Near-Linear Unconditionally-Secure MPC with a Dishonest Minority

Serge Fehr
CWI Amsterdam
www.cwi.nl/~fehr

Eli Ben-Sasson
Technion

Rafail Ostrovsky
UCLA

Multiparty Computation (MPC)

Goal:

Compute function f on private inputs x_{1}, \ldots, x_{n}, so that

- all learn correct $f\left(x_{1}, \ldots, x_{n}\right)$
- x_{i} 's remain private even if adversary corrupts t players.

Classical possibility results:

- computational security for $t<n / 2$ [GMW87,CDG88]
- unconditional security for $t<n / 2$ (assuming broadcast) [RB89,Bea89]
- perfect security for $t<n / 3$ [CCD88,BGW88]

Beyond (im)possibility results: (communication) complexity

Amortized Communication Complexity

* Best known results (binary circuits):

Attack	Resilience	Security	Bits/multiplication ${ }^{1)}$	Ref
passive	$t<n / 2$	perfect	$O(n \log n)$	[DamNie07]
active	$t<n / 2$	computational	$O(n \log n)$	[DamNie07]
active	$t<n / 2$	unconditional	$O\left(n^{2} k\right)$	[BerHirt06]
active	$t<n / 3$	perfect	$O(n \log n)^{2)}$	[BerHirt08]

\& Our new result: $\quad O(n \log n+k)^{2)}$
(actually: $O\left(n \log n+k / n^{c}\right)$ for any c - can probably be removed)

1) Amortized complexity: assumes large enough circuits
2) Requires not too large multiplicative depth

Tricks

Protocol makes use of known techniques:

- Shamir secret sharing [Sha79]
- Beaver's circuit randomization [Bea89]
- dispute control [BerHirt06]
- linear-time passively-secure multiplication [DamNie07]
...
and cumbersome fine-tuning, but crucially relies on two new tricks:

1. efficient batch verification for multiplication triples ${ }^{3)}$ (to verify $c=a \cdot b$ for many shared triples (a, b, c) in one go)
2. efficient "mini MPC" for computing authentication tags
3) Independent work: similar trick used in [CraDamPas12], in setting of computational interactive proofs

Reconstruction in the Presence of Faults

secret:
s

shares: $\quad s_{1}=f\left(x_{1}\right) \quad \ldots \quad s_{i}=f\left(x_{i}\right) \quad \ldots \quad s_{k}=f\left(x_{k}\right) \quad \ldots \quad s_{n}=f\left(x_{n}\right)$

* Problem: how to reconstruct s if up to t shares are faulty?
\& In case $n / 3 \leq t<n / 2$: impossible (without additional redundancy)
* Idea [RB89]: authenticate the shares

Reconstruction in the Presence of Faults

secret:
S

shares:

$$
\tau_{i k}=\alpha_{k i} \cdot s_{i}+\beta_{k i}
$$

Problem \#1: Blows up complexity!

Problem \#2: Who computes the $\operatorname{tag} \tau_{i k}=\alpha_{k i} s_{i}+\beta_{k i}$?

Solving Problem \#1

\& Authenticate large blocks of shares $s_{i}^{1}, \ldots, s_{i}^{L}$ (for secrets s^{1}, \ldots, s^{L}) via

$$
\tau=\boldsymbol{\alpha} \cdot s_{i}+\beta=\sum_{\ell} \alpha^{\ell} s_{i}^{\ell}+\beta
$$

with key $\boldsymbol{\alpha}=\left(\alpha^{1}, \ldots, \alpha^{L}\right)$ and β (actually: $\tau_{k i} \boldsymbol{\alpha}_{k i}$ and $\beta_{k i}$).
For large L, efficiency loss due to β and τ becomes negligible.
© Use the same $\boldsymbol{\alpha}=\left(\alpha^{1}, \ldots, \alpha^{L}\right)$ for different blocks $s_{i}=\left(s_{i}^{1}, \ldots, s_{i}^{L}\right)$. For many blocks, efficiency loss due to α becomes negligible.

