Group Signatures with Almost-for-free Revocation

Benoît Libert¹ Thomas Peters¹ Moti Yung²

¹ Université catholique de Louvain, Crypto Group (Belgium) ² - Google Inc. and Columbia University (USA)

> Santa Barbara, August 22, 2012

Group Signatures - Crypto 2012

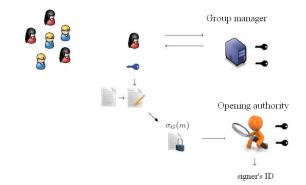
Outline

1. Introduction

- Background and Prior Work
- The Revocation Problem
- 2. NNL-Based Revocation in Group Signatures
 - Description and Efficiency Analysis
- 3. Our Contribution: Construction with Short Private Keys
 - Overview of the Scheme
 - Efficiency and Security Analysis

Group Signatures

• Group members anonymously and accountably sign messages on behalf of a group (Chaum-Van Heyst, 1991)



• Applications in trusted computing platforms, auction protocols, ...

Group Signatures - Crypto 2012

Security Properties

Full anonymity of signatures

Users' signatures are anonymous and unlinkable

Security against misidentification attacks

 Infeasibility of producing a signature which traces outside the set of unrevoked corrupted users

Non-frameability of a group signature

Infeasibility of claiming falsely that a member produced a given signature

Group Signatures

- Chaum-van Heyst (Eurocrypt'91): introduction of the primitive
- Ateniese-Camenisch-Joye-Tsudik (Crypto'00): a scalable coalition-resistant construction... but analyzed *w.r.t.* a list of security requirements
- Bellare-Micciancio-Warinschi (Eurocrypt'03): security model; construction based on general assumptions
- Bellare-Shi-Zhang (CT-RSA'05), Kiayias-Yung (J. of Security and Networks 2006): extensions to dynamic groups
- Boyen-Waters (Eurocrypt'06 PKC'07), Groth (Asiacrypt'06 '07): in the standard model

Revocation in Group Signatures

- Trivial approach: O(N r) cost for the GM at each revocation
- Bresson-Stern (PKC'01): signature size and signing cost in O(r)
- Brickell and Boneh-Shacham (CCS'04): verifier-local revocations, linear verification in $\mathcal{O}(r)$
- Nakanishi-Fuji-Hira-Funabiki (PKC'09): O(1)-cost signing and verification time but O(N)-size group public keys
- Camenisch-Lysyanskaya (Crypto'02): based on accumulators, optimal asymptotic efficiency but requires users
 - To update their credentials at every revocation
 - To know of all changes in the population of the group

Current Situation

So far, despite 20 years of research:

- No system has a mechanism where the revocation is truly scalable (contrast with CRLs in regular signatures)
- Situation is only worse in schemes in the standard model (e.g., accumulator-based approaches do not always scale well)

Recent approach (Libert-Peters-Yung; Eurocrypt 2012):

- Revocation mechanism based on broadcast encryption
- Starts from a revocation structure and adapt it (algebraically) in the group signature scenario

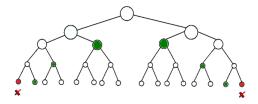
Features of our approach (Eurocrypt'12)

- History-independent revocation / verification
- Provable in the standard model (*i.e.*, no random oracle)

Efficiency:

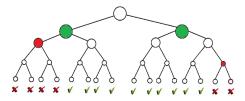
- Signature size / Verification cost in $\mathcal{O}(1)$
- Revocation list of size $\mathcal{O}(r)$ as in standard PKIs
- At most $\mathcal{O}(\text{polylog } N)$ complexity elsewhere
- **Disadvantage**: membership certificates of size $O(\log^3 N)$

Using the Naor-Naor-Lotspiech framework (Crypto'01):

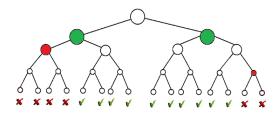


- Broadcast (symmetric) encryption / revocation
- Users are assigned to a leaf
- Subset Cover: find a cover S_1, \ldots, S_m of the unrevoked set $\mathcal{N} \setminus \mathcal{R}$ and compute an encryption for each S_i

• Subset Difference (SD) method: each S_i is the difference between two subtrees; m = O(r) subsets are needed in the partition



- Public-key variant of NNL (Dodis-Fazio, DRM'02)
 - SD method uses Hierarchical Identity-Based Encryption (HIBE)
 - $\mathcal{O}(r)$ -size ciphertexts and $\mathcal{O}(\log^3 N)$ private keys
 - ► Improvements (Halevy-Shamir, Crypto'02) give O(log^{2+ϵ} N)-size keys



- Broadcast encryption ciphertext is turned into a revocation list RL $\Rightarrow RL$ is a set of HIBE ciphertexts C_1, \ldots, C_m
- Signer shows the ability to decrypt one of these HIBE ciphertexts
 - Proof that he can decrypt a committed C_i , which is in the *RL*
 - Can be achieved with $\mathcal{O}(1)$ -size signatures

- Using HIBE and the public-key NNL entails membership certificates of size $O(\log^3 N)$.
 - \Rightarrow Important overhead w.r.t. schemes without revocation and ordinary signatures

e.g., for N = 1000, private keys may contain > 1000 elements

- This paper: getting competitive with ordinary group signatures
 - $\mathcal{O}(1)$ -size membership certificates in the NNL framework
 - Carrying out all operations in constant time
- How is it possible? $O(\log N)$ dependency seems inevitable with a tree-based approach.

