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“Theory vs. practice” gap in cryptography

Theoreticians have . . .
- liberal notion of efficiency
 polynomial time

- provable security 
 based on hardness assumptions

Practitioners have . . .
- very efficient algorithms
 near linear time

- heuristic security 
 resistance to known attacks



Common goal: random-looking functions
indistinguishable from
truly random function{f

K 
: {0,1}n  {0,1}n | K}

- theory: pseudorandom function (PRF)
[Goldreich-Goldwasser-Micali '84]

- practice: block cipher / MAC
[Feistel '70s], [Simmons '80s]

- NOTE: block cipher “modes”    PRF 



Common goal: random-looking functions
indistinguishable from
truly random function{f

K 
: {0,1}n  {0,1}n | K}

PRF Block cipher / MAC

efficiency
best: |K| n2

e.g. factoring-based PRF
    [Naor-Reingold '04]

typical: |K| n
e.g. Advanced Encryption 
    Standard 
    [Daemen-Rijmen '00]

methodology
- based on PRG/OWF
- “expensive” components
  e.g. iterated multiplication

Substitution-permutation
network
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Our contributions: bridging the gap

New candidate PRF based on SP-network
- more efficient than previous candidates
- application to Natural Proofs [Razborov-Rudich '97]
- security derived from “practical” analysis

Proof-of-concept theorem:
SP-network with random S-box = secure, inefficient PRF.

- analogous to [Luby-Rackoff '88] for Feistel networks
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S : GF(2b)  GF(2b) 
S(ubstitution)-box

Linear transformation
M : GF(2b)m  GF(2b)m

- computationally expensive
- good crypto properties

- computationally cheap
- good diffusion properties

Key XOR
- only source of secrecy
- round keys = uniform, independent

round 1

round 2

round r

[Shannon '49, Feistel-Notz-Smith '75]
key

0



Linear and differential cryptanalysis
[Matsui '94] [Biham-Shamir '91]

Two general attacks against a block cipher C

- parameters of interest:

p
LC
(C), p

DC
(C)    2-W(n)   2-W(n) security against LC/DC

- details:
p
LC
(C) = max

A,B
 E

K
|Pr

x
 [⟨A, x⟩ = ⟨B, C

K
(x)⟩] - ½|2  

p
DC
(C) = max

A,B 
Pr

x,K
 [C

K
(x) + C

K
(x + A) = B] 



1. S-box resists LC/DC.
  S(x) := x      satisfies

p
LC/DC

(S)  2-(b-2).

2. M has “branch number” 
Br(M) = m+1.
Br(M) := min {wgt(x)+wgt(M(x))}

x0m[Nyberg '93]

LC/DC design principles

M : GF(2b)m  GF(2b)m
0 0 0 0 0 0 0

Intuition: 1+2  LC/DC security 

S-box security 2-W(b) 
propagates to m bundles

 (2-W(b))m = 2-W(n)
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 2b-2  
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Theorem:  size-n•logO(1)n SPN with LC/DC security 2-n/2.

New PRF: quasi-linear size

[M-Viola]

Compare to best complexity PRF [Naor-Reingold '04]:

- security from factoring / discrete-log hardness

- size = W(n2)



Theorem:  size-n•logO(1)n SPN with LC/DC security 2-n/2.

New PRF: quasi-linear size

[M-Viola]

S-box: S(x) := x
- b = log n  S  ∈ size logO(1)n

Linear transformation
- Let G = [I M] be m  2m Reed-Solomon code.

- this gives max branch number [Daemen '95]

- Such M is a Cauchy matrix.  [Roth-Seroussi '85]

- We adapt [Gerasoulis '88] to do Cauchy mult. in size O(n∙log3n). 

S S S S

input

M

output

key

. . .  EFFICIENCY
 2b-2  r = O(log n)

rounds



Theorem:  size-n•logO(1)n SPN with LC/DC security 2-n/2.

New PRF: quasi-linear size

[M-Viola]

SECURITY
Theorem: If p

LC/DC
(S)  2-(b-2) and Br(M) = m+1,

then r-round SPN has p
LC/DC

(SPN)  2-(n-r
 
m) .

[Kang-Hong-Lee-Yi-Park-Lim '01, M-Viola '12]

 2b-2  

- r = b/2   security =  2-n/2 (n = mb)

- S(x) = x    has p
LC/DC

 bounds  [Nyberg '93]



{0,1}

S(x) := x

input

K

⟨  ,    ⟩   K'

New PRF: simple candidate

  C
K,K'
(x) := ⟨(x + K)   , K'⟩

2n-2

[M-Viola]
Theorem: C

K,K'
 2-W(n)-fools parity tests on  20.9n outputs.

2n-2

- compare to [Even-Mansour '91]:
  - replace EM's random f'n with S: simple attack
  - also replace + K' with ⟨  , K'⟩: fools parity tests

- also computable in quasi-linear size
  [Gao-von zur Gathen-Panario-Shoup '00]
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SP-network with random S-box

Theorem:  If SP-network has: 1. random S-box
2. max-branch-number M,

then:  q-query distinguishing advantage  (rmq)3 ∙ 2-b.

- when b = w(log n), security = n-w(1)

- similar bound as Luby-Rackoff

- we exploit structure to bound collision probabilities

[M-Viola]



SP-network with random S-box

- Fix queries x
1
, …, x

q
 ∈ {0,1}n.

- Pr [ collision in any 2 final-round S-boxes] 
 poly(m,q) ∙ 2-b.

  - uses M invertible, all entries  0
  - non-trivial for x

i
x

j
, same S-box 

- No collisions  output is uniform.

S S S S

input

M

output

. . .  

K
0

S S S S. . .  

K1



Outline

Introduction

SP-network: definition and security

New PRF candidates 

SP-network with random S-box

Natural Proofs



Natural Proofs [Razborov-Rudich '97]

- CKT = any complexity class (e.g. circuits of size n2)

- Observation: Most lower bounds against CKT distinguish
CKT truth tables from random truth tables.

- Implication: If CKT can compute 2-n-secure PRF,
most techniques can't prove CKT lower bounds.

- Gap: best PRF:   size W(n2) [Naor-Reingold '04]

best lower bound:   size O(n) [Blum '84]



Natural Proofs [Razborov-Rudich '97]

- CKT = any complexity class (e.g. circuits of size n2)

- Observation: Most lower bounds against CKT distinguish
CKT truth tables from random truth tables.

- Implication: If CKT can compute 2-n-secure PRF,
most techniques can't prove CKT lower bounds.

- We narrow the gap in 3 models (if our PRF 2-n-secure).
  - Boolean circuits of size n∙logO(1)(n)
  - TC0 circuits of size O(n1+e) for any e > 0  [Allender-Koucký '10]

  - time-O(n2) 1-tape Turing machines



Conclusion
SPN structure underexplored for PRF

- lends itself to efficient circuits
- combinatorial hardness, vs. algebraic for complexity PRF

- we give evidence that SPNs are plausible PRF candidates
- we provide asymptotic analysis of SPN structure

Future directions
- simplest, most efficient possible PRF?

- linear-size circuits
- branching programs
- communication protocols
- …

- analyze our PRF candidates against other attacks
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