

Guess-then-algebraic attack on the Self-Shrinking Generator

Blandine Debraize, Louis Goubin

Lausanne, February 12, 2008

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

1 Introduction

The Self-Shrinking Generator

- Methods to Solve Algebraic Systems
- Guessing Information

Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

3

Description of the self-shrinking Generator

SSG is :

- A pseudo random sequence generator
- Proposed by Meier and Staffelbach in 1994
- Derived from the Shrinking Generator
- Based on the irregular decimation of the output of one LFSR

Decimation principle:

When the first bit of the pair is 0, no output when the first bit of the pair is 1, the second bit is the output

1 Introduction

The Self-Shrinking Generator

Methods to Solve Algebraic Systems

Guessing Information

Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

Algorithms to solve polynomial systems

Two main families

- 1 Linear algebra based systems:
 - Algorithms:
 - XL, XSL, T'
 - Gröbner Bases based algorithms (Buchberger, F4, F5).
 - No theory for non random systems.
 - Large matrices need huge memory.
- 2 SAT solvers, only for GF(2):
 - Recently proposed in algebraic cryptanalysis by Bard, Courtois and Jefferson.
 - Already used in cryptanalysis on Keeloq and Bivium.
 - One algorithm already used in crypto: MiniSAT.
 - No theory either.

SAT solvers Method

Method

- Converting the multivariate system into a CNF-SAT problem:
 - $a = xyz \iff (x \lor \overline{a})(y \lor \overline{a})(z \lor \overline{a})(a \lor \overline{x} \lor \overline{y} \lor \overline{z})$
- Then applying a SAT-solver algorithm on it.
 - Choose a variable, try to assign it one value and then the other.
 - When some information is learned, new clauses are added to the system.

Important Parameters

- Number of clauses
- Total length of all the clauses
- Number of variables

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

The length of the LFSR \mathcal{L} is *n*, at clock *t* it outputs s_t . The internal sequence at clock *t* is $S^t = s_0 s_1 \dots s_t$.

Definition (Compression function)

C such that at clock t KG produces $C(S^t)$. KG ouput sequence is $C(S^0)C(S^1)\cdots C(S^t)$. The compression ratio η is the average number of keystream bits C outputs per internal bit.

Definition (Information Rate)

The keystream reveals about the first *m* bits of internal sequence the information rate per bit: $\alpha(m) = \frac{1}{m} (H(S^m) - H(S^m|Y))$

First Attack on this type of PRNG

Method

Guess all the missing information.

Complexity

- For *m* output bits, the leakage of information given by the keystream is α*m*/η.
- Then the entropy to recover m/η key bits is $H(S^m|Y) = (1 \alpha)\frac{m}{\eta}$.

• Final complexity $\mathcal{O}(2^{(1-\alpha)n})$.

On the SSG

This is the first attack proposed on the SSG by Meier and Staffelbach.

How to improve this attack

Method and Complexity

- Decrease the amount of information we guess.
- Guess an amount of information h on the internal sequence per keystream bit, then the known information per keystream bit is $h + \alpha/\eta$.
- The ratio "guessed information" / "total information known per keystream" bit is

$$\frac{n}{h+\frac{\alpha}{\eta}}$$
 Final complexity of the guess is $\mathcal{O}(2^{\frac{h}{h+\frac{\alpha}{\eta}}n})$

Issue

Once the information is obtained, it has to be exploited to recover the key.

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

2 Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

First Improved Attack (Hell-Johansson 06)

Guess Method

- Instead of guessing all the internal bits, guess the even bits.
- It is equivalent to guessing the positions of the pairs (1, e) in the internal sequence

Complexity

- The entropy per keystream bits for this information is $H(L) = \sum_{j=0}^{+\infty} \frac{j+1}{2^{j+1}} = 2$
- The complexity of the guess is then $\mathcal{O}(2^{\frac{2}{3}n})$
- The information is linear in the key bits, then a Gaussian elimination $(\mathcal{O}(n^3))$ is performed. Final complexity: $\mathcal{O}(n^32^{\frac{2}{3}n})$

Method

- Look for the case when $\frac{n}{2}$ consecutive even internal bits are 1s.
- Then we know n internal bits.
- Time and Data complexity $\mathcal{O}(2^{\frac{n}{2}})$

Familly of attacks

Time/Data Tradeoff with

- Time complexity varying from $\mathcal{O}(2^{\frac{n}{2}})$ to $\mathcal{O}(2^{\frac{3}{4}n})$
- Data complexity varying from $\mathcal{O}(2^{\frac{n}{2}})$ to $\mathcal{O}(n)$ accordingly

Combining Attack [Hell-Johannson 06] and [Zhang-Feng 06]

Another tradeoff:

- Look for an internal sequence of length *l*(γ) where the rate of 1s among the even bits is at least γ > ¹/₂. *l* is computed such that it provides enough information (at least *n* bits).
- For each subsequence of length / guess the even bits compatible with rate of 1s > γ.
- Perform a Gaussian elimination on the linear equations provided by the known bits.
- Time complexity $\mathcal{O}(n^3 2^{\frac{n}{1+\gamma}})$.

