.e., hiding
and binding).

The next lemma states that we can transform any generic commitment
scheme Com: {0,1} x {0,1}™ — {0,1}" into a new scheme with the concur-
rent extractability property. This new scheme is essentially the preamble stage
of the PRS concurrent ZK protocol [28], with the sender (verifier) using Com
to commit in the O(logn) rounds of interaction, and the receiver (prover) just
sending random coins.

Lemma 8. For any generic noninteractive commitment scheme Com: {0,1} x
{0,1}™ — {0,1}™, there is a concurrently-extractable commitment scheme Ccom =
(Scom, Rcom, Verifycom, Partial-Verify,..) (taking the circuit Com as auziliary in-
put), such that:

1. If Com is perfectly binding, then Ccom is perfectly binding.
2. If Com is statistically hiding, then Ccom 15 statistically hiding.
3. (Scom, Rcom) has 5(log n) rounds of interaction.

We denote CEC-Simcom as the concurrently-extracting simulator for Ccom.

Committing to multi-bit messages. The concurrently-extractable commitment
scheme obtained from Lemma 8 is for a single-bit message; to commit to a £-bit
message, we independently repeat the scheme ¢ times in parallel. It is important
to note that even if we do so, all the properties required in Definition 7 still hold.
(Concurrent extractability follows because parallel repetition is a special case of
concurrent interaction.) Later in Sect. 4, it will be more convenient to think of S
as committing to an ¢-bit message per session, rather than ¢ senders committing
to a single-bit message each.

Finally, when S commits to multi-bit messages, it can full-decommit in mul-
tiple steps, one for each committed bit. This is because the full decommitment
for each bit of the message is independent of the others.

4 Unconditional Concurrent Zero-Knowledge Proofs for
Problems with Instance-Dependent Commitments

In this section, we demonstrate a generic technique for transforming certain
stand-alone public-coin zero-knowledge protocols into concurrent zero-knowledge
protocols. In doing so, we construct unconditional concurrent zero-knowledge



proofs for non-trivial problems like QUADRATIC NONRESIDUOSITY, GRAPH NON-
ISOMORPHISM, a variant of STATISTICAL DIFFERENCE and approximate lattice
problems.

The main tool used in the transformation is a instance-dependent commit-
ment scheme, formally defined in Definition 9. Later in Sect. 5, we demonstrated
a modified transformation that works for certain problems possessing witness-
binding commitments.

4.1 Instance-Dependent Commitments

In order to prevent the adversarial verifier from deviating widely from the original
protocol specification, the previous constructions of concurrent zero-knowledge
protocols require the verifier to commit to certain messages in advance [23, 25,
28]. While these commitments can be constructed from one-way functions [40,
41], proving the existence of one-way functions remains a major open problem
in complexity theory.

To achieve concurrent security without relying on unproven assumptions, we
observe that the standard verifier's commitments used in [28] can be replaced
by instance-dependent commitments [36] (cf., [34]). A instance-dependent com-
mitment, roughly speaking, is a commitment protocol that takes the problem
instance x as an additional input, is binding on the YES instances (z € ITy), and
is hiding on the NO instances (x € Ily). Standard commitments, by contrast,
are required to always be both hiding and binding regardless of the problem
instance.

Because the hiding and binding properties of instance-dependent commit-
ments depend on the problem instance, we can construct instance-dependent
commitments that are both perfectly binding (on the YES instances) and sta-
tistically hiding (on the NO instances).” We give a simplified, noninteractive
definition of instance-dependent commitments that suffices for our applications
in this section.

Definition 9 (noninteractive instance-dependent commitment). Promise
problem II = (IIy, IIN) has a instance-dependent commitment if there exists a
polynomial-time algorithm PD-Com such that the following holds.

1. Algorithm PD-Com takes as input the problem instance x, a bit b, and a
random key r, and produces a commitment ¢ = PD-Com,(b;r). The running
time of PD-Com is bounded by a polynomial in |z|, hence without loss of
generality we can assume that |c| = |r| = poly(|z|).

