

<ロ> (四) (四) (三) (三) (三) (三)

Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation

Alexandra Boldyreva, **Jean Paul Degabriele**, Kenny Paterson, and Martijn Stam

EUROCRYPT - 19th April 2012

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation

Outline of this Talk

- 1 Ciphertext Fragmentation and Related Problems
- 2 Formalizing Fragmentation
- 3 Security Notions
- 4 Constructions and Comparison

Ciphertext Fragmentation

・ロト ・雪 ト ・ ヨ ト ・

- a) The fragmentation pattern is arbitrary.
- b) But the order of the fragments is preserved.

・ロト ・雪 ト ・ ヨ ト ・

- a) The fragmentation pattern is arbitrary.
- b) But the order of the fragments is preserved.

・ロト ・雪 ト ・ ヨ ト ・

- a) The fragmentation pattern is arbitrary.
- b) But the order of the fragments is preserved.

- a) The fragmentation pattern is arbitrary.
- b) But the order of the fragments is preserved.

- a) The fragmentation pattern is arbitrary.
- b) But the order of the fragments is preserved.

Why Should We Care?

- This setting emerges in practice, where encryption schemes have to operate under such conditions.
- One such instance is that of **secure network protocols**.
- However this is NOT captured by the security models currently used in cryptographic theory!
- Ciphertext fragmentation has given rise to a class of attacks that proved to be **fatal** in certain cases.
- This has left a **gap** between cryptographic theory and practice.

Ciphertext-Fragmentation Attacks

SSH:

- A proof of security (IND-sfCCA) for SSH was given in [BKN 04].
- Yet **[APW 09]** presented plaintext-recovery attacks against SSH.

IPsec in MAC-then-encrypt (CBC):

- **[Kra 01]** proves that MAC-then-encrypt with CBC encryption is secure (secure channel [CK 01]).
- [MT 10] show that MAC-then-encode-then-encrypt (injective / CBC) is secure (secure channel [Mau 11]).
- [DP 10] present ciphertext-fragmentation attacks against such IPsec configurations.

・ロット (雪) (日) (日) (日)

Ciphertext-Fragmentation Attacks

SSH:

- A proof of security (IND-sfCCA) for SSH was given in [BKN 04].
- Yet [APW 09] presented plaintext-recovery attacks against SSH.

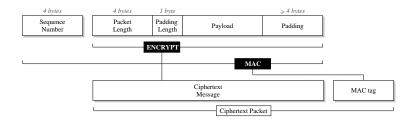
IPsec in MAC-then-encrypt (CBC):

- **[Kra 01]** proves that MAC-then-encrypt with CBC encryption is secure (secure channel [CK 01]).
- [MT 10] show that MAC-then-encode-then-encrypt (injective / CBC) is secure (secure channel [Mau 11]).
- [DP 10] present ciphertext-fragmentation attacks against such IPsec configurations.

Ciphertext-Fragmentation Attacks

SSH:

- A proof of security (IND-sfCCA) for SSH was given in [BKN 04].
- Yet [APW 09] presented plaintext-recovery attacks against SSH.


IPsec in MAC-then-encrypt (CBC):

- **[Kra 01]** proves that MAC-then-encrypt with CBC encryption is secure (secure channel [CK 01]).
- [MT 10] show that MAC-then-encode-then-encrypt (injective / CBC) is secure (secure channel [Mau 11]).
- **[DP 10]** present ciphertext-fragmentation attacks against such IPsec configurations.

The SSH Attack (Main Idea)

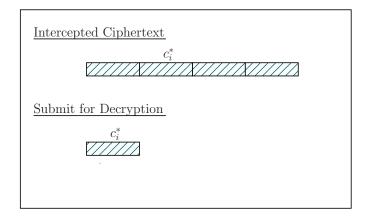
SSH encrypts messages in the following format:

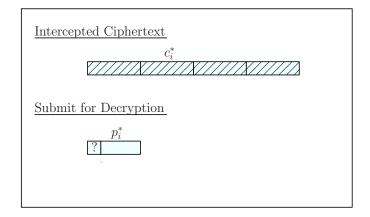
SSH commonly uses CBC mode for encryption.

