gemalto

Guess-then-algebraic attack on the Self-Shrinking Generator

Blandine Debraize, Louis Goubin

Lausanne, February 12, 2008

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks
■ First Improved Attack

- Mihaljević Attack

■ Hell-Johansson and Zhang-Feng Attack

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks
■ First Improved Attack

- Mihaljević Attack

■ Hell-Johansson and Zhang-Feng Attack
3 Our Attack

- First Method
- Using More Keystream

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks
■ First Improved Attack

- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

Description of the self-shrinking Generator

SSG is :

- A pseudo random sequence generator
- Proposed by Meier and Staffelbach in 1994
- Derived from the Shrinking Generator
- Based on the irregular decimation of the output of one LFSR

Decimation principle:
LFSR sequence $\underbrace{01} \underbrace{11}_{1} \underbrace{10}_{0} \underbrace{00} \underbrace{01}_{1} \underbrace{11}_{0} \underbrace{10}$
When the first bit of the pair is 0 , no output when the first bit of the pair is 1 , the second bit is the output

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

Algorithms to solve polynomial systems

Two main families

1 Linear algebra based systems:

- Algorithms:
- XL, XSL, T'
- Gröbner Bases based algorithms (Buchberger, F4, F5).
- No theory for non random systems.
- Large matrices need huge memory.

2 SAT solvers, only for GF(2):

- Recently proposed in algebraic cryptanalysis by Bard, Courtois and Jefferson.
- Already used in cryptanalysis on Keeloq and Bivium.
- One algorithm already used in crypto: MiniSAT.
- No theory either.

SAT solvers Method

Method

- Converting the multivariate system into a CNF-SAT problem:
$\square a=x y z \Longleftrightarrow(x \vee \bar{a})(y \vee \bar{a})(z \vee \bar{a})(a \vee \bar{x} \vee \bar{y} \vee \bar{z})$
- Then applying a SAT-solver algorithm on it.
- Choose a variable, try to assign it one value and then the other.
- When some information is learned, new clauses are added to the system.

Important Parameters

- Number of clauses
- Total length of all the clauses
- Number of variables

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

Notations and Definitions

The length of the $\operatorname{LFSR} \mathcal{L}$ is n, at clock t it outputs s_{t}. The internal sequence at clock t is $S^{t}=s_{0} s_{1} \ldots s_{t}$.

Definition (Compression function)

C such that at clock $t \mathrm{KG}$ produces $C\left(S^{t}\right)$.
KG ouput sequence is $C\left(S^{0}\right) C\left(S^{1}\right) \cdots C\left(S^{t}\right)$.
The compression ratio η is the average number of keystream bits
C outputs per internal bit.

Definition (Information Rate)

The keystream reveals about the first m bits of internal sequence the information rate per bit: $\alpha(m)=\frac{1}{m}\left(H\left(S^{m}\right)-H\left(S^{m} \mid Y\right)\right)$

First Attack on this type of PRNG

Method

Guess all the missing information.

Complexity

- For m output bits, the leakage of information given by the keystream is $\alpha m / \eta$.
- Then the entropy to recover m / η key bits is

$$
H\left(S^{m} \mid Y\right)=(1-\alpha) \frac{m}{\eta}
$$

- Final complexity $\mathcal{O}\left(2^{(1-\alpha) n}\right)$.

On the SSG

- This is the first attack proposed on the SSG by Meier and Staffelbach.

How to improve this attack

Method and Complexity

- Decrease the amount of information we guess.
- Guess an amount of information h on the internal sequence per keystream bit, then the known information per keystream bit is $h+\alpha / \eta$.
- The ratio "guessed information" / "total information known per keystream" bit is

$$
\frac{h}{h+\frac{\alpha}{\eta}}
$$

Final complexity of the guess is $\mathcal{O}\left(2^{\frac{h}{h+\frac{\alpha}{\eta}} n}\right)$

Issue

Once the information is obtained, it has to be exploited to recover the key.

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack

■ Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

First Improved Attack (Hell-Johansson 06)

Guess Method

- Instead of guessing all the internal bits, guess the even bits.
- It is equivalent to guessing the positions of the pairs $(1, e)$ in the internal sequence

Complexity

- The entropy per keystream bits for this information is

$$
H(L)=\sum_{j=0}^{+\infty} \frac{j+1}{2^{j+1}}=2
$$

- The complexity of the guess is then $\mathcal{O}\left(2^{\frac{2}{3} n}\right)$
- The information is linear in the key bits, then a Gaussian elimination $\left(\mathcal{O}\left(n^{3}\right)\right)$ is performed. Final complexity: $\mathcal{O}\left(n^{3} 2^{\frac{2}{3} n}\right)$

