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Hash functions and the SHA3 competition

I Due to attacks against MD5 and the SHA family, NIST launched the
SHA-3 competition. Among the phase 2 finalists: SHAvite-3

I Previous analysis on SHAvite-3-512 [Gauravaram et al. 10]:
chosen-counter chosen-salt preimage attack on the full compression
function

I In this talk, we give a first analysis SHAvite-3-256 which is an
AES-based proposal

I Our analysis is based on

rebound attack
Super-Sbox cryptanalysis
chosen related salt
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General Overview of SHAvite-3-256

I SHAvite-3-256 = 256-bit version of SHAvite-3
based on the HAIFA framework [Biham - Dunkelman 06]
The message M is padded and split into 512-bit message blocks
M0‖M1‖ . . . ‖M`−1

compression function C256 = 256-bit internal state

h0 = IV

hi = C256(hi−1, Mi−1, salt, cnt)

hash = truncn(hi )

I C256 consists of a 256-bit block cipher E 256 used in classical
Davies-Meyer mode

hi = C256(hi−1, Mi−1, salt, cnt) = hi−1 ⊕ E 256
Mi−1‖salt‖cnt(hi−1)
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The block cipher E 256

I 12 rounds of a Feistel scheme

I hi−1 = (A0, B0), the ith round (i = 0, . . . , 11) is:

Ai Bi

AESr

k2
i

AESr

k1
i

AESr

k0
i

Ai+1 Bi+1

I AESr is unkeyed AES round: SubBytes SB, ShiftRows ShR and
MixColumns MC

I k0
i , k1

i and k2
i are 128-bit local keys generated by the message

expansion
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The message expansion of C256: key schedule of E 256

I Inputs:

Mi : 16 32-bit words
(m0, m1, . . . ,m15)
salt: 8 32-bit words
(s0, s1, . . . , s7)
cnt: 2 32-bit words
(cnt0, cnt1)

I Outputs:

36 128-bit subkeys k j
i used at

round i
k0

0 , k1
0 , k2

0 and k0
1 initialized

with the mi

I Process (4 times):

4 parallel AES rounds (key
first)
2 linear layers L1 and L2

k0
0 k1

0 k2
0 k0

1

(s0, s1, s2, s3)

AES

(s4, s5, s6, s7)

AES

(s0, s1, s2, s3)

AES

(s4, s5, s6, s7)

AES

L1

L2

cnt[0]
cnt[1]

k1
1 k2

1 k0
2 k1

2

k2
2 k0

3 k1
3 k2

3

Fig. 2. The first step of the message expansion of the SHAvite-3-256 compression function. Note that the salt words are
XORed to the internal state before the parallel AES rounds application. Moreover, the counters are XORed in different
positions for different steps of the message expansion.

3.1 The cryptanalyst tool 1: the truncated differential path

When cryptanalyzing AES-based hash functions (or more generally byte-oriented primitives), it has
been shown [17] that it is very handy to look at truncated differences [9]: instead of looking at the
actual difference value of a byte, one only checks if a byte contains a difference (active byte) or not
(inactive byte). In addition to simplifying the analysis, the direct effect is that the differential behavior
through the non-linear Sboxes becomes deterministic. On the other hand, the differential transitions
through the linear MixColumns layer will be verified probabilistically.

More precisely, the matrix multiplication underlying the AES MixColumns transformation has the
interesting property of being a Maximum Distance Separable (MDS) mapping: the number of active
input and output bytes for one column is always greater or equal to 5 (unless there is no active input
and output byte at all). When picking random input values, the probability of success for a differential
transition that meets the MDS constraints through a MixColumns layer is determined by the number
of active bytes in the output: if such a differential transition contains k active bytes in one column
of the output, its probability of success will approximatively be equal to 2−8×(4−k). For example, a
4 7→ 1 transition for one column has success probability of approximatively 2−24. Note that the same
reasoning applies when dealing with the invert function as well.

In the following, we will use several different types of truncated differential masks for a given
128-bit AES state. We reuse the idea from [19] and we restrict ourselves to four types of byte-wise
truncated differential words F, C, D and 1, respectively a fully active state, one fully active column
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Super-Sbox Analysis of SHAvite-3-256 (1/2)

The cryptanalyst tool 1: the truncated differential path: the trail
D 7→ 1 7→ C 7→ F happens with probability 2−24

only, one fully active diagonal only and one active byte only. All those masks are depicted in Figure 3.
Considering those 4 types of differential masks seems natural because of the symmetry and diffusion
properties of an AES round.

