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Are classical cryptographic protocols
secure against quantum attackers?

* Some protocols: no longer secure

* Computational assumptions broken by efficient quantum alg’s
* Factoring and Discrete Logarithm [Shor'94]
* Principal ideal problem [Hallgren’02]

* Information-theoretical classically secure protocol also broken

* A two prover commitment scheme becomes non-binding
[Crepeau,Salvail,Simard,Tapp’06]

* Attackers only need storing entanglement
* Many protocols: unknown how to prove securit
Y

* Classical proof techniques may no longer apply: e.g. rewinding

* General question: how to reason about quantum adversaries?



Classical Protocols Secure against Quantum Attacks

* Some tasks are achievable
* Zero-Knowledge (ZK) for NP [Watrous'09]
* Quantum rewinding in a special case
* ZK for a larger class of languages [Hallgren,Kolla,Sen,Zhang’08]
* Coin-flipping [Damgaard,Lunemann’09]
* Proofs of knowledge (PoK) [Unruh’10]

Question: using classical protocols, is every task achievable
against classical attackers also achievable against quantum
attackers?

a. proving security of existing protocols

b. designing new protocols



Our Contribution

Main Result:
3 classical secure function evaluation protocols
against quantum attacks

Parallels classical feasibility results: [Yao’86;Goldreich,Micali, Wigderson'87]

Secure Function Evaluation (SFE)

* Correctness: Jointly evaluate f(x,y)
correctly

* Privacy: Bob does not learn anything

about x beyond f(x,y); same for Alice



Our Contribution

Main Result:
3 classical secure function evaluation protocols
against quantum attacks

Parallels classical feasibility results: [Yao’86;Goldreich,Micali, Wigderson'87]

a. Prove a family of classical arguments goes through against
quantum adversaries

* Corollary: fully simulatable ZKPoK = quantum-secure SFE

b. Construct a fully simulatable ZKPoK against quantum adv’s

* Get around difficulty of quantum rewinding

* Revisit quantum stand-alone security models (see paper)



Building SFE from ZKPoK

* |dentify a family of hybrid arguments that goes through against
quantum adv’s

D ~ D’ ~ D"’ N == — ~ E

* Adjacent pairs only differs by “simple” changes:
* E.g., changing the plaintext of an encryption
* Formalize a Simple Hybrid Argument framework

* Resembles code-based games [Bellare,Rogaway’06]
* A classical construction [Canetti Lindell,Ostrovsky,Sahai’02] fits SHA

framework
* [CLOS’02]: fully simulatable ZKPoK = classically secure SFE

* Corollary: fully simulatable ZKPoK = quantum-secure SFE, assuming
* Quantum-secure dense encryption & pseudorandom generators
* Implied by, e.g, Learning-with-errors (LWE) assumption



Our Contribution

Main Result:
3 classical secure function evaluation protocols
against quantum attacks

Parallels classical feasibility results: [Yao’86;Goldreich,Micali, Wigderson'87]

a. Prove a family of classical arguments goes through against
quantum adversaries

* Corollary: Fully simulatable ZKPoK = quantum secure SFE

b. Construct a fully simulatable ZKPoK against quantum adv’s

* Get around difficulty of quantum rewinding

* Revisit quantum stand-alone security models (see paper)



Formalizing Zero-Knowledge

Alice wants to convince Bob graph G is 3-colorable

* Zero knowledge: Bob does NOT learn the coloring w

* V Bob, 3 Simulator such that V quantum state p:
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Formalizing Proofs of Knowledge

* PoK: Bob wants to be sure that Alice has some real w in mind

* V Alice, 3 Simulator such that V quantum p

Quantum
N/
N/

Poly-time

* Extra condition on simulator: if simulated transcript accepts, then
extracting a 3-coloring w’of G.

* “Witnhess-extended simulator”

* Fully simulatable: Simulation + Extraction
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Difficulty of Quantum Rewinding

* Classical technique to construct a simulator: Rewinding

In every real interaction, prover answers questions from verifier
*  Without a witness, simulator may not be able to answer all questions
* Pick a random branch from all interactions, check if could proceed

If NOT, “rewind” and try again from the same auxiliary input p
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* Naive rewinding requires taking a snapshot of the adversary’s
state and later returning to it

* Quantum no-cloning!
* Even just checking success/failure may destroy p
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Watrous’s Rewinding Technique & Limit

* Theorem [Watrous'09]: AZK proof for NP against quantum verifiers.

* “Oblivious” quantum rewinding
* If: probability of succ/failure independent of p

* Then: safe to go back; but cannot remember anything
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* However, NOT enough for PoK: Simulation + Extraction

* Collecting answers from multiple branches
* Mere extraction is possible [Unruh’10]

* Unclear how to do both simultaneously
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Fully Simulatable ZKPoK: Our Construction

|dea (inherited from Non- 1w / G
interactive ZK): A e

|
* Start with a “coin-flipping” w i Phase 1 !
preamble ﬁa | c=Commit(a) :
* Honest prover can &A i < . !
make sure the outcome : > |
is uniformly random = a |
* A PoK simulator | e P e :
(playing the verifier) | — roo. G_ o
can control the outcome 3 Decommit(c) =a :
b e
/ % Phase 2
pk = a+b: interpret as public key for a e = Encrypt,,(w) >

special encryption scheme

* Dense: valid public key looks random

ZK Proof that
—— e encodesa |——»

witness for G
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* Lossy: if pk is truly random, then V

W, Wy Encrypt, (w;) = Encrypt, (w,)




ZK: simulating di

shonest verifiers

/' The outcome of Phase 1 is \/

pk : a truly random string
* Under such a key, any
ciphertext can be

\_ “decoded” to any plaintext

Simulator succ. w.h.p because
input is a true instance

Phase 1

c=Commit(a)

b

a

' ZK Proof that
' Decommit(c) =a

ZK Proof that
e encodes a

witness for G

pGUX
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PoK: simulating dishonest provers

|
c = Commit(0) |
pcux < : /. . I ] ] \
> ) | imulator succ. w.h.p. because
> comm(0Q) is indistinguishable
(Pk,sk) = KeyGen: from comm(a’)
a’ = b+pk : * If succ., coin flipping will be
<
|
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/ a’+b = pk, of which the
Run Watrous’s simulator simulator knows the

I decrypting key
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Soundness ensures that: if ZK

________ v_ﬁ:rn_e_ss_f_oz S;_ 1 : succ, W’ is a valid witness for G
w.h.p.
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Putting It All Together

* Recap:

* Fully simulatable ZKPoK = quantum-secure SFE
* 3 Fully simulatable ZKPoK Protocol

Corollary1: Modular composition = Quantum-secure SFE in
plain model (i.e., no trusted set-up) assuming quantum-secure
* dense & lossy encryption

* pseudorandom generator

Corollary2: An interesting equivalence: CF = ZKPoK

* Round-complexity preserving reductions

Independent Work [Lunemann,Nielsen’11]

* Fully simulatable quantum-secure coin-flipping

* Plug into [GMW’87] and obtain similar feasibility results as ours
What | didn’t talk about our work: Models, UC-security etc. (see paper)
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Conclusion

* Some key pieces of classical crypto unchanged in
presence of quantum attackers

* A |lot more remains unclear...

* Open Questions:

* Can we extend to other settings: e.g., multi-party and
concurrent security?
* Round complexity: Aquantum-secure constant round ZK /CF2

* Is there any natural two-party classical protocol that is broken
by quantum adv’s NOT because of computational
assumptions?

Thank youl
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