Mihaljević Attack (96)

Method

- Look for the case when $\frac{n}{2}$ consecutive even internal bits are 1s.
- Then we know n internal bits.
- Time and Data complexity $\mathcal{O}\left(2^{\frac{n}{2}}\right)$

Familly of attacks

Time/Data Tradeoff with

- Time complexity varying from $\mathcal{O}\left(2^{\frac{n}{2}}\right)$ to $\mathcal{O}\left(2^{\frac{3}{4} n}\right)$
- Data complexity varying from $\mathcal{O}\left(2^{\frac{n}{2}}\right)$ to $\mathcal{O}(n)$ accordingly

Combining Attack [Hell-Johannson 06] and [Zhang-Feng 06]

Another tradeoff:

- Look for an internal sequence of length $I(\gamma)$ where the rate of 1 s among the even bits is at least $\gamma>\frac{1}{2}$. I is computed such that it provides enough information (at least n bits).
- For each subsequence of length / guess the even bits compatible with rate of $1 \mathrm{~s}>\gamma$.
- Perform a Gaussian elimination on the linear equations provided by the known bits.
- Time complexity $\mathcal{O}\left(n^{3} 2^{\frac{n}{1+\gamma}}\right)$.

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

Quadratic Attack

Method

- Still decrease the amount of information guessed.
- Instead of guessing the position of the even internal 1s, guess the position of one out of two.
- Consequence: if keystream sequence is $x_{i}, x_{i+1}, \cdots, x_{i+k}, \cdots$ we do not know the position of the internal pair $1 x_{2 i+1}$ but it ranges between pairs $1 x_{2 i}$ and $1 x_{2 i+2}$ positions.

Complexity of the Guess

- We guess size of "blocks" containing 2 even 1 s .
- The entropy of the information guessed by keystream bit is:

$$
H=-\frac{1}{2} \sum_{k \geq 0} \frac{\binom{k+1}{k}}{2^{k+2}} \log \left(\frac{\binom{k+1}{k}}{2^{k+2}}\right) \approx 1.356
$$

- The complexity of the guess is then $2^{\frac{1.356 n}{1.356+1}}=2^{0.575 n}$

Quadratic Attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

1 First and second bits of each block are known (linear)

Quadratic Attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

1 First and second bits of each block are known (linear)
2 Only one pair among the remaining ones begins by 1:

Quadratic Attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

11 First and second bits of each block are known (linear)
2 Only one pair among the remaining ones begins by 1 :

- There is at most one " 1 " among the even bits:

$$
\left(s_{2 i j}=1\right) \Rightarrow\left(s_{2 i j}=0\right) \text { gives } s_{2 i j} s_{2 i j}=0
$$

Quadratic Attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

11 First and second bits of each block are known (linear)
2 Only one pair among the remaining ones begins by 1 :

- There is at most one " 1 " among the even bits:

$$
\left(s_{2 i j}=1\right) \Rightarrow\left(s_{2 i}=0\right) \text { gives } s_{2 i j} s_{2 i,}=0
$$

- There is at least one " 1 " among the even bits of the block:

$$
\bigoplus_{j=1}^{k+1} s_{2 i j}=1
$$

Quadratic Attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

11 First and second bits of each block are known (linear)
2 Only one pair among the remaining ones begins by 1:

- There is at most one " 1 " among the even bits:

$$
\left(s_{2 i j}=1\right) \Rightarrow\left(s_{2 i}=0\right) \text { gives } s_{2 i j} s_{2 i,}=0
$$

- There is at least one " 1 " among the even bits of the block:

$$
\bigoplus_{j=1}^{k+1} s_{2 i j}=1
$$

3 The fact that the second bit e of the second pair beginning by " 1 " in the block is known: $\left(s_{2 i_{j}}=1\right) \Rightarrow\left(s_{2 i_{j}+1}=e\right)$ equivalent to $s_{2 i_{j}}\left(s_{2 i_{j}+1}+e\right)=0$.

Quadratic Attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

11 First and second bits of each block are known (linear)
2 Only one pair among the remaining ones begins by 1 :

- There is at most one " 1 " among the even bits:

$$
\left(s_{2 i j}=1\right) \Rightarrow\left(s_{2 i j}=0\right) \text { gives } s_{2 i j} s_{2 i,}=0
$$

- There is at least one " 1 " among the even bits of the block:

$$
\bigoplus_{j=1}^{k+1} s_{2 i j}=1
$$

3 The fact that the second bit e of the second pair beginning by " 1 " in the block is known: $\left(s_{2 i_{j}}=1\right) \Rightarrow\left(s_{2 i_{j}+1}=e\right)$ equivalent to $s_{2 i_{j}}\left(s_{2 i_{j}+1}+e\right)=0$.
An amount of $\binom{k+1}{2}+k+1$ quadratic equations and linear ones.