F C D 1

Fig. 3. Byte-wise truncated differential for an AES state. Each cell represents a byte and a gray cell stands for an active
byte.

We are especially interested in the truncated differential transitions through 3 rounds of the AES
since it is the main basic primitive used in the round function of the SHAvite-3-256 compression
function. We would like to know what is the probability to go from one truncated differential mask to
another (both forward and backward) and the corresponding differential path. First, we can compute
the approximate probability of success for a one-round transition between the four types of truncated
differential states and this is given in Table 2 for both forward and backward directions. Those proba-
bilities are simply obtained by studying the MixColumns transitions for one AES round. For example,
with this table one can easily check that when computing forward, going from D to F with the trail
D 7→ 1 7→ C 7→ F happens with probability 2−24 with randomly selected input values and active bytes
difference values.

Table 2. Byte-wise truncated differential transition approximated probabilities for one round of AES. The left table
shows forward transitions, while the right one gives backward transitions.

Forward
HHHHHin

out
F C D 1

F 1 0 2−96 0

C 1 0 0 0

D 0 1 0 2−24

1 0 1 0 0

Backward
HHHHHin

out
F C D 1

F 1 2−96 0 0

C 0 0 1 2−24

D 1 0 0 0

1 0 0 1 0

3.2 The cryptanalyst tool 2: the freedom degrees

The second very important tool for a hash function cryptanalyst are the freedom degrees. The rebound
attack [13] uses a local meet-in-the-middle-like technique in which the freedom degrees are consumed
in the middle part of the differential path, right where they can improve at best the overall complexity.
More precisely, the rounds in the middle are controlled (the controlled rounds) and will be verified with
only a few operations on average, while the rest of the path both in forward and backward direction
is fulfilled probabilistically (the uncontrolled rounds). This method provides good results [11, 10], but
the controlled part is limited to two rounds only. In [12], this technique is generalized to start-from-
the-middle attacks, allowing to control 3 rounds in the middle part, without increasing the complexity
(i.e. only a few operations on average). However, this technique is more complex to handle and only
works for differential paths for which the middle part does not contain too many active bytes. Finally,
the Super-Sbox cryptanalysis (independently introduced in [10] and [7]) can also control 3 rounds in

The cryptanalyst tool 2: the freedom degrees and the Super-Sbox

I Rebound attack on 2 AES rounds: local
meet-in-the-middle-like technique: the freedom degrees
are consumed in the middle part of the differential

I Super-Sbox on 3 AES rounds:

Complexity: max{232, k} computations; 232 memory
For k solutions

I Both methods find in average one solution for one
operation
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Super-Sbox Analysis of SHAvite-3-256 (2/2)

I 7-round distinguisher in 248 computations and 232 memory
(v.s. 264 computations for the ideal case)

the middle of the differential trail with only a few operations on average and works for any differential
path. The idea is that one can view two rounds of an AES-like permutation as the parallel application
of a layer of big Sboxes, named Super-Sboxes, preceded and followed by simple affine transformations.
This technique can find several solutions for an average cost of 1, but there is a minimal cost to pay in
any case: the complexity of the attack in the case of the AES permutation is max{232, k} computations
and 232 memory, where k is the number of solutions found verifying the controlled rounds.

3.3 Super-Sbox attacks for reduced SHAvite-3-256

Having introduced our cryptanalyst tools, we will derive distinguishing attacks for the 7-round re-
duced SHAvite-3-256 compression function, or even free-start collision attacks (collision for which the
incoming chaining variable is fully controlled by the attacker) for the 6-round reduced version. We
start with the 6-round truncated differential path built by removing the last round of the 7-round
differential path depicted in Figure 4. First, one can check that this path is valid as it contains no im-
possible MixColumns transitions. Moreover, a simple analysis of the amount of freedom degrees (as it
is done in [7]) shows that we have largely enough of them in order to obtain at least one valid solution
for the whole differential path: we have a probability of about 2−48 that a valid pair for the differential
path exists when the ∆ and the subkeys values are fixed. Randomizing those values provides much
more than the 248 freedom degrees required.

first round

second round

third round

fourth round

fifth round

sixth round

seventh round

∆

∆

∆

∆∆

∆∆

∆

∆

∆

2−24

2−24

Super-Sbox

Super-Sbox

Fig. 4. The 7-round truncated differential path. The left part represents the three first rounds and the right part the
four last ones. Each gray cell stands for an active byte. A hatched state denotes a fully active state obtained by applying
the MixColumns function on only one active byte per column. During the path, all D 128-bit words contain the difference
∆.