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

First Method

Using More Keystream

4 Conclusion

Quadratic Attack

Method

- Still decrease the amount of information guessed.
- Instead of guessing the position of the even internal 1s, guess the position of one out of two.
- Consequence: if keystream sequence is $x_i, x_{i+1}, \dots, x_{i+k}, \dots$ we do not know the position of the internal pair $1x_{2i+1}$ but it ranges between pairs $1x_{2i}$ and $1x_{2i+2}$ positions.

Complexity of the Guess

- We guess size of "blocks" containing 2 even 1s.
- The entropy of the information guessed by keystream bit is: $H = -\frac{1}{2} \sum_{k \ge 0} \frac{\binom{k+1}{k}}{2^{k+2}} \log(\frac{\binom{k+1}{k}}{2^{k+2}}) \approx 1.356$

• The complexity of the guess is then $2^{\frac{1.356n}{1.356+1}} = 2^{0.575n}$

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

I First and second bits of each block are known (linear)

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

- **I** First and second bits of each block are known (linear)
- 2 Only one pair among the remaining ones begins by 1:

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

- First and second bits of each block are known (linear)
- 2 Only one pair among the remaining ones begins by 1:
 - There is at most one "1" among the even bits:

$$(s_{2i_j}=1) \Rightarrow (s_{2i_l}=0)$$
 gives $s_{2i_j}s_{2i_l}=0$

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

- **I** First and second bits of each block are known (linear)
- 2 Only one pair among the remaining ones begins by 1:
 - There is at most one "1" among the even bits:

$$(s_{2i_i} = 1) \Rightarrow (s_{2i_l} = 0)$$
 gives $s_{2i_i} s_{2i_l} = 0$

There is at least one "1" among the even bits of the block: $\bigoplus_{j=1}^{k+1} {\mathfrak s}_{2i_j} = 1$

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

- **I** First and second bits of each block are known (linear)
- 2 Only one pair among the remaining ones begins by 1:
 - There is at most one "1" among the even bits:

$$(s_{2i_j} = 1) \Rightarrow (s_{2i_l} = 0)$$
 gives $s_{2i_j}s_{2i_l} = 0$

- There is at least one "1" among the even bits of the block: $\bigoplus_{j=1}^{k+1} s_{2i_j} = 1$
- **3** The fact that the second bit *e* of the second pair beginning by "1" in the block is known : $(s_{2i_j} = 1) \Rightarrow (s_{2i_j+1} = e)$ equivalent to $s_{2i_i}(s_{2i_j+1} + e) = 0$.

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

- First and second bits of each block are known (linear)
- 2 Only one pair among the remaining ones begins by 1:
 - There is at most one "1" among the even bits:

$$(s_{2i_j} = 1) \Rightarrow (s_{2i_l} = 0)$$
 gives $s_{2i_j}s_{2i_l} = 0$

- There is at least one "1" among the even bits of the block: $\bigoplus_{j=1}^{k+1} s_{2i_j} = 1$
- **3** The fact that the second bit *e* of the second pair beginning by "1" in the block is known : $(s_{2i_j} = 1) \Rightarrow (s_{2i_j+1} = e)$ equivalent to $s_{2i_i}(s_{2i_i+1} + e) = 0$.

An amount of $\binom{k+1}{2} + k + 1$ quadratic equations and linear ones.

