Crowd-Blending Privacy

Johannes Gehrke, Michael Hay, Edward Lui, Rafael Pass

Cornell University

Data Privacy

Database containing data. E.g., census data, medical records, etc.

- Utility: Accurate statistical info is released to users
- Privacy: Each individual's sensitive info remains hidden

Simple Anonymization Techniques are Not Good Enough!

- Governor of Massachusetts Linkage Attack [Swe02]
 - "Anonymized" medical data + public voter registration records
 - ⇒ Governor of MA's medical record identified!
- Netflix Attack [NS08]
 - "Anonymized" Netflix user movie rating data + public IMDb database
 - ⇒ Netflix dataset partly deanonymized!

Privacy Definitions

- *k*-anonymity [Sam01, Swe02]
 - Each record in released data table is indistinguishable from k-1 other records w.r.t. certain identifying attributes
- Differential privacy [DMNS06]
 - ∀ databases D, D' differing in only one row,

 $San(D) \approx_{\epsilon} San(D')$

• Zero-knowledge privacy [GLP11]

- ∀ adversary A interacting with San, ∃ a simulator S s.t. ∀ D,
 z, i, the simulator S can simulate A's output given just k
 random samples from D \ {i}:

 $Out_A(A(z) \leftrightarrow San(D)) \approx_{\epsilon} S(z, RS_k(D \setminus \{i\}))$

Privacy Definitions

- *k*-anonymity
 - Good: Simple; efficient; practical
 - Bad: Weak privacy protection; known attacks
- Differential privacy
 - Good: Strong privacy protection; lots of mechanisms
 - **Bad:** Have to add noise. Efficient? Practical?
- Zero-knowledge privacy
 - Good: Even stronger privacy protection, lots of mechanisms
 - Bad: Have to add even more noise. Efficient? Practical?

Practical Sanitization?

- Differential privacy and zero-knowledge privacy
 - Mechanism needs to be randomized
 - noise is added to the exact answer/output (sometimes quite a lot!)
- In practice
 - Don't want to add (much) noise
 - Want simple and efficient sanitization mechanisms
- Problem: Is there a practical way of sanitizing data while ensuring privacy and good utility?

Privacy from Random Sampling

 In practice, data is often collected via random sampling from some population (e.g., surveys)

- Already known: If San is differentially private, then the random sampling step amplifies the privacy of San [KLNRS08]
- Can we use a qualitatively weaker privacy def. for San and still have the combined process satisfy a strong notion of privacy?

Leveraging Random Sampling

• **Goal:** Provide a privacy definition such that if San satisfies the privacy definition, then:

Random Sampling + San Differential privacy privacy

- Should be weaker than differential privacy
 ⇒ Better utility!
- Should be meaningful by itself (without random sampling)
 - Strong fall-back guarantee if the random sampling is corrupted or completely leaked

k-Anonymity Revisited

- k-anonymity: Each record in released data table is indistinguishable from k-1 other records w.r.t. certain identifying attributes
- Based on the notion of "blending in a crowd"
- Simple and practical
- Problem: Definition restricts the output, not the mechanism that generates it
 - Leads to practical attacks on *k*-anonymity

k-Anonymity Revisited

- A simple example illustrating the problem:
 - Use any existing algorithm to generate a data table satisfying k-anonymity
 - At the end of each row, attach the personal data of some fixed individual from the original database
- The output satisfies k-anonymity but reveals personal data about some individual!
- There are plenty of other examples!

Towards a New Privacy Definition

k-anonymity does not impose restrictions on mechanism

Does not properly capture "blending in a crowd"

- One of the key insights of differential privacy: Privacy should be a property of the mechanism!
- We want a privacy definition that imposes restrictions on the mechanism and properly captures "blending in a crowd"

Our Main Results

- We provide a new privacy definition called crowd-blending privacy
- We construct simple and practical mechanisms for releasing histograms and synthetic data points
- We show:

Blending in a Crowd

 Two individuals (with data values) t and t' are εindistinguishable by San if

$San(D, t) \approx_{\epsilon} San(D, t') \forall D$

- Differential privacy: Every individual t in the universe is ε-indistinguishable by San from every other individual t' in the universe.
 - In any database D, each individual in D is εindistinguishable by San from every other individual in D

Blending in a Crowd

- First attempt of a privacy definition:
 ∀ D of size ≥ k, each individual in D is
 ε-indistinguishable by San from at least k-1 other individuals in D.
 - Collapses back down to differential privacy: If DP doesn't hold, then $\exists t$ and t' s.t. San can ϵ -distinguish t and t'; now, consider a database D = (t, t', t', ..., t').
- Solution: D can have "outliers", but we require San to essentially delete/ignore them.

Crowd-Blending Privacy

- Definition: San is (k,ε)-crowd-blending private if ∀ D, and ∀ t in D, either
 - t is ε -indistinguishable from $\ge k$ individuals in D, or
 - t is essentially ignored: $San(D) \approx_{\epsilon} San(D \setminus \{t\})$.
- Weaker than differential privacy
 ⇒ Better utility!
- Meant to be used in conjunction with random sampling, but still meaningful by itself

Privately Releasing Histograms

- (k,0)-crowd-blending private mechanism for releasing histogram:
 - Compute histogram
 - For bin counts < k, suppress to 0</p>

Privately Releasing Synthetic Data Points

- Impossible to efficiently and privately release synthetic data points for answering general classes of counting queries [DNRRV09, UV11]
- We focus on answering smooth query functions (k,ε) -crowd-blending private mechanism:

- The above CBP mechanism: Useful for answering all smooth query functions with decent accuracy
 - Not possible with differentially private synthetic data points

Outlier

Our Main Theorem

Theorem (Informal): The combined process satisfies zero-knowledge privacy, and thus differential privacy as well.

Our theorem holds even if the random sampling is slightly biased as follows:

- Most individuals are sampled w.p. ≈ p
- Remaining are sampled with arbitrary probability

Thank you!