Solving Problem \#2

Problem \#2: Who computes tag $\tau=\alpha s_{i}+\beta$ (actually $\sum_{\ell} \alpha^{\ell} s_{i}^{\ell}+\beta$)?
Recall:

- P_{k} - who holds (α, β) - is not supposed to learn s_{i}
- P_{i} - who holds s_{i} - is not supposed to learn (α, β)
- dealer is not supposed to learn (α, β) - as he might be dishonest

Standard approach/solution:
do a 2-level sharing: every s_{i} is re-shares into $s_{i 11, \ldots, s_{i n}}$

- sub-shares $s_{i j}$ are authenticated quadratic complexity \downarrow
- player P_{i} computes tags for sub-shares $s_{i 1, \ldots,}, s_{i n}$ of s_{i}

Solving Problem \#2

Problem \#2: Who computes tag $\tau=\alpha s_{i}+\beta$ (actually $\sum_{\ell} \alpha^{\ell} s_{i}^{\ell}+\beta$)?
Recall:

- P_{k} - who holds (α, β) - is not supposed to learn s_{i}
- P_{i} - who holds s_{i} - is not supposed to learn (α, β)
- dealer is not supposed to learn (α, β) - as he might be dishones \dagger

New approach: by means of a MPC
Appears hopeless:
just sharing the input, s_{i} leads to quadratic complexity
Good news:

- Circuit is very simple: multiplicative depth 1
- Don't need to worry about other inputs, α and β
- Dispute control framework \Rightarrow only need passive security (correctness can be verified by cut-and-choose)

Solving Problem \#2

Solution: To not share the share s_{i}
Instead: use the remaining shares $\left(s_{j}\right)_{j \neq i}$ of s as shares of s_{i}

Fact:

- any t of the shares $\left(s_{j}\right)_{j \neq i}$ give no info on s_{i}
- any $t+1$ of the shares $\left(s_{j}\right)_{j \neq i}$ reveal s_{i}

Thus: $\left(s_{j}\right)_{j \neq i}$ is a sharing of s_{i}, wrt. to a variant of Shamir's scheme (where secret is evaluation of f at point i, rather than at 0)

Multiparty-Computing the Tag

Protocol MiniMPC

- Given: shares $s_{1}, \ldots, s_{i}, \ldots, s_{n}$
- P_{k} shares α as follows (P_{i} gets no share)
- P_{k} shares β as follows (P_{i} gets no share)

$$
\begin{aligned}
& \operatorname{deg}(f)=t \\
& f(0)=s
\end{aligned}
$$

$\operatorname{deg}(h)=2 t$
$h(i)=\beta$
$h(0)=0$

- every $P_{j}(j \neq i)$ sends

$$
\tau_{j}=\alpha_{j} s_{j}+\beta_{j}
$$

to P_{i}

- Pi reconstructs $\tau=\alpha s_{i}+\beta$ from τ_{j} 's

Multiparty-Computing the Tag

Protocol MiniMPC

- Given: shares $s_{1}, \ldots, s_{i}, \ldots, s_{n}$
- P_{k} shares α as follows (P_{i} gets no share)

$$
\begin{aligned}
& \operatorname{deg}(f)=t \\
& f(0)=s
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{deg}(g)=t \\
& g(i)=\alpha \\
& g(0)=0
\end{aligned}
$$

- P_{k}
(P Note:
Adversary can learn α by corrupting t players $P_{j} \neq P_{i}$.
- ev But α is of no use, if he does not corrupt P_{i}.
to P_{i}

- Pi reconstructs $\tau=\alpha s_{i}+\beta$ from τ_{j} 's

Conclusion

* \exists unconditionally-secure MPC with near-linear complexity

There exist cases where MPC improves efficiency
Open problems:

- Improve circuit-independent part of the complexity: $O\left(n^{7} k\right)$
- Remove restriction on multiplicative depth of circuit (also present in the simpler $t<n / 3$ setting)
- What about non-threshold adversary structures? (Mini MPC crucially relies on Shamir's secret sharing scheme)