Quadratic Attack

Exploiting the information algebraically

- The system completely describes the key. But possible to find some other equations to make it overdefined.
- With SAT solvers, not very useful to generate overdefined systems.
- Results of the computations depends on the hamming weight of the feedback polynomial:

	$h w=5$	$h w=6$	$h w=7$
$n=128$	$0.02 s$	$0.03 s$	$0.05 s$
$n=256$	$0.025 s$	$0.046 s$	$62 s$
$n=512$	$0.127 s$	$>24 h$	$>24 h$
$n=1024$	$122.25 s$	$>24 h$	$>24 h$

Generalization of the attack

Method

- Guess the position of one even internal one out of q.
- Entropy of this information by keystream bit is:
$H(q)=-\frac{1}{q} \sum_{k \geq 0} \frac{\binom{q-1+k}{k}}{2^{q+k}} \log \left(\frac{\binom{q-1+k}{k}}{2^{q+k}}\right)$.
- The complexity of the guess is then $2^{\frac{H(q)}{1+H(q)}}$ n

Table: Average complexity of the guess for various values of q

	$q=2$	$q=3$	$q=4$	$q=5$
Complexity	$2^{0.575 n}$	$2^{0.509 n}$	$2^{0.458 n}$	$2^{0.417 n}$

Generalization of the attack

Exploiting the information algebraically

Suppose the block contains k pairs beginning by 0 . We have to describe the following information:

11 First and second bits of each block are known (linear)
2 Exactly $q-1$ pairs among the remaining ones begins by 1 :
■ $\binom{k-1}{q}$ degree q polynomials of the form $s_{2 i_{0}} s_{2 i_{1}} \cdots s_{2 i_{q-1}}=0$

- One equation of degree $q-1$: $\sum s_{i 0} s_{i_{1}} \cdots s_{i_{q-2}}=1$

3 The fact that each keystream bit e corresponding to this block follows an even 1 in the internal block is described by $\binom{k-1}{q-1}$ degree q equations of the form

$$
s_{2 i_{0}} s_{2 i_{1}} \cdots s_{2 i_{q-2}}\left(s_{2 i_{0}+1}+e_{0}\right)=0 .
$$

Generalization of the attack

Exploiting the information algebraically

- If k is short, information can be described by lower degree equations.
- Also possible to find other equations.
- We fixed the Hamming weight of the feedback polynomial to 5.

Table: MiniSAT computations on quadratic systems of equations for $\mathrm{q}=3$ and $\mathrm{q}=4$

	$n=128$	$n=256$	$n=512$
$q=3$	$2.28 s$	$80 s$	$2716 s$
$q=4$	$14 s$	$1728 s$	$>24 h$

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

Method and Complexity

- Fix a value k and suppose each block contains at most k pairs beginning by 0 .
- Compute the number of blocks / required to have all the necessary information.
- For each internal subsequence containing / blocks:
- Guess the length of the I blocks.
- Write the corresponding system of equations.
- Solve the system by running MiniSAT on it.
- Time complexity of the guess: $\left(\frac{k-q+1}{\sum_{j=q}^{k} \frac{\binom{j-1}{q-1}}{2 j}}\right)^{\frac{n}{q+h}}$

Data complexity:

$$
\frac{1}{\left(\sum_{j=q}^{k} \frac{\binom{j-1}{q-1}}{2^{j}}\right)^{\frac{n}{q+h}}}
$$

Comparisons

Table: Total time complexity comparisons between Mihaljević attack, Hell et al. attack and our attack for the same data complexities

	$n=256$				$n=512$			
data	$2^{65.3}$	$2^{49.2}$	$2^{39.1}$	$2^{17.5}$	2^{128}	$2^{94.6}$	$2^{57.5}$	$2^{38.6}$
Miha	2^{145}	2^{152}	$2^{157.5}$	2^{174}	2^{288}	2^{302}	2^{322}	2^{336}
H-J, Z-F	$2^{160.2}$	$2^{164.8}$	$2^{167.8}$	$2^{176.4}$	2^{300}	$2^{308.3}$	2^{320}	2^{328}
Our att.	$2^{146.2}$	$2^{146.3}$	$2^{147.3}$	$2^{157.2}$	$2^{268.8}$	$2^{268.8}$	$2^{279.3}$	$2^{293.5}$

■ New flexible attack on self-shrinking generator

- When q increases, guess complexity decreases.
- When k increases, data complexity decreases.
- Works only when the feedback polynomial hamming weight is low. In this case, it is the best Time/Data tradeoff.

