Analysis of reduced-SHAvite-3-256 v2

Marine Minier¹, María Naya-Plasencia², Thomas Peyrin³

¹Université de Lyon, INRIA, INSA Lyon, France

²FHNW, Switzerland

³Nanyang Technological University, Singapore

FSE 2011

• [Introduction](#page-2-0)

- **The SHAvite-3[-256 Hash Function](#page-3-0)**
- [Rebound and Super-Sbox Analysis of](#page-6-0) SHAvite-3-256

[Chosen-Related-Salt Distinguishers](#page-9-0)

- 7-round Distinguisher with 2^7 computations
- 8-round Distinguisher with 2^{25} computations

[Conclusion](#page-14-0)

Hash functions and the SHA3 competition

- \triangleright Due to attacks against MD5 and the SHA family, NIST launched the SHA-3 competition. Among the phase 2 finalists: SHAvite-3
- Previous analysis on SHAvite-3-512 [Gauravaram et al. 10]: chosen-counter chosen-salt preimage attack on the full compression function
- In this talk, we give a first analysis SHAvite-3-256 which is an AES-based proposal
- \triangleright Our analysis is based on
	- rebound attack
	- Super-Sbox cryptanalysis
	- chosen related salt

General Overview of SHAvite-3-256

 \triangleright SHAvite-3-256 = 256-bit version of SHAvite-3

- based on the HAIFA framework [Biham Dunkelman 06]
- \bullet The message M is padded and split into 512-bit message blocks $M_0||M_1|| \dots ||M_{\ell-1}$
- compression function $C_{256} = 256$ -bit internal state

$$
h_0 = IV
$$

\n
$$
h_i = C_{256}(h_{i-1}, M_{i-1}, salt, cnt)
$$

\n
$$
hash = trunc_n(h_i)
$$

► C_{256} consists of a 256-bit block cipher E^{256} used in classical Davies-Meyer mode

$$
h_i = C_{256}(h_{i-1}, M_{i-1}, salt, cnt) = h_{i-1} \oplus E_{M_{i-1}||salt||cnt}^{256}(h_{i-1})
$$

The block cipher E^{256}

- \blacktriangleright 12 rounds of a Feistel scheme
- $h_{i-1} = (A_0, B_0)$, the *i*th round (*i* = 0, ..., 11) is:

- \triangleright AESr is unkeyed AES round: SubBytes SB, ShiftRows ShR and MixColumns MC
- $\blacktriangleright k_i^0$, k_i^1 and k_i^2 are 128-bit local keys generated by the message expansion

The message expansion of C_{256} : key schedule of E^{256}

\blacktriangleright Inputs:

- M_i : 16 32-bit words $(m_0, m_1, \ldots, m_{15})$
- salt: 8 32-bit words (s_0, s_1, \ldots, s_7)
- \bullet cnt: 2 32-bit words (cnt_0, cnt_1)
- \blacktriangleright Outputs:
	- 36 128-bit subkeys k_i^j used at round i
	- k_0^0 , k_0^1 , k_0^2 and k_1^0 initialized with the m_i
- \triangleright Process (4 times):
	- 4 parallel AES rounds (key first)
	- 2 linear layers L_1 and L_2

L1

 $L₂$

Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool $1:$ the truncated differential path: the trail $D \mapsto 1 \mapsto C \mapsto F$ happens with probability 2^{-24} $\overline{\text{a}}$ is the truncated differential path: the trail because of the symmetry and diffusion $\overline{\text{a}}$

Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool $1:$ the truncated differential path: the trail $D \mapsto 1 \mapsto C \mapsto F$ happens with probability 2^{-24} $\overline{\text{a}}$ is the truncated differential path: the trail because of the symmetry and diffusion $\overline{\text{a}}$