The SSH Attack (Main Idea)

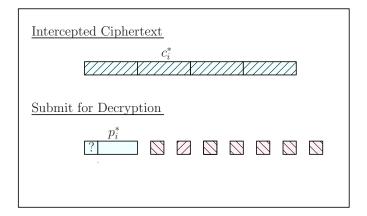
(ロ)

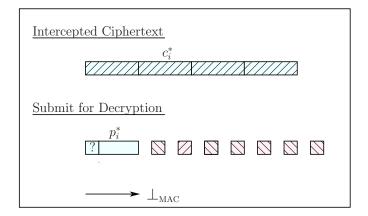
Intercepted Ciphertext	

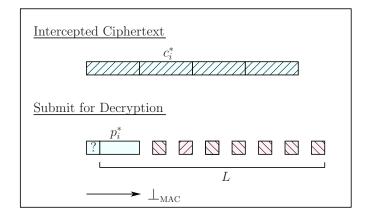

The SSH Attack (Main Idea)

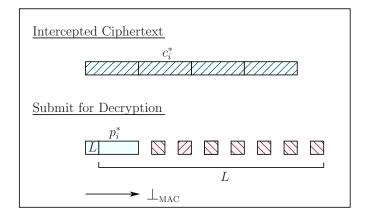

(ロ)

Intercepted Ciphertex	<u>t</u>
\ \ \/////X//	









Related Work

・ロト ・雪 ト ・ ヨ ト ・

- A first step towards analyzing security in the presence of ciphertext fragmentation was made by Paterson and Watson in 2010.
- They show that when CBC mode is replaced with (stateful) counter mode SSH is secure.
- However their security notion is closely tied to SSH, and hence it is not generally applicable to other schemes.
- At first glance, ciphertext fragmentation may show some resemblance to online encryption. We emphasize that there are some important differences, and the two settings are disjoint.

Our Contribution

- We define a syntax and security notions for encryption in the fragmented setting.
- We provide generic constructions of fragmented schemes that meet our security notions, from normal "atomic" schemes.
- We formalize other security goals that practical schemes commonly aim to achieve: **boundary-hiding** and robustness against **fragmentation-related DoS attacks**.
- We construct a scheme, InterMAC, that meets all three of our security notions.

くロン くぼう くヨン くヨン

A fragmented symmetric encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ with associated message space $\mathcal{M} = \{0, 1\}^*$ and ciphertext space $\mathcal{C} = \{0, 1\}^*$, is a triple of algorithms such that:

■ $(K, \sigma_0, \tau_0) \leftarrow \mathcal{K}$ where σ_0 and τ_0 are the respective initial states for encryption and decryption.

■ $(c, \sigma_{i+1}) \leftarrow \mathcal{E}_{\mathcal{K}}(m, \sigma_i)$ where $\mathcal{E}_{\mathcal{K}}(\cdot)$ can be probabilistic, stateful, or both $(\sigma = \varepsilon \text{ for stateless}); m \in \mathcal{M}, c \in \mathcal{C}$.

■ $(m, \tau_{i+1}) \leftarrow \mathcal{D}_K(f, \tau_i)$ where $\mathcal{D}_K(\cdot)$ is deterministic and stateful; $f \in \{0, 1\}^*$ and $m \in (\{0, 1\} \cup S_\perp \cup \{\P\})^*$.

イロト (日下 (日下 (日下)) 日 ののの

A fragmented symmetric encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ with associated message space $\mathcal{M} = \{0, 1\}^*$ and ciphertext space $\mathcal{C} = \{0, 1\}^*$, is a triple of algorithms such that:

• $(K, \sigma_0, \tau_0) \leftarrow \mathcal{K}$ where σ_0 and τ_0 are the respective initial states for encryption and decryption.

■ $(c, \sigma_{i+1}) \leftarrow \mathcal{E}_{\mathcal{K}}(m, \sigma_i)$ where $\mathcal{E}_{\mathcal{K}}(\cdot)$ can be probabilistic, stateful, or both $(\sigma = \varepsilon \text{ for stateless}); m \in \mathcal{M}, c \in \mathcal{C}$.