2. (perfectly binding on YES instances) For all x € Iy, the distributions
PD-Com,.(0) and PD-Com, (1) have disjoint supports. That is, there does
not exist strings v and r' such that PD-Com,(0;7) = PD-Com,(1;r').

9 By contrast, standard commitments cannot be both statistically binding and statis-
tically hiding.



3. (statistically hiding on NO instances) For all x € Iy, the commitments to
0 and 1 are statistically indistinguishable. In other words, the distributions
PD-Com,(0) and PD-Com, (1) are statistically indistinguishable (w.r.t. |z|,
the length of the instance).

The commitment ¢ can be decommitted to by sending the committed bit b and
random key r. Since both parties have access to the problem instance x, this
decommitment can be verified by checking that ¢ = PD-Com,(b; 7).

4.2 Main Results

Before presenting the our unconditional concurrent zero-knowledge protocol, we
state our main results for this section.

Theorem 10. If promise problem II has a public-coin CVZK proof system
(Po, Vo) (in the sense of Definition 1) and also a instance-dependent commit-
ment, then IT has a proof system (P,V) with the following properties:

1. If (Py, V) is statistical (resp., computational) zero knowledge, then (P, V) is
concurrent statistical (resp., computational) zero knowledge.

2. Prover P is black-box stmulatable in strict polynomial time.

3. The round complezity of (P, V') increases only by an additive factor ofé(log n),
with n being the security parameter, compared to the original protocol (Py, Vp).

4. The completeness of (P, V) is exactly the same as that of (Py, Vo), while the
soundness error increases by only a negligible additive term (as a function
of n).

5. The prover strategy P can be implemented in probabilistic polynomial-time
with oracle access to Py. In particular, if Py is efficient, so is P.

We provide an outline of the proof of Theorem 10 in Sects. 4.3 and 4.4.
Several natural problems that Theorem 10 applies to are listed below.

Corollary 11. The following problems have concurrent statistical zero-knowledge
proofs:

— The statistical difference problem SDi/Q.
— The languages QUADRATIC NONRESIDUOSITY and GRAPH NONISOMOR-
PHISM.

— The lattice problems co-GAPCVP., and co-GAPSVP,, fory = 2(/(n/logn)).

Proof. All the problems listed—SD} /2, QUADRATIC NONRESIDUOSITY, GRAPH
NoNISOMORPHISM, CO-GAPCVP, and co-GAPSVP,, for v = £2(1/(n/logn))—
have honest-verifier statistical zero-knowledge proofs [2, 5,42, 33], which can be

made public-coin by [17]. In addition, they all have instance-dependent commit-
ments [36, 34].



The above corollary does not guarantee a polynomial-time prover strategy
(with auxiliary input) nor round efficiency. The reason is that the public-coin
honest-verifier zero-knowledge proof systems known for these problems do not
have a polynomial-time prover nor a subpolynomial number of rounds. For BLuM
QUADRATIC NONRESIDUOSITY,'? however, we can start with the noninteractive
statistical zero-knowledge proof!'! of [43], whose prover is polynomial time (given
the factorization of the modulus), and obtain the following;:

Corollary 12. The language BLUM QUADRATIC NONRESIDUOSITY has a con-
current statistical zero-knowledge proof systems with O(logn) rounds and a prover
that can be implemented in polynomial time given the factorization of the input
modulus.

We note that we do not expect to obtain efficient provers for GRAPH NONI-
SOMORPHISM or SD}/Q, since these problems are not known to be in NP (or
MA), which is a prerequisite for an efficient-prover proof system. However,
QUADRATIC NONRESIDUOSITY is in NP (the factorization of the input is a wit-
ness), as are CO-GAPCVP,, and co-GAPSVP,, for larger approximation factors
~v = £2(y/n) [44], so we could hope to obtain an efficient prover. The bottleneck is
finding public-coin honest-verifier zero-knowledge proofs with a polynomial-time
prover for these problems.

