Substitution-permutation networks, pseudorandom functions, and natural proofs

Eric Miles
Northeastern University

joint work with Emanuele Viola

"Theory vs. practice" gap in cryptography

Theoreticians have . . .

- liberal notion of efficiency polynomial time
- provable security
based on hardness assumptions

Practitioners have . . .

- very efficient algorithms near linear time
- heuristic security resistance to known attacks

Common goal: random-looking functions

$$
\left\{f_{K}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}} \mid \mathrm{K}\right\} \quad \begin{aligned}
& \text { indistinguishable from } \\
& \text { truly random function }
\end{aligned}
$$

- theory: pseudorandom function (PRF)
[Goldreich-Goldwasser-Micali '84]
- practice: block cipher / MAC [Feistel '70s], [Simmons '80s]
- NOTE: block cipher "modes" \nRightarrow PRF

Common goal: random-looking functions

$$
\left\{f_{k}:\{0,1\}^{n} \rightarrow\{0,1\}^{n} \mid K\right\}
$$

indistinguishable from truly random function

Our contributions: bridging the gap

New candidate PRF based on SP-network

- more efficient than previous candidates
- application to Natural Proofs [Razborov-Rudich '97]
- security derived from "practical" analysis

Proof-of-concept theorem:

SP-network with random S-box = secure, inefficient PRF.

- analogous to [Luby-Rackoff '88] for Feistel networks

Outline

Introduction

SP-network: definition and security

New PRF candidates

SP-network with random S-box

Natural Proofs

The SP-network paradigm

 [Shannon '49, Feistel-Notz-Smith '75]
S(ubstitution)-box
 S: GF(2b) \rightarrow GF(2 $\left.2^{b}\right)$

- computationally expensive
- good crypto properties

Linear transformation

M : GF($\left.2^{\mathrm{b}}\right)^{\mathrm{m}} \rightarrow \mathrm{GF}\left(2^{\mathrm{b}}\right)^{\mathrm{m}}$

- computationally cheap
- good diffusion properties

Key XOR

- only source of secrecy
- round keys = uniform, independent

Linear and differential cryptanalysis

 [Matsui '94]Two general attacks against a block cipher \mathbf{C}

- parameters of interest:

$$
\mathrm{p}_{\mathrm{LC}}(\mathrm{C}), \mathrm{p}_{\mathrm{DC}}(\mathrm{C}) \leq 2^{\Omega(n)} \Rightarrow 2^{\Omega(n)} \text { security against LC/DC }
$$

- details:

$$
\begin{gathered}
\mathrm{p}_{\mathrm{LC}}(\mathrm{C})=\max _{\mathrm{A}, \mathrm{~B}} \mathrm{E}_{\mathrm{K}}\left|\operatorname{Pr}_{\mathrm{x}}\left[\langle\mathrm{~A}, \mathrm{x}\rangle=\left\langle\mathrm{B}, \mathrm{C}_{\mathrm{K}}(\mathrm{x})\right\rangle\right]-1 / 2\right|^{2} \\
\mathrm{p}_{\mathrm{DC}}(\mathrm{C})=\max _{\mathrm{A}, \mathrm{~B}} \operatorname{Pr}_{\mathrm{x}, \mathrm{~K}}\left[C_{K}(\mathrm{x}) \oplus \mathrm{C}_{\mathrm{K}}(\mathrm{x} \oplus \mathrm{~A})=\mathrm{B}\right]
\end{gathered}
$$

LC/DC design principles

1. S-box resists LC/DC.

$$
\begin{aligned}
& S(x):=x^{2^{\mathrm{b}}-2} \text { satisfies } \\
& \mathrm{P}_{\mathrm{LC} / D C}(\mathrm{~S}) \leq 2^{-(\mathrm{b}-2)} \cdot[\text { Nyberg '93] }
\end{aligned}
$$

Intuition: $1+2 \Rightarrow$ LC/DC security
S-box security $2^{-\Omega(b)}$ propagates to m bundles

$$
\left(2^{-\Omega(b)}\right)^{m}=2^{-\Omega(n)}
$$

2. M has "branch number" $\operatorname{Br}(M)=m+1$.
$\operatorname{Br}(M):=\min _{x \neq 0^{m}}\{w g t(x)+w g t(M(x))\}$

Outline

Introduction

SP-network: definition and security

New PRF candidates

SP-network with random S-box

Natural Proofs

New PRF: quasi-linear size

Theorem: \exists size-n• $\log ^{0(1)} n$ SPN with LC/DC security $2^{-n / 2}$. [M-Viola]

Compare to best complexity PRF [Naor-Reingold '04]:

- security from factoring / discrete-log hardness
- size $=\Omega\left(n^{2}\right)$

New PRF: quasi-linear size

Theorem: \exists size-n• $\log ^{0(1)} n$ SPN with LC/DC security $2^{-n / 2}$. [M-Viola]

EFFICIENCY

S-box: $\quad S(x):=x^{2-2}$
$-b=\log n \Rightarrow S \in$ size $\log ^{0(1)} n$
Linear transformation

- Let $\mathrm{G}=[\mathrm{I} \mid \mathrm{M}]$ be $\mathrm{m} \rightarrow 2 \mathrm{~m}$ Reed-Solomon code.
- this gives max branch number [Daemen '95]
- Such M is a Cauchy matrix. [Roth-Seroussi '85]
- We adapt [Gerasoulis '88] to do Cauchy mult. in size $O\left(n \cdot \log ^{3} n\right)$.

