Centrum Wiskunde & Informatica

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority

Serge Fehr

CWI Amsterdam www.cwi.nl/~fehr

Eli Ben-Sasson

Technion

Rafail Ostrovsky

UCLA

Multiparty Computation (MPC)

Goal:

Compute function f on private inputs x_1, \ldots, x_n , so that

- all learn correct $f(x_1,...,x_n)$
- x_i 's remain private

even if adversary corrupts t players.

Classical possibility results:

- computational security for t < n/2 [GMW87,CDG88]
- ullet unconditional security for t < n/2 (assuming broadcast) [RB89,Bea89]
- perfect security for t < n/3 [CCD88,BGW88]

Beyond (im) possibility results: (communication) complexity

Amortized Communication Complexity

Best known results (binary circuits):

Attack	Resilience	Security	Bits/multiplication ¹⁾	Ref
passive	t < n/2	perfect	$O(n \log n)$	[DamNie07]
active	t < n/2	computational	$O(n \log n)$	[DamNie07]
active	t < n/2	unconditional	$O(n^2 k)$	[BerHirt06]
active	t < n/3	perfect	$O(n \log n)$ 2)	[BerHirt08]

• Our new result:

 $O(n\log n + k)^{2}$

(actually: $O(n\log n + k/n^c)$ for any c - can probably be removed)

¹⁾ Amortized complexity: assumes large enough circuits

²⁾ Requires not too large multiplicative depth

Tricks

-

Protocol makes use of known techniques:

- Shamir secret sharing [Sha79]
- Beaver's circuit randomization [Bea89]
- dispute control [BerHirt06]
- Inear-time passively-secure multiplication [DamNie07]

and cumbersome fine-tuning, but crucially relies on two new tricks:

- 1. efficient batch verification for multiplication triples ³⁾
 - (to verify $c = a \cdot b$ for many shared triples (a, b, c) in one go)

2. efficient "mini MPC" for computing authentication tags

³⁾ Independent work: similar trick used in [CraDamPas12], in setting of computational interactive proofs

Reconstruction in the Presence of Faults

- $\stackrel{\scriptstyle \odot}{=}$ **Problem:** how to reconstruct s if up to t shares are faulty?
- In case $n/3 \le t < n/2$: impossible (without additional redundancy)
- Idea [RB89]: authenticate the shares

Reconstruction in the Presence of Faults

Solving Problem #1

$$\tau = \boldsymbol{\alpha} \cdot \boldsymbol{s}_i + \beta = \sum_{\ell} \alpha^{\ell} s_i^{\ell} + \beta$$

with key $\alpha = (\alpha^1, ..., \alpha^L)$ and β (actually: τ_{ki} , α_{ki} and β_{ki}). For large *L*, efficiency loss due to β and τ becomes negligible.

Solution Use the same $\alpha = (\alpha^1, ..., \alpha^L)$ for different blocks $s_i = (s_i^1, ..., s_i^L)$. For many blocks, efficiency loss due to α becomes negligible. **Problem #2:** Who computes tag $\tau = \alpha s_i + \beta$ (actually $\sum_{\ell} \alpha^{\ell} s_i^{\ell} + \beta$)?

Recall:

- P_k who holds (α,β) is not supposed to learn s_i
- P_i who holds s_i is not supposed to learn (α,β)
- dealer is not supposed to learn (α,β) as he might be dishonest

Problem #2: Who computes tag $\tau = \alpha s_i + \beta$ (actually $\sum_{\ell} \alpha^{\ell} s_i^{\ell} + \beta$)?

Recall:

- P_k who holds (α,β) is not supposed to learn s_i
- P_i who holds s_i is not supposed to learn (α,β)
- dealer is not supposed to learn (α,β) as he might be dishonest

New approach: by means of a MPC

???

Appears hopeless:

just sharing the input, s_i , leads to quadratic complexity

Good news:

- Circuit is very simple: multiplicative depth 1
- Don't need to worry about other inputs, α and β
- Dispute control framework => only need passive security (correctness can be verified by cut-and-choose)

Solving Problem #2

Solution: To not share the share s_i

Instead: use the remaining shares $(s_i)_{i\neq i}$ of s as shares of s_i

Fact:

- any t of the shares $(s_i)_{i\neq i}$ give no info on s_i
- any t+1 of the shares $(s_i)_{i\neq i}$ reveal s_i

Thus: $(s_j)_{j\neq i}$ is a sharing of s_i , wrt. to a variant of Shamir's scheme (where secret is evaluation of f at point i, rather than at 0)

Multiparty-Computing the Tag

Protocol MINIMPC

- Given: shares $s_1, \ldots, s_i, \ldots, s_n$
- P_k shares α as follows (P_i gets no share)
- P_k shares β as follows (P_i gets no share)
- every P_j $(j \neq i)$ sends $\tau_j = \alpha_j s_j + \beta_j$ to P_i

• P_i reconstructs $\tau = \alpha s_i + \beta$ from τ_j 's

Multiparty-Computing the Tag

Protocol MINIMPC

- Given: shares $s_1, \ldots, s_i, \ldots, s_n$
- P_k shares α as follows (P_i gets no share)

•
$$P_k$$

(P) Note:
Adversary can learn α by corrupting t players $P_j \neq P_i$.
• ev But α is of no use, if he does not corrupt P_i .
• P_i

• P_i reconstructs $au = \alpha \, s_i + eta$ from au_j 's

Conclusion

- I unconditionally-secure MPC with near-linear complexity
- Find the exist cases where MPC improves efficiency
- Given problems:
 - Improve circuit-independent part of the complexity: $O(n^7 k)$
 - Remove restriction on multiplicative depth of circuit (also present in the simpler t < n/3 setting)
 - What about non-threshold adversary structures?
 (Mini MPC crucially relies on Shamir's secret sharing scheme)