4.3 Owur Concurrent Zero-Knowledge Protocol

A high-level description of our unconditional concurrent zero-knowledge protocol
is as follows: We begin with a public-coin CVZK protocol. We make it concurrent
zero knowledge by forcing the verifier to commit in advance to its (public-coin)
messages in the CVZK protocol using concurrently-extractable commitments
Ccom provided for by Lemma 8. However, Ccom still requires a generic nonin-
teractive commitment scheme Com; for this, we plug-in the instance-dependent
commitment scheme PD-Com,.

Now, let us formally describe our concurrent zero-knowledge protocol. Let
(Py, Vo) be a public-coin CVZK proof system for II with ¢(|z|) rounds on

common input z. Denote the messages sent by V; in the protocol as m =

def . . .
(ma,...,my), and let £ = |m| be the verifier-to-prover communication com-

plexity. Let PD-Com,: {0,1} x {0,1}" — {0,1}", where n = poly(|z|), be a
instance-dependent commitment for I7. The full description of our concurrent
zero-knowledge protocol (P, V) is next.

10 The problem BLUM QUADRATIC NONRESIDUOSITY is a variant of quadratic residu-
osity restricted to Blum integers.

1 Noninteractive zero knowledge implies (in fact is equivalent to) 2-round public-coin
honest-verifier zero knowledge since the honest verifier just sends the common ran-
dom string in the first round, and the prover sends the single-message proof in the
second round.



Protocol 13 Our unconditional concurrent zero-knowledge protocol
(P, V) for problem II with instance-dependent commitments.

Input: Instance = of I1.

Preamble stage (using instance-dependent commitments)
Let Cpp.com, = (Sz, Ry, Verify,, Partial-Verify,) be the
concurrently-extractable commitment scheme provided for by
Lemma 8 by substituting Com = PD-Com,,.

V : Select a random message m = (my, ..., m,) < {0,1}".
V — P: Send the message "start session".

V < P: Run the following instance-dependent CEC schemes
(Sz(ma), Ry)(A™), -+, (Sx(my), Ry)(1™) in parallel, with the
verifier V' acting as S, and the prover P as R,.
Let the output of R, be the commitments (c1,...,¢q), and be
the output of S, be the decommitments ((m1,d1),. .., (mq,dy))-
Note that neither P nor V sends the outputs of R, or S, to the
other party at this stage.

Main stage (stand-alone zero-knowledge protocol)

V' — P: Send the message "start main stage".
P : Select randomness rp, < {0,1}* for the original prover Fj.

Fort=1,...,q, do the following:

V — P: Decommit to m; by sending full decommitment (my,d;) of
Ct.

P — V: Verify the decommitment received is valid by checking if
Verify(ct, my,d;) = 1. If so, answer as the original prover P,
would, that is, send my = Py(z, my, ..., ms;7p,). Otherwise,
halt and abort.

Verifier V' accepts if the original verifier V accepts on
(mi,m1,...,mq,Tq).

From Protocol 13 and Lemma 8, we can easily derive the prover efficiency,
round complexity and completeness claims of Theorem 10. For soundness, ob-
serve that since PD-Com,, is statistically hiding, Cpp.com, is also statistically
hiding (by Lemma 8). Hence, the soundness of Protocol 13 only decreases by a
negligible amount because a cheating prover will not know the committed mes-
sages of the verifier until the verifier decommits to m; (in round ¢ of the main
stage).

We show that Protocol 13 is concurrent zero-knowledge by highlighting the
main ideas behind its simulation in the next subsection.



4.4 Our Simulator

Observe that the prover’s strategy can be broken into two parts, Pyre and Prain,
denoting the preamble stage and main stage, respectively. Both Py, and Ppain
use independent randomness. The simulation procedure for our concurrent zero-
knowledge protocol (Protocol 13) is broken into three main steps.

1. First, we analyze the concurrent interaction of P and V* in the context of
concurrently-extractable commitment schemes (provided for by Lemma 8,
substituting Com = PD-Com,,). To do so, we define a new adversarial sender
S that takes V* and Prnain as oracles and only returns the preamble messages
of V*. The preamble stage prover P, acts as the honest receiver R,. By
Definition 7 and Lemma 8, we can simulate the output of § (after interaction
with Ppye), while having the additional property of being able to extract the
commitments. N
By virtue of the way we defined S, its output after concurrently interacting
with P is equivalent to the output of V* after concurrently interacting
with P. Nevertheless, this simulation is inefficient because S uses an oracle
for Puain-

2. Since we can extract partial decommitments, we are able to determine the
verifier’s main stage messages in advance.'? Hence, we can replace the adap-
tive queries to Ppain by a single query made to a new oracle, called Op, at
the start of each main stage.