Construction with Short Private Keys

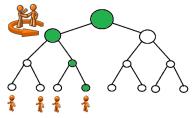
• Uses *concise* vector commitments (Libert-Yung, TCC 2010):

Constant-size commitments to (m_1, \ldots, m_ℓ) that can be opened for individual coordinates $i \in \{1, \ldots, \ell\}$ using *short* openings

- Commitments to vectors of dimension $\ell = \log N$ are included in membership certificates
- Signatures prove properties about individual coordinates
 - \Rightarrow Concise openings give us constant-size signatures
- The "essential" $O(\log N)$ factor is pushed to the public key size only!

Construction with Short Private Keys

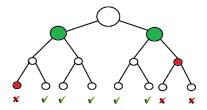
Combination of the SD method and vector commitments



- Each member is assigned to a leaf v and obtains a signature on C where $C = g_{\ell}^{l_1} \cdots g_1^{l_{\ell}}$ is a commitment to the path l_1, \ldots, l_{ℓ} to v
- \mathcal{RL} encodes a cover $\{S_1, \ldots, S_m\}$ and specifies two node identifiers (L_{j,i_1}, L_{j,i_2}) , with $i_1, i_2 \in \{1, \ldots, \ell\}$, for each S_j
- Unrevoked members prove their belonging to one of the S_j 's by proving that (I_1, \ldots, I_ℓ) satisfies $I_{i_1} = L_{j,i_1}$ and $I_{i_2} \neq L_{j,i_2}$

Construction with Short Private Keys

Combination of the SD method and vector commitments



- Each member is assigned to a leaf v and obtains a signature on C where $C = g_{\ell}^{l_1} \cdots g_1^{l_{\ell}}$ is a commitment to the path l_1, \ldots, l_{ℓ} to v
- \mathcal{RL} encodes a cover $\{S_1, \ldots, S_m\}$ and specifies two node identifiers (L_{j,i_1}, L_{j,i_2}) , with $i_1, i_2 \in \{1, \ldots, \ell\}$, for each S_j
- Unrevoked members prove their belonging to one of the S_j 's by proving that (I_1, \ldots, I_ℓ) satisfies $I_{i_1} = L_{j,i_1}$ and $I_{i_2} \neq L_{j,i_2}$

Efficiency Outcome

- Complexity is essentially optimal
 - $\mathcal{O}(1)$ -size signatures and $\mathcal{O}(1)$ signing / verification time
 - $\mathcal{O}(r)$ -size revocation lists at each period as in standard PKIs
 - $\mathcal{O}(\log N)$ -size group public keys
 - $\mathcal{O}(1)$ -size membership certificates
- Concrete signature length:
 - 144 group elements, or about 9 kB at the 128-bit security level Only 3 times as long as Groth's group signatures (Asiacrypt'07)

 Security is proved under the same assumptions as in Eurocrypt'12 and an extra assumption (for q = O(log N)):

The *q*-Flexible Diffie-Hellman Exponent Problem: given $(g, g_1, \ldots, g_q, g_{q+2}, \ldots, g_{2q})$ with $g_i = g^{(\alpha^i)}$, find a non-trivial triple $(g^{\mu}, g^{\mu}_{q+1}, g^{\mu}_{2q}) \in (\mathbb{G} \setminus \{1_{\mathbb{G}}\})^3$

• At the expense of $O(\log^2 N)$ -size public keys, the Catalano-Fiore commitment allows using a weaker assumption:

The Flexible Squared Diffie-Hellman Problem: given (g, g^a) , find a non-trivial triple $(g^{\mu}, g^{a \cdot \mu}, g^{(a^2) \cdot \mu}) \in (\mathbb{G} \setminus \{1_{\mathbb{G}}\})^3$.

Conclusion

- Revocable schemes are now competitive with ordinary group signatures: only overhead is a $\mathcal{O}(\log N)$ -size group public key
- Our revocation approach
 - Allows security proofs in the standard model
 - Applies in other settings: traceable signatures, anonymous credentials, ...
- Open problem: weakening the hardness assumptions without degrading the efficiency
 - Alternative construction relies on weaker assumptions but has O(log² N)-size public keys. Can we avoid this?

Thanks!