New PRF: quasi-linear size

Theorem: \exists size-n• $\log ^{0(1)} n$ SPN with LC/DC security $2^{-n / 2}$. [M-Viola]

SECURITY

Theorem: If $\mathrm{p}_{\mathrm{LC} / \mathrm{DC}}(\mathrm{S}) \leq 2^{-(\mathrm{b}-2)}$ and $\operatorname{Br}(\mathrm{M})=\mathrm{m}+1$, then r-round SPN has $\mathrm{p}_{\mathrm{LC} / \mathrm{DC}}(\mathrm{SPN}) \leq 2^{-(n-r m)}$.
[Kang-Hong-Lee-Yi-Park-Lim '01, M-Viola '12]
$-r=b / 2 \Rightarrow$ security $=2^{-n / 2} \quad(n=m b)$

- $S(x)=x^{2^{-2}-2}$ has $p_{L C / D C}$ bounds [Nyberg '93]

New PRF: simple candidate

$$
C_{K, K^{\prime}}(x):=\left\langle(x \oplus K)^{2^{n-2}}, K^{\prime}\right\rangle
$$

$$
S(x):=x^{2^{2}-2}
$$

$$
\left\langle^{\prime}, K^{\prime}\right\rangle \rightarrow\{0,1\}
$$

Theorem: $\quad C_{K, K^{\prime}} 2^{-\Omega(n)}$-fools parity tests on $\leq 2^{0.9 n}$ outputs. [M-Viola]

- compare to [Even-Mansour '91]:
- replace EM's random f'n with S: simple attack
- also replace $\oplus \mathrm{K}^{\prime}$ with $\left\langle, K^{\prime}\right.$): fools parity tests
- also computable in quasi-linear size [Gao-von zur Gathen-Panario-Shoup '00]

Outline

Introduction

SP-network: definition and security

New PRF candidates

SP-network with random S-box

Natural Proofs

SP-network with random S-box

Theorem: If SP-network has: 1. random S-box [M-Viola] 2. max-branch-number M, then: q-query distinguishing advantage $\leq(r m q)^{3} \cdot 2^{-b}$.

- when $b=\omega(\log n)$, security $=n^{-\omega(1)}$
- similar bound as Luby-Rackoff
- we exploit structure to bound collision probabilities

SP-network with random S-box

- Fix queries $x_{1}, \ldots, x_{q} \in\{0,1\}^{n}$.
$-\operatorname{Pr}[\exists$ collision in any 2 final-round S-boxes]

$$
\leq \operatorname{poly}(\mathrm{m}, \mathrm{q}) \cdot 2^{-\mathrm{b}} .
$$

- uses M invertible, all entries $\neq 0$
- non-trivial for $\mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}$, same S-box
- No collisions \Rightarrow output is uniform.

Outline

Introduction

SP-network: definition and security

New PRF candidates

SP-network with random S-box

Natural Proofs

Natural Proofs [Razborov-Rudich '97]

- CKT = any complexity class (e.g. circuits of size n^{2})
- Observation: Most lower bounds against CKT distinguish CKT truth tables from random truth tables.
- Implication: If CKT can compute 2^{-n}-secure PRF, most techniques can't prove CKT lower bounds.
- Gap: best PRF: size $\Omega\left(n^{2}\right)$
best lower bound: size $O(n)$
[Naor-Reingold '04]
[Blum '84]

Natural Proofs [Razborov-Rudich '97]

- CKT = any complexity class (e.g. circuits of size n^{2})
- Observation: Most lower bounds against CKT distinguish CKT truth tables from random truth tables.
- Implication: If CKT can compute 2^{-n}-secure PRF, most techniques can't prove CKT lower bounds.
- We narrow the gap in 3 models (if our PRF 2^{-n}-secure).
- Boolean circuits of size $n \cdot \log ^{0(1)}(n)$
- TC^{0} circuits of size $\mathrm{O}\left(\mathrm{n}^{1+\varepsilon}\right)$ for any $\varepsilon>0$ [Allender-Koucký '10]
- time-O(n^{2}) 1-tape Turing machines

Conclusion

SPN structure underexplored for PRF

- lends itself to efficient circuits
- combinatorial hardness, vs. algebraic for complexity PRF
- we give evidence that SPNs are plausible PRF candidates
- we provide asymptotic analysis of SPN structure

Future directions

- simplest, most efficient possible PRF?
- linear-size circuits
- branching programs
- communication protocols
- analyze our PRF candidates against other attacks