3. However, Op is still not an efficiently implementable oracle. In the final step,
we replace oracle Op with a committed-verifier zero knowledge (CVZK)
simulator Scyzk to obtain an efficient simulation strategy.

5 Unconditional Concurrent Zero-Knowledge Proofs for
Problems with Witness-Binding Commitments

Here we extend the techniques in Sect. 4 to obtain unconditional concurrent
statistical zero-knowledge proofs for certain problems like QUADRATIC RESID-
vosITY and GRAPH ISOMORPHISM. These problems are not known to have
instance-dependent commitments (in the sense of Definition 9), but have a
variant of instance-dependent commitments called witness-binding commitments
(see Sect. 5.1). Informally, these commitments are not guaranteed to be perfectly
binding but breaking the binding property of these commitments is as hard as
finding a witness.

Using these witness-binding commitments, we proceed to transform them into
ones with the concurrently extractability property. (In Sect. 3.3 we did a similar
transformation for standard instance-dependent commitments.) Our concurrent
zero-knowledge protocol combines the witness-binding concurrently-extractable
commitments with an underlying stand-alone ZK protocol.

12 The binding property in the sense of Definition 6 allows us to determine the commit-
ted message in any valid full decommitment by just knowing a partial decommitment.



Recall that in Sect. 4, we required the stand-alone protocol to be committed-
verifier zero knowledge (CVZK), as in Definition 1. However, since we are using
only witness-binding commitments, we require the underlying stand-alone pro-
tocol to have a stronger property that we call witness-completable CVZK (see
Sect. 5.2). The additional witness-completable property, informally stated, gives
our simulator the ability to complete the simulation even when the verifier sends
a message different from its committed one, if we provide our simulator with a
valid witness at that time. This is important because the binding property of
witness-binding commitments can be broken, but if that is the case, the simulator
can obtain a witness that it can use to complete the simulation.

5.1 Witness-Binding Commitments

Based on the techniques used in Sect. 4, the first natural step towards con-
structing concurrent zero-knowledge protocols would be to construct instance-
dependent commitments. Consider the naive commitment scheme for GRAPH
IsoMORPHISM specified as follows: Let (Go, G1) be an instance of the problem.
To commit to bit b, send a random isomorphic copy of Gp. This commitment
is perfectly hiding on the YES instances (when Gy = (1) and perfectly binding
on the NO instances (when Gy 2 G1). However, this is exactly the opposite of
what we require in a instance-dependent commitment (see Definition 9). In fact,
every problem satisfying Definition 9 is in coNP, but GRAPH ISOMORPHISM is
not known to be in coNP.

Protocol 14 Witness-binding commitment scheme for GRAPH
ISOMORPHISM (implicit in [35]).

To commit to bit b using problem instance (Gg,G1), proceed as
follows.

Index generation stage
R — S: Let Hy be arandom isomorphic copy of G, and send
H,. That is, H; = 0(G)p) for a random permutation
o of the vertices of Gy. In addition, both parties set
Commitment stage
S — R: To commit to bit b, send F', a random isomorphic
copy of Hjp.

Decommitment stage
S — R: To decommit, send b together with the isomorphism
between Hj and F'.
Verification stage
After the decommitment stage, the receiver R, proves that Hi,

sent in the index generation stage, is isomorphic to Gy by sending
the isomorphism o between Gg and Hj.




To overcome this apparent difficulty, the above commitment scheme (Pro-
tocol 14) makes use of additional index generation and verification stages to
do instance-dependent commitments. It can be shown that this witness-binding
commitment scheme is perfectly hiding on every instance (in particular the NO
instances) if H; is generated correctly, that is if H; 22 G. On the YES instances,
the scheme is “computationally binding” in that breaking the scheme is as hard
as finding an NP-witness (an isomorphism between G and G1). More precisely,
we can extract the witness if we use a simulated index generation stage, where Hy
is taken to be a random isomorphic copy of G1 (which is distributed identically
to the actual index generation).

