
Near-Linear Unconditionally-Secure MPC
with a Dishonest Minority

Serge Fehr
CWI Amsterdam

www.cwi.nl/~fehr

Eli Ben-Sasson
Technion

Rafail Ostrovsky
UCLA

http://www.cwi.nl/~fehr
http://www.cwi.nl/~fehr
http://www.cs.ucla.edu/~rafail/
http://www.cs.ucla.edu/~rafail/

 Multiparty Computation (MPC)

x1

x2
x3

x4

xn

…

Goal:
Compute function f on
private inputs x1,...,xn, so that

all learn correct f(x1,...,xn)
 xi‘s remain private

even if adversary corrupts t players.

Classical possibility results:
computational security for t < n/2 [GMW87,CDG88]
unconditional security for t < n/2 (assuming broadcast) [RB89,Bea89]
perfect security for t < n/3 [CCD88,BGW88]

Beyond (im)possibility results: (communication) complexity

 Amortized Communication Complexity

Attack Resilience Security Bits/multiplication 1) Ref

passive t < n/2 perfect O(n logn) [DamNie07]

active t < n/2 computational O(n logn) [DamNie07]

active t < n/2 unconditional O(n2
 k) [BerHirt06]

active t < n/3 perfect O(n logn) 2) [BerHirt08]

Best known results (binary circuits):

Our new result: O(n logn + k) 2)

(actually: O(n logn + k/nc) for any c - can probably be removed)

1) Amortized complexity: assumes large enough circuits
2) Requires not too large multiplicative depth

 , but crucially relies on two new tricks:
1. efficient batch verification for multiplication triples 3)

(to verify c = a·b for many shared triples (a,b,c) in one go)
2. efficient “mini MPC” for computing authentication tags

 Tricks

Protocol makes use of known techniques:

Shamir secret sharing [Sha79]
Beaver’s circuit randomization [Bea89]
dispute control [BerHirt06]
linear-time passively-secure multiplication [DamNie07]
...

and cumbersome fine-tuning

3) Independent work: similar trick used in [CraDamPas12], in setting of computational interactive proofs

 Reconstruction in the Presence of Faults
secret:

shares:

s

s1 = f(x1) … si = f(xi)

Problem: how to reconstruct s if up to t shares are faulty?

In case n/3 ! t < n/2 : impossible (without additional redundancy)

Idea [RB89]: authenticate the shares

f(X) = s+a 1X+...+atX
t

… sn = f(xn)sk = f(xk) …

 Reconstruction in the Presence of Faults
secret:

shares:

s

s1 = f(x1) … si = f(xi)

Problem: how to reconstruct s if up to t shares are faulty?

In case n/3 ! t < n/2 : impossible (without additional redundancy)

Idea [RB89]: authenticate the shares

f(X) = s+a 1X+...+atX
t

… sn = f(xn)

!i1 , ("i1,#i1)

!ik , ("ik ,#ik)

!in , ("in,#in)

⋮

⋮

!11 , ("11,#11)

⋮

!1n , ("1n
,#1n

)

!
n1 , ("n1,#n1)

⋮

!
nn , ("nn

,#
nn

)

sk = f(xk) …

!k1 , ("k1,#k1)

!ki , ("ki ,#ki)

!kn , ("kn,#kn)

⋮

⋮
!ik = "ki ·si + #ki

Problem #1: Blows up complexity!

Problem #2: Who computes the tag !ik = "ki si + #ki ?

…
…

 Solving Problem #1

Authenticate large blocks of shares s
i
1,...,si

L (for secrets s1,...,sL) via

! = !·si + # = !ℓ"ℓs
i
ℓ

 + #

with key ! = ("1,...,"L) and # (actually: !ki, !ki and #ki).
For large L, efficiency loss due to # and ! becomes negligible.

 Use the same ! = ("1,...,"L) for different blocks si = (s
i
1,...,si

L).
 For many blocks, efficiency loss due to ! becomes negligible.

 Solving Problem #2

Problem #2: Who computes tag ! = " si + # (actually !ℓ"ℓs
i
ℓ

 + #)?

quadratic complexity

Recall:
 Pk - who holds (",#) - is not supposed to learn si

 Pi - who holds si - is not supposed to learn (",#)
dealer is not supposed to learn (",#) - as he might be dishonest

Standard approach/solution:
 do a 2-level sharing: every si is re-shares into si1,...,sin
sub-shares sij are authenticated
player Pi computes tags for sub-shares si1,...,sin of si

 Solving Problem #2

Problem #2: Who computes tag ! = " si + # (actually !ℓ"ℓs
i
ℓ

 + #)?

Recall:
 Pk - who holds (",#) - is not supposed to learn si

 Pi - who holds si - is not supposed to learn (",#)
dealer is not supposed to learn (",#) - as he might be dishonest

New approach: by means of a MPC
Appears hopeless:
 just sharing the input, si, leads to quadratic complexity

Good news:
Circuit is very simple: multiplicative depth 1
Don’t need to worry about other inputs, " and #
Dispute control framework => only need passive security
 (correctness can be verified by cut-and-choose)

? ? ?

 Solving Problem #2

Solution: To not share the share s
i

Instead: use the remaining shares (s
j
)
j !i of s as shares of si

Fact:
any t of the shares (s

j
)
j !i give no info on si

any t+1 of the shares (s
j
)
j !i reveal si

Thus: (s
j
)
j !i is a sharing of si

, wrt. to a variant of Shamir’s scheme
 (where secret is evaluation of f at point i, rather than at 0)

......0 1 2 i n

s1

s
s2 si sn

 Multiparty-Computing the Tag

Protocol MINIMPC

Given: shares s1,...,si,...,sn
... ...0 1 2 i n

s1

s
s2 si sn

Pk shares " as follows
(Pi gets no share)

"1 "2

"

"n0

deg(f) = t
f(0) = s

deg(g) = t
g(i) = "
g(0) = 0

Pk shares # as follows
(Pi gets no share)

deg(h) = 2t
h(i) = #
h(0) = 0

#1

#2
#

#n0

every Pj (j "i) sends
!j = "j sj + #j

to Pi

Pi reconstructs ! = " si + # from !j ’s

!1 !2 !

!n0

 Multiparty-Computing the Tag

Protocol MINIMPC

Given: shares s1,...,si,...,sn
... ...0 1 2 i n

s1

s
s2 si sn

Pk shares " as follows
(Pi gets no share)

"1 "2

"

"n0

deg(f) = t
f(0) = s

deg(g) = t
g(i) = "
g(0) = 0

Pk shares # as follows
(Pi gets no share)

deg(h) = 2t
h(i) = #
h(0) = 0

#1

#2
#

#n0

every Pj (j "i) sends
!j = "j sj + #j

to Pi

Pi reconstructs ! = " si + # from !j ’s

!1 !2 !

!n0

Note:
 Adversary can learn " by corrupting t players Pj

 " Pi .
 But " is of no use, if he does not corrupt Pi .

 Conclusion

There exist cases where MPC improves efficiency

Open problems:
Improve circuit-independent part of the complexity: O(n7

 k)

Remove restriction on multiplicative depth of circuit
(also present in the simpler t < n/3 setting)
What about non-threshold adversary structures?
(Mini MPC crucially relies on Shamir’s secret sharing scheme)

! unconditionally-secure MPC with near-linear complexity

