# Actively secure two-party evaluation of any quantum operation

Frédéric Dupuis ETH Zürich

#### Joint work with Louis Salvail (Université de Montréal) Jesper Buus Nielsen (Aarhus Universitet)

#### August 23, 2012

Frédéric Dupuis

Actively secure two-party evaluation of any qu

#### Outline

- Introduction: Task to be solved
- Security definition
- "Baby version" (semi-honest adversaries)
- Semi-honest  $\rightarrow$  active adversaries
- (Very high-level) description of our protocol

#### Introduction

Alice and Bob want to execute a quantum circuit  $\mathscr{F}$ :



For example:



#### Introduction

#### They want a protocol



that imitates a black box:



#### Impossibility in the bare model

- Problem: This is impossible to achieve only by communication (quantum or classical).
- Why? Because it's impossible classically.
- We will assume that Alice and Bob can do *classical* two-party computation for free.
- Hallgren, Smith and Song (2011) have shown that classical ideal functionalities can be replaced by computationally secure protocols if the computational assumptions hold against quantum adversaries.
- What we show: Classical two-party computation ⇒ quantum two-party computation

#### **Previous work**

- Quantum multiparty computation:
  - Crépeau, Gottesman, Smith 2002: At most n/6 cheaters.
  - Ben-Or, Crépeau, Gottesman, Hassidim, Smith 2008: Strict honest majority.
- Us, CRYPTO2010: Two-party computation, but against "specious" (semi-honest) adversaries.

## Brief detour: Security definition

- We define security via simulation
- Problem: Player who goes last has an unavoidable advantage: He can prevent the other from getting his output.

# Security definition: Dishonest Alice

Real protocol:



Simulation with ideal functionality:



# Security definition: Dishonest Bob

Real protocol:



Simulation with ideal functionality:



#### Baby version: semi-honest adversaries

First, represent  $\mathscr{F}$  as a sequence of the following gates:



#### Baby version: semi-honest adversaries

Suppose the adversaries are semi-honest [us, CRYPTO'10]. Then the protocol is as follows:

- Encrypt all the inputs with a quantum one-time pad.
- For each gate in the circuit, execute a subprotocol that performs the gates and updates the keys.
- All the gates can be done without communication except:
  - Non-local CNOT: Need classical communication
  - *R*-gate (non-Clifford): Need one oblivious transfer.
- Use a perfect SWAP gate to exchange the keys at the end.

#### From semi-honest to full security

- We need a way to force a dishonest adversaries to follow the protocol
- Solution: Instead of just encrypting, we *authenticate* all the inputs and ancillas.
- We check the authentication at every step to ensure compliance with the protocol.

## Authenticating quantum states



#### should be equivalent to



## Clifford-based QAS: the Clifford group

[Aharonov, Ben-Or, Eban 2008]

- Pauli group: any tensor product of 1, X, Y, Z.
- Clifford group: *U* is Clifford if for any Pauli *P*, *UPU*\* is also Pauli.
- Need  $O(n^2)$  bits to identify a Clifford operator.

#### Clifford-based QAS

To authenticate  $|\psi\rangle$ , do the following:



To check, undo the Clifford and measure the ancillas. If we don't get all  $|0\rangle$ 's, declare an error.

#### Swaddling: double authentication



## Our protocol

- Swaddle all the inputs and commit to the keys.
- $\bullet\,$  Generate extra  $|0\rangle$  and ensure that they are correct.
- For each gate, run a classical protocol that tells Alice and Bob how to execute the gates and update the keys.
- Verify the authentication whenever necessary.
- Open commitments (i.e. reveal all keys).
- Problem gate: the *R*-gate, the only non-Clifford gate in our set.

We can reduce the R gate to Clifford operations by the following trick:



where  $|M\rangle = \frac{1}{\sqrt{2}}(|0\rangle + e^{i\pi/4}|1\rangle)$  ("magic state").

#### The R gate

- We need to generate a supply of |M> states at the beginning.
- Have one player generate a large number of them, and the other player tests a random sample of them and aborts if any errors are found.
- This ensures a low error rate.
- We then use a distillation protocol by Bravyi and Kitaev to distill a smaller number of good |M> states.



# Classical two-party computation ⇒ Quantum two-party computation



# Thank you!

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