This scheme can be generalized to a number of other NP languages, and a
formal definition capturing the notion of witness-binding commitments is in the
full version of this paper [1]. In addition, we note that QUADRATIC RESIDUOS-
ITY has a similarly structured witness-binding commitment scheme (based on
Protocol 14 and its 3-round perfect zero-knowledge proof system [2]).

5.2 Witness-Completable CVZK

Recall that witness-completable CVZK (wCVZK) is a strengthening of the no-
tion of CVZK (Definition 1) in that our simulator, when given a valid witness,
must have the ability to complete the simulation even when the verifier sends a
message different from its committed one. The formal definition of wCVZK is
the full version of this paper [1].

The 3-round perfect zero-knowledge protocols for both QUADRATIC RESIDU-
OSITY [2] and GRAPH ISOMORPHISM [5] turns out to have the witness-completable
property, as desired.

5.3 Main Results

Our main result for this section can be summarized in a very similar manner
as Theorem 10 in Sect. 4.2. The main differences are (1) the promise problem
II needs to have a witness-binding commitment scheme and a 3-round, public-
coin, wCVZK proof system (instead of instance-dependent commitment scheme
and CVZK proof system), and (2) our new simulation runs in ezpected polyno-
mial time instead of strict polynomial time. With that, we obtain the following
theorem.

Theorem 15. Both languages GRAPH ISOMORPHISM and QUADRATIC RESID-
UOSITY have concurrent statistical zero-knowledge proof systems with O(logn)
rounds and efficient provers. The simulator for both protocols runs in expected
polynomaal time.

Note that the round complexity of 6(10g n) for the concurrent zero-knowledge
protocols of both GRAPH ISOMORPHISM and QUADRATIC RESIDUOSITY is es-
sentially optimal for black-box simulation [27].



5.4 Our Modified Concurrent Zero-Knowledge Protocol

Since we are dealing with witness-binding commitments, we have to modify Pro-
tocol 13 in Sect. 4.3. Our modified concurrent zero-knowledge protocol is similar
in structure with the main difference being that instead of just the preamble
stage and the main stage, it also an index generation stage before the pream-
ble stage and a verification stage after the main stage (for implementing the
corresponding stages of the witness-binding commitment scheme). The full de-
scription of our modified protocol is in the full version of this paper [1].

5.5 Owur Simulator
Recall the three main steps of the simulation procedure in Sect. 4.4.

1. Analyze the concurrent interaction of P and V* in the context of the concurrently-
extractable commitment schemes. Specifically, define a new adversarial sender

S that takes V* and Pyain as oracles and only returns the preamble messages
of V*, and simulate its interaction while extracting its commitments.

2. Replace the adaptive queries to Pyain by a single query made to a new oracle,
called Op, at the start of each main stage.

3. Replace oracle Op with a CVZK simulator Scyzix to obtain an efficient
simulation strategy.

For the simulation of our modified concurrent zero-knowledge protocol, we
keep Step 1 the same, but in Step 2 observe that the prover responses provided
by Op depends on the witness w given the to prover. Hence, we denote it more
precisely as Op(,). In Step 3, we simulate the answers from Op(,) with our
wCVZK simulator. However, our wCVZK simulator needs a witness w in order
to continue the simulation when the verifier’s V* response does not match the
expectation of our simulator.

This can only happen if V* breaks the binding of the witness-binding com-
mitment. And when that happens, our simulator is able to obtain a witness w,
which it can then feed to the wCVZK simulator to continue the simulation. Ac-
tually, a subtlety is that the witness-binding commitment allows us to extract
a witness only if we simulate the index generation stage, whereas here we need
to run the actual index generation in order to complete the verification stage.
Thus, if needed, we run a separate offline process to extract a witness, and this
is what causes our simulator to run in expected polynomial time. For details,
see the full version of this paper [1].
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