The most costly part is obviously located in the middle, during the third and fourth rounds where
we have fully active AES states (F-type). Thus, we will use the available freedom degrees at those
particular rounds precisely. Let ∆ be one of the 232 possible D-type difference values. With the Super-
Sbox technique and by using the freedom degrees available on the message input, we will find a valid

I 1st and 6th rounds: 2−48 to find a valid pair when ∆ is fixed
I Middle part (3d and 4th rounds): Fix ∆ then using Super-Sbox, find 232

valid 128-bit pair for the 4th round, do the same for the 3d round
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Chosen-Related-Salt Distinguishers
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7-round Distinguisher with 27 computations (1/2)

I Principle: up to initial transform
∆1 = ∆(s0, s1, s2, s3) =
∆(m0, m1, m2, m3) =
∆(m8, m9, m10, m11)

I Cancel the subkeys in round 2,3
and 4

I Distinguisher: find a valid pair
that verifies the path for the
rounds 5, 6 and 7

I begin at round 5 by fixing the
differences ∆2 and ∆3
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7-round Distinguisher with 27 computations (2/2)

∆10∆1

first round

000

second round

000

third round

000

fourth round

∆2∆2∆3

fifth round

∆3∆4∆5

sixth round

∆6∆7∆8

seventh round

???

eight round

Fig. 5. The 8-round truncated differential path. The left part represents the four first rounds and the right part the four
last ones. Each gray cell stands for an active byte. The ∆’s in each round denote the differences incorporated by the
subkeys. For the 7-round differential path, we remove the differences control in the seventh round.
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Fig. 6. Differential cancellation and differential equalities in the message expansion for the 7-round and 8-round chosen-
related-salt distinguishers on the SHAvite-3-256 compression function. ∆̃ represents the difference ∆ after application
of the column switching layer just before the salt incorporation.

– Type d are produced by some previous conditions on the Feistel path. That is, for example, if the
value of Bi⊕k0

i+1 is fixed and then this subkey is determined, we automatically deduce the value of
Bi from this equation. Note that this will directly determine Ai+1 as well since we have Ai+1 = Bi.

I 5th round : try 26 B4 ⊕ k0
4 column by column to find a match. It will fix k1

4

I 6th round : Do the same with B5 ⊕ k0
5 and k1

5

I Final step: Fix ∆1 and k0
5 to fix all the other values

I Total cost: 2× 26 = 27 operations
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8-round Distinguisher with 225 computations (1/2)

I Add a 8th round by canceling the differences in round 7
I Do Round 5 and 6 as previously: ∆2, ∆3, B4 ⊕ k0

4 , k1
4 , B5 ⊕ k0

5 and
k1

5 are fixed
I Start by fixing the differences in the 7th round column by column:

AES

round

AES

round

AES

round

k24 = ∆3 k14 = ∆2 k04 = ∆2

AES

round

AES

round

AES

round

k25 k15 k05 = ∆3

AES

round

AES

round

AES

round

k26 k16 k06

A4

A5

A6

A7

B4

B5

B6

B7

∆ = 0

∆ = 0

∆ = 0

∆ = 0

∆ = 0

∆ = 0

∆ = 0

∆ = 0

Fig. 7. Details of rounds 5, 6 and 7 of the 8-round chosen-related-salt distinguisher on the SHAvite-3-256 compression
function. The bytes denoted with north-west lines are fixed during the fifth round. The light gray bytes are fixed during
the sixth round. The dark gray bytes are fixed at the beginning of the seventh round whereas the bytes denoted with
hatched cells are fixed at the end of the seventh round.

would like also that the differences inserted during the seventh round cancel themselves, whereas the
differences inserted during the eighth round can freely spread. In order to fulfill this requirement, after
having handled the sixth round, instead of randomly choosing the value of k0

5 one first chooses the
values of s0, s1, s2 and s3, which will allow us to determine the difference in k2

6.

Fixing the differences in the seventh round: We introduce the following notations: let S be a 128-bit
AES state, we denote (S)i the i-th column of S and (S∗)i the i-th column of ShR(S) (i.e., the i-th
diagonal of S), for i ∈ [0..3]. We give in Figure 8 a complete illustration of our attack.