- The system completely describes the key. But possible to find some other equations to make it overdefined.
- With SAT solvers, not very useful to generate overdefined systems.
- Results of the computations depends on the hamming weight of the feedback polynomial:

	<i>hw</i> = 5	<i>hw</i> = 6	<i>hw</i> = 7
<i>n</i> = 128	0.02 <i>s</i>	0.03 <i>s</i>	0.05 <i>s</i>
<i>n</i> = 256	0.025 <i>s</i>	0.046 <i>s</i>	62 <i>s</i>
n = 512	0.127 <i>s</i>	> 24 <i>h</i>	> 24 <i>h</i>
<i>n</i> = 1024	122.25 <i>s</i>	> 24 <i>h</i>	> 24 <i>h</i>

gemalto

Generalization of the attack

Method

- Guess the position of one even internal one out of q.
- Entropy of this information by keystream bit is: $H(q) = -\frac{1}{q} \sum_{k \ge 0} \frac{\binom{q-1+k}{k}}{2^{q+k}} \log(\frac{\binom{q-1+k}{k}}{2^{q+k}}).$
- The complexity of the guess is then $2^{\frac{H(q)}{1+H(q)}n}$

Table: Average complexity of the guess for various values of q

	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	q = 5
Complexity	2 ^{0.575} n	2 ^{0.509} n	2 ^{0.458} n	2 ^{0.417} n

Suppose the block contains k pairs beginning by 0. We have to describe the following information:

- I First and second bits of each block are known (linear)
- **2** Exactly q 1 pairs among the remaining ones begins by 1:
 - $\binom{k-1}{q}$ degree q polynomials of the form $s_{2i_0}s_{2i_1}\cdots s_{2i_{q-1}}=0$
 - One equation of degree q-1: $\sum s_{i_0}s_{i_1}\cdots s_{i_{q-2}}=1$
- **3** The fact that each keystream bit *e* corresponding to this block follows an even 1 in the internal block is described by $\binom{k-1}{q-1}$ degree *q* equations of the form $s_{2i_0}s_{2i_1}\cdots s_{2i_{q-2}}(s_{2i_0+1} + e_0) = 0.$

Generalization of the attack

Exploiting the information algebraically

- If k is short, information can be described by lower degree equations.
- Also possible to find other equations.
- We fixed the Hamming weight of the feedback polynomial to 5.

Table: MiniSAT computations on quadratic systems of equations for

q=3 and q=4		<i>n</i> = 128	<i>n</i> = 256	<i>n</i> = 512	
	q = 3		80 <i>s</i>	2716 <i>s</i>	
	<i>q</i> = 4	14 <i>s</i>	1728 <i>s</i>	> 24 <i>h</i>	

1 Introduction

- The Self-Shrinking Generator
- Methods to Solve Algebraic Systems
- Guessing Information

Previous Work and Known Attacks

- First Improved Attack
- Mihaljević Attack
- Hell-Johansson and Zhang-Feng Attack

3 Our Attack

- First Method
- Using More Keystream

4 Conclusion

- Fix a value k and suppose each block contains at most k pairs beginning by 0.
- Compute the number of blocks / required to have all the necessary information.
- For each internal subsequence containing / blocks:
 - Guess the length of the / blocks.
 - Write the corresponding system of equations.
 - Solve the system by running MiniSAT on it.

Time complexity of the guess:

Time complexity of the guess:
$$\left(\frac{k-q+1}{\sum_{j=q}^{k} \frac{\binom{j-1}{q-1}}{2^{j}}}\right)^{\frac{n}{q+h}}$$

Data complexity:
$$\frac{1}{\left(\sum_{j=q}^{k} \frac{\binom{j-1}{q-1}}{2^{j}}\right)^{\frac{n}{q+h}}}$$

 Table:
 Total time complexity comparisons between Mihaljević attack,

 Hell et al.
 attack and our attack for the same data complexities

	n = 256			n = 512				
data	2 ^{65.3}	2 ^{49.2}	2 ^{39.1}	2 ^{17.5}	2 ¹²⁸	2 ^{94.6}	2 ^{57.5}	2 ^{38.6}
Miha	2 ¹⁴⁵	2 ¹⁵²	2 ^{157.5}	2 ¹⁷⁴	2 ²⁸⁸	2 ³⁰²	2 ³²²	2 ³³⁶
H-J, Z-F	2 ^{160.2}	2 ^{164.8}	2 ^{167.8}	2 ^{176.4}	2 ³⁰⁰	2 ^{308.3}	2 ³²⁰	2 ³²⁸
Our att.	2 ^{146.2}	2 ^{146.3}	2 ^{147.3}	2 ^{157.2}	2 ^{268.8}	2 ^{268.8}	2 ^{279.3}	2 ^{293.5}

- New flexible attack on self-shrinking generator
 - When *q* increases, guess complexity decreases.
 - When k increases, data complexity decreases.
- Works only when the feedback polynomial hamming weight is low. In this case, it is the best Time/Data tradeoff.