Cryptanalysis of the Knapsack Generator

Simon Knellwolf Willi Meier

FHNW, Switzerland

FSE 2011, February 14-16, Lyngby, Denmark.

Knapsack Generator

n-bit integers w_0, \ldots, w_{n-1} (weights)

n-bit LFSR sequence u_0, u_1, u_2, \ldots (control bits)

Keystream generation

$$
\blacktriangleright \text{ Addition } v_i = \sum_{j=0}^{n-1} u_{i+j} w_j \mod 2^n
$$

$$
\blacktriangleright
$$
 Truncation $z_i = v_i \gg \ell$

► Output $n - \ell$ bits of z_i

Secret key: weights $+$ initial state of LFSR $= n^2 + n$ bits

Introduced by Rueppel and Massey in 1985

Alternative to boolean filter / combining function

Security is not related to the hardness of the knapsack problem

Previous Cryptanalysis

Rueppel, 1986:

- ► LSBs of v_i have low linear complexity: choose $\ell = \lceil \log n \rceil$
- Effective key length $\geq n(|\log n|-1)$ bits

Von zur Gathen and Shparlinski, SAC 2004:

- ▶ Attacks based on lattice basis reduction
- ► Known control bits: only for $\ell \geq \log(n^2 + n)$, $n^2 n$ outputs
- ► Guess and Determine: complexity difficult to estimate, no empirical results

Von zur Gathen and Shparlinski, J. Math. Crypt. 2009:

- ▶ Fast variant of the Knapsack Generator
- \blacktriangleright Analysis of output distribution

A System of Modular Equations

Generation of s outputs (without truncation):

 $\mathbf{v} = U\mathbf{w} \mod 2^n$

where U is a $s \times n$ matrix containing the control bits.

- \blacktriangleright U has full rank modulo 2^n .
- \blacktriangleright $\mathbf{w} = U^{-1} \mathbf{v} \mod 2^n$ if U is known and $s = n$.
- \blacktriangleright U is determined by n bits: Guess and Determine.

Challenge: Output is truncated, we only get $z = v \gg l$.

Weight Approximation Matrix

Direct approach: Don't care about the discarded bits

$$
\tilde{\mathbf{w}} = U^{-1}(\mathbf{z} \ll \ell)
$$

$$
\approx U^{-1}(\mathbf{z} \ll \ell) + U^{-1}\mathbf{d} = \mathbf{w}
$$

where $\mathbf{d} = \mathbf{v} - (\mathbf{z} \ll l)$.

- ► $s = n$: bad approximation, because U^{-1} d is large.
- ► $s > n$: not a unique U^{-1} , but many choices for T such that $TU = I_n$.

T is called approximation matrix and $\tilde{\mathbf{w}} = T(\mathbf{z} \ll l)$.

Prediction with Approximate Weights

Prediction of a subsequent sum:

$$
\tilde{v}_s = \mathbf{u}_s \tilde{\mathbf{w}} = \mathbf{u}_s T(\mathbf{z} \ll \ell)
$$

$$
\approx \mathbf{u}_s T(\mathbf{z} \ll \ell) + \mathbf{u}_s T \mathbf{d} = v_s
$$

Sufficient condition for prediction (at least one bit with $p > 0.5$):

$$
\lceil \log ||T|| \rceil \le n - \ell - 1,
$$

where $\|T\| = \sum_{i,j} \lvert t_{ij} \rvert.$

Finding Good Approximation Matrices

Task: Find T such that $TU = I_n$ with small coefficients.

Row by row, this is a special case of the following problem:

Problem: Find a short vector x such that $xA = b$.

Solving strategy

- 1. Find some solution x' .
- 2. Find a close vector x'' in the kernel of A .
- 3. Set $x = x' x''$.

At step 2: Use a variant of Babai's algorithm on a LLL reduced kernel basis. The basis must be reduced only once for all rows.

Empirical Results: Approximation Matrix

Figure: Average logarithmic norm of T for $n = 64$ in function of s.

Empirical Results: Prediction

Scenario: known control bits

Table: Average number of correctly predicted bits per output for $\ell = \log n$.

The Full Attack (Guess and Determine)

Scenario: known keystream

- 1. Guess u_0, \ldots, u_{n-1} and derive $s \times n$ matrix U.
- 2. Find T based on U .
- 3. Use T and z to compute \tilde{w} .
- 4. Compute t predictions and check their λ most significant bits. If almost all of them are correct, the control bits have been guessed correctly. Otherwise, go back to step 1.

Empirical Results: Attack for $n = 32$

Recall: key length = $32^2 + 32 = 1056$ bits

The full attack is practical on a Desktop Computer:

- Approximation parameter: $s = 40$.
- Checking parameter: $t = 20$, $\lambda = 5$.

In about three days:

- \triangleright Correct initial control bits identified (32 bits).
- \triangleright 85% of the weight bits recovered (about 870 bits).
- ▶ 22 bits/output can be predicted (output $= 27$ bits).

Fast Knapsack Generator

 R an arbitrary ring

- \blacktriangleright Choose $a, b \in R$.
- ► Compute the *n* weights as $w_i = ab^{n-i}$.

The v_i can be computed recursively:

$$
v_{i+1} = bv_i - ab^{n+1}u_i + abu_{i+n}
$$

 $R = \mathbb{F}_p$: provable results for uniformity of output distribution.

Fast Knapsack Generator

The v_i can be computed recursively:

$$
v_{i+1} = bv_i - ab^{n+1}u_i + abu_{i+n}
$$

Basic attack strategy (for $R = \mathbb{F}_p$)

- 1. Find i such that $u_i = 0$ and $u_{i+n} = 0$.
- 2. Guess the discarded bits of v_i and v_{i+1} (2 ℓ bits).
- 3. Compute $b = v_{i+1}/v_i$ and $a = v_i / \sum_{j=0}^{n-1} u_{i+j} b^{n-j}$.
- 4. Check the guess.

Maximum number of guesses: $2^{2\ell}$.

Conclusion

The concept of the weight approximation matrix leads to an effective guess and determine attack. The use of LLL in this context gives striking results:

All attacks work for relevant parameters n and ℓ :

- ► Known control bits: weights can be approximated from no more than $n + 8$ outputs.
- \blacktriangleright Known keystream: security is not higher than n bits (at the prize of a $n^2 + n$ bit key).