The cryptanalyst tool 2: the freedom degrees and the Super-Sbox

- We are especially interested in the truncated differential transitions through 3 rounds of the AESE rounds of the AESE meet-in-the-middle-like technique: the freedom degrees are consumed in the middle part of the differential are consumed in the middle part of the differential ϵ \triangleright Rebound attack on 2 AES rounds: local
- **Super-Sbox** on 3 AES rounds:
- ζ states and ζ ζ ζ ζ ζ ζ ζ for both forms ζ ζ ζ ζ proba-• Complexity: max $\{2^{32}, k\}$ computations; 2^{32} memory
- \bullet For k solutions \bullet
- ▶ Both methods find in average one solution for one Table 2. Byte-wise truncated differential transition approximated probabilities for one round of AES. The left table operation

Super-Sbox Analysis of SHAvite-3-256 (2/2) $\frac{p}{q}$ and $\frac{p}{q}$ and $\frac{p}{q}$ are fixed. Renovalues that $\frac{p}{q}$

 \blacktriangleright 7-round distinguisher in 2^{48} computations and 2^{32} memory $(v.s. 2⁶⁴$ computations for the ideal case)

▶ 1st and 6th rounds: 2^{-48} to find a valid pair when Δ is fixed

• Middle part (3d and 4th rounds): Fix Δ then using Super-Sbox, find 2^{32} valid 128-bit pair for the 4th round, do the same for the 3d round

Chosen-Related-Salt Distinguishers

M. Minier, M. Naya-Plasencia, T. Peyrin 9 / 15

7-round Distinguisher with 2^7 computations $(2/2)$

► 5th round: try 2⁶ $B_4 \oplus k_4^0$ column by column to find a match. It will fix k_4^1

=

=

- 6th round: Do the same with $B_5 \oplus k_5^0$ and k_5^1
- ► Final step: Fix Δ_1 and k_5^0 to fix all the other values
- 3, ∆ = 0 \blacktriangleright Total cost: $2 \times 2^6 = 2^7$ operations

7, ∆ =?

8-round Distinguisher with 2^{25} computations $(1/2)$

- \triangleright Add a 8th round by canceling the differences in round 7
- ► Do Round 5 and 6 as previously: Δ_2 , Δ_3 , $B_4 \oplus k_4^0$, k_4^1 , $B_5 \oplus k_5^0$ and k_5^1 are fixed
- \triangleright Start by fixing the differences in the 7th round column by column:

Relations between the values: $(B_6)^i \implies (A_5)^i = (B_4)^i \implies (k_4^0)^i$ $(k_4^0)^i \implies (k_5^0)^{i+1} \implies (k_6^1)^{i+1}$ $(k_4^0)^2 \implies (k_5^0)^3 \implies (k_6^1)^3$ $(k_5^0)^3 \oplus (k_6^1)^0$

8-round Distinguisher with 2^{25} computations $(2/2)$

Overall Complexity: 2²⁵ computations Requirements for verifying the path: $\Delta (k_6^0)'$ compatible with $\Delta (X)^i$ and $MC(\Delta(X)^i) \oplus \Delta(k_6^1)^i$ compatible with Δk_6^2

- \blacktriangleright Test 2^{24} values for the 2nd diagonal $(B_6*)^1$,
	- 2^{13} makes the path possible
- Do the same for the 3rd diagonal. 2^{12} values of $(B_6*)^1$ and $(B_6*)^2$ together are valid
- For each solution, find the 2^{20} values of $(B_6*)^3$ and $(B_6*)^0$ compatible
- Test the linear relation between $(k_6^1)^0$ and $(k_6^1)^3$

Conclusion

- \triangleright First analysis of SHAvite-3-256 v2: Super-Sbox cryptanalysis and the rebound attacks are efficient
- \triangleright 7 and 8-round distinguishers have been implemented
- \triangleright But SHAvite-3-256 has 12 rounds, so a sufficient security margin. Maybe better paths in the key schedule

rounds	computational complexity	memory requirements	type
6	280	2^{32}	free-start collision
	248	2^{32}	distinguisher
	2^7	2 ¹	chosen-related-salt distinguisher
	2^{25}	2^{14}	chosen-related-salt free-start near-collision
	296	2^{32}	chosen-related-salt semi-free-start collision
8	2 ₂₅	2^{14}	chosen-related-salt distinguisher

Table: Summary of results for the SHAvite-3-256 compression function

Thanks for your attention !