Let us analyze the relations that link together the values already fixed and the values to be fixed.
On the one hand, we have:

(B6)i =⇒ (A5)i = (B4)i =⇒ (k0
4)i (2)

that one can read as “setting the value of (B6)i will fix the value of (A5)i (because the Feistel structure
imposes (A5)i = (B4)i) which will in turn deduce the value of (k0

4)i”. It is important to remark that
the value of (k0

4)3 has already been fixed in round 6, as shown in Table 3. Therefore, because of
Relation (2), (B6)3 will also be known. Then, from the message expansion, we can derive the following
relations:

Relations between the values:
(B6)i =⇒ (A5)i = (B4)i =⇒ (k0

4 )i

(k0
4 )i =⇒ (k0

5 )i+1 =⇒ (k1
6 )i+1

(k0
4 )2 =⇒ (k0

5 )3 =⇒ (k1
6 )3 =

(k0
5 )3 ⊕ (k1

6 )0
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8-round Distinguisher with 225 computations (2/2)

Overall Complexity: 225 computations
Requirements for verifying the path: ∆(k0

6 )i compatible with ∆(X )i and
MC (∆(X )i )⊕∆(k1

6 )i compatible with ∆k2
6

B6

First AES round

k06

∆ known

value known

X

SubBytes ShiftRows MixColumns

2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

2 3 4 1
3 4 1 2
4 1 2 3
1 2 3 4

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Second AES round

k16

C4 = f(C1)

∆ known

C1

∆ known ∆ known ∆ known

SubBytes ShiftRows MixColumns

2 3
3 4
4 1
1 2

Third AES round

k26

∆ known

∆ = 0 ∆ = 0 ∆ = 0 ∆ = 0

SubBytes ShiftRows MixColumns

Fig. 8. The 3 AES rounds of the seventh round: the red bytes will determine the middle columns of k1
6 (because of the

message expansion and of previous conditions); the blue bytes will determine the differences in the 2 middle columns
on the input of the second round; the orange bytes are fixed (due to round 6); the white and light gray bytes are free.
The green bytes are the results of an XOR between blue bytes and orange bytes whereas pink bytes are the results of an
XOR between blue bytes and red bytes.

(k0
4)i =⇒ (k0

5)i+1 =⇒ (k1
6)i+1 for i ∈ {0, 1}, (3)

(k0
4)2 =⇒ (k0

5)3 =⇒ (k1
6)3 = (k0

5)3 ⊕ (k1
6)0. (4)

One can check that the values of column 0 and column 3 of k1
6 are associated by a linear relation. We

recall that for the time being the difference of k1
6 is already known, but not its value.

On the other hand, we have (B6∗)i =⇒ (X)i, where X is the state represented in Figure 8 just
before the first MC. We can then write the following relation:

SB[(k0
6∗)i ⊕ (B6∗)i]⊕ SB[(k0

6∗)i ⊕∆(k0
6∗)i ⊕ (B6∗)i] = ∆(X)i. (5)

For the path to be verified, we need the difference MC(∆(X)i) ⊕ ∆(k1
6)i to be compatible with

the difference fixed by k2
6 after the second SB, and the differential transition must be possible by the

I Test 224 values for the 2nd
diagonal (B6∗)1,
213 makes the path possible

I Do the same for the 3rd
diagonal. 212 values of (B6∗)1

and (B6∗)2 together are valid

I For each solution, find the 220

values of (B6∗)3 and (B6∗)0

compatible

I Test the linear relation between
(k1

6 )0 and (k1
6 )3

M. Minier, M. Naya-Plasencia, T. Peyrin 13 / 15



Intro The SHAvite-3-256 Hash Function Rebound Chosen-Related-Salt Dist. Conclusion

Conclusion

I First analysis of SHAvite-3-256 v2: Super-Sbox cryptanalysis and
the rebound attacks are efficient

I 7 and 8-round distinguishers have been implemented

I But SHAvite-3-256 has 12 rounds, so a sufficient security margin.
Maybe better paths in the key schedule

Table: Summary of results for the SHAvite-3-256 compression function

rounds
computational memory

type
complexity requirements

6 280 232 free-start collision

7 248 232 distinguisher

7 27 27 chosen-related-salt distinguisher

7 225 214 chosen-related-salt free-start near-collision

7 296 232 chosen-related-salt semi-free-start collision

8 225 214 chosen-related-salt distinguisher
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Thanks for your attention !
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