Analysis of reduced-SHAvite-3-256 v2

Marine Minier¹, María Naya-Plasencia², Thomas Peyrin³

¹Université de Lyon, INRIA, INSA Lyon, France

²FHNW, Switzerland

³Nanyang Technological University, Singapore

FSE 2011

• Introduction

- The SHAvite-3-256 Hash Function
- Rebound and Super-Sbox Analysis of SHAvite-3-256

• Chosen-Related-Salt Distinguishers

- 7-round Distinguisher with 2⁷ computations
- 8-round Distinguisher with 2²⁵ computations

Conclusion

Hash functions and the SHA3 competition

- Due to attacks against MD5 and the SHA family, NIST launched the SHA-3 competition. Among the phase 2 finalists: SHAvite-3
- Previous analysis on SHAvite-3-512 [Gauravaram et al. 10]: chosen-counter chosen-salt preimage attack on the full compression function
- In this talk, we give a first analysis SHAvite-3-256 which is an AES-based proposal
- Our analysis is based on
 - rebound attack
 - Super-Sbox cryptanalysis
 - chosen related salt

General Overview of SHAvite-3-256

SHAvite-3-256 = 256-bit version of SHAvite-3

- based on the HAIFA framework [Biham Dunkelman 06]
- The message M is padded and split into 512-bit message blocks $M_0\|M_1\|\dots\|M_{\ell-1}$
- compression function $C_{256} = 256$ -bit internal state

 C₂₅₆ consists of a 256-bit block cipher E²⁵⁶ used in classical Davies-Meyer mode

$$h_i = \mathcal{C}_{256}(h_{i-1}, M_{i-1}, \textit{salt}, \textit{cnt}) = h_{i-1} \oplus \mathcal{E}^{256}_{M_{i-1} \parallel \textit{salt} \parallel \textit{cnt}}(h_{i-1})$$

The block cipher E^{256}

- ▶ 12 rounds of a Feistel scheme
- ▶ $h_{i-1} = (A_0, B_0)$, the *i*th round (i = 0, ..., 11) is:

- AESr is unkeyed AES round: SubBytes SB, ShiftRows ShR and MixColumns MC
- ▶ k_i^0 , k_i^1 and k_i^2 are 128-bit local keys generated by the message expansion

The message expansion of C_{256} : key schedule of E^{256}

Inputs:

- *M_i*: 16 32-bit words
 (*m*₀, *m*₁, ..., *m*₁₅)
- salt: 8 32-bit words
 (s₀, s₁, ..., s₇)
- cnt: 2 32-bit words (cnt₀, cnt₁)

Outputs:

- 36 128-bit subkeys k^j_i used at round i
- k_0^0 , k_0^1 , k_0^2 and k_1^0 initialized with the m_i
- Process (4 times):
 - 4 parallel AES rounds (key first)
 - 2 linear layers L_1 and L_2

 L_1

 L_2

Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool 1: the truncated differential path: the trail $D \mapsto 1 \mapsto C \mapsto F$ happens with probability 2^{-24}

Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool 1: the truncated differential path: the trail $D \mapsto 1 \mapsto C \mapsto F$ happens with probability 2^{-24}

The cryptanalyst tool 2: the freedom degrees and the Super-Sbox

- Rebound attack on 2 AES rounds: local meet-in-the-middle-like technique: the freedom degrees are consumed in the middle part of the differential
- **Super-Sbox** on 3 AES rounds:
 - Complexity: $\max\{2^{32}, k\}$ computations; 2^{32} memory
 - For k solutions
- Both methods find in average one solution for one operation

Super-Sbox Analysis of SHAvite-3-256 (2/2)

► 7-round distinguisher in 2⁴⁸ computations and 2³² memory (v.s. 2⁶⁴ computations for the ideal case)

▶ 1st and 6th rounds: 2^{-48} to find a valid pair when Δ is fixed

Middle part (3d and 4th rounds): Fix Δ then using Super-Sbox, find 2³² valid 128-bit pair for the 4th round, do the same for the 3d round

Chosen-Related-Salt Distinguishers

7-round Distinguisher with 2^7 computations (2/2)

▶ 5th round: try $2^6 B_4 \oplus k_4^0$ column by column to find a match. It will fix k_4^1

- 6th round: Do the same with $B_5 \oplus k_5^0$ and k_5^1
- Final step: Fix Δ₁ and k₅⁰ to fix all the other values
- **Total cost:** $2 \times 2^6 = 2^7$ operations

8-round Distinguisher with 2^{25} computations (1/2)

- Add a 8th round by canceling the differences in round 7
- ▶ Do Round 5 and 6 as previously: Δ_2 , Δ_3 , $B_4 \oplus k_4^0$, k_4^1 , $B_5 \oplus k_5^0$ and k_5^1 are fixed
- Start by fixing the differences in the 7th round column by column:

Relations between the values: $(B_6)^i \implies (A_5)^i = (B_4)^i \implies (k_4^0)^i$ $(k_4^0)^i \implies (k_5^0)^{i+1} \implies (k_6^1)^{i+1}$ $(k_4^0)^2 \implies (k_5^0)^3 \implies (k_6^1)^3 =$ $(k_5^0)^3 \oplus (k_6^1)^0$

8-round Distinguisher with 2^{25} computations (2/2)

Overall Complexity: 2^{25} computations Requirements for verifying the path: $\Delta(k_6^0)^i$ compatible with $\Delta(X)^i$ and $MC(\Delta(X)^i) \oplus \Delta(k_6^1)^i$ compatible with Δk_6^2

- Test 2²⁴ values for the 2nd diagonal (B₆*)¹,
 - 2¹³ makes the path possible
- Do the same for the 3rd diagonal. 2¹² values of (B₆*)¹ and (B₆*)² together are valid
- ► For each solution, find the 2²⁰ values of (B₆*)³ and (B₆*)⁰ compatible
- Test the linear relation between $(k_6^1)^0$ and $(k_6^1)^3$

Conclusion

- First analysis of SHAvite-3-256 v2: Super-Sbox cryptanalysis and the rebound attacks are efficient
- ▶ 7 and 8-round distinguishers have been implemented
- But SHAvite-3-256 has 12 rounds, so a sufficient security margin. Maybe better paths in the key schedule

rounds	computational complexity	memory requirements	type
6	2 ⁸⁰	2 ³²	free-start collision
7	2 ⁴⁸	2 ³²	distinguisher
7	27	2 ⁷	chosen-related-salt distinguisher
7	2 ²⁵	2 ¹⁴	chosen-related-salt free-start near-collision
7	2 ⁹⁶	2 ³²	chosen-related-salt semi-free-start collision
8	2 ²⁵	214	chosen-related-salt distinguisher

Table: Summary of results for the SHAvite-3-256 compression function

Thanks for your attention !