■ $(m, \tau_{i+1}) \leftarrow \mathcal{D}_K(f, \tau_i)$ where $\mathcal{D}_K(\cdot)$ is deterministic and stateful; $f \in \{0, 1\}^*$ and $m \in (\{0, 1\} \cup S_\perp \cup \{\P\})^*$.

イロト (日下 (日下 (日下)) 日 ののの

A fragmented symmetric encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ with associated message space $\mathcal{M} = \{0, 1\}^*$ and ciphertext space $\mathcal{C} = \{0, 1\}^*$, is a triple of algorithms such that:

• $(K, \sigma_0, \tau_0) \leftarrow \mathcal{K}$ where σ_0 and τ_0 are the respective initial states for encryption and decryption.

■ $(c, \sigma_{i+1}) \leftarrow \mathcal{E}_{\mathcal{K}}(m, \sigma_i)$ where $\mathcal{E}_{\mathcal{K}}(\cdot)$ can be probabilistic, stateful, or both $(\sigma = \varepsilon \text{ for stateless}); m \in \mathcal{M}, c \in \mathcal{C}$.

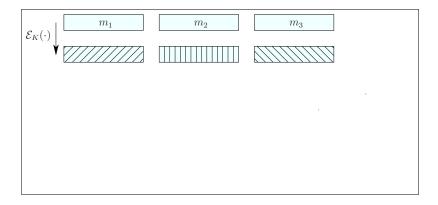
• $(m, \tau_{i+1}) \leftarrow \mathcal{D}_K(f, \tau_i)$ where $\mathcal{D}_K(\cdot)$ is deterministic and stateful; $f \in \{0, 1\}^*$ and $m \in (\{0, 1\} \cup S_{\perp} \cup \{\P\})^*$.

A fragmented symmetric encryption scheme $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$ with associated message space $\mathcal{M} = \{0, 1\}^*$ and ciphertext space $\mathcal{C} = \{0, 1\}^*$, is a triple of algorithms such that:

• $(K, \sigma_0, \tau_0) \leftarrow \mathcal{K}$ where σ_0 and τ_0 are the respective initial states for encryption and decryption.

• $(c, \sigma_{i+1}) \leftarrow \mathcal{E}_{\mathcal{K}}(m, \sigma_i)$ where $\mathcal{E}_{\mathcal{K}}(\cdot)$ can be probabilistic, stateful, or both $(\sigma = \varepsilon \text{ for stateless}); m \in \mathcal{M}, c \in \mathcal{C}$.

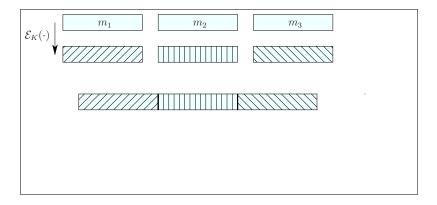
• $(m, \tau_{i+1}) \leftarrow \mathcal{D}_{\mathcal{K}}(f, \tau_i)$ where $\mathcal{D}_{\mathcal{K}}(\cdot)$ is deterministic and stateful; $f \in \{0, 1\}^*$ and $m \in (\{0, 1\} \cup S_{\perp} \cup \{\P\})^*$.


イロト イポト イヨト イヨト 三日

[m_1	<i>m</i> ₂	m	

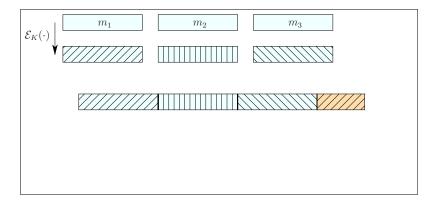
Then $m_1 || \| m_2 || \| m_3 || \|$ is a prefix of $m'_1 || m'_2 || m'_3 || m'_4 || m'_5$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation



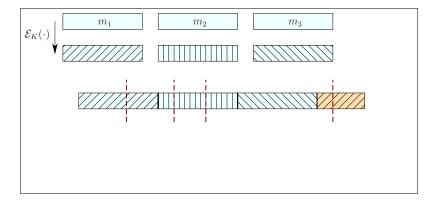
Then $m_1 || \| m_2 || \| m_3 || \|$ is a prefix of $m_1' || m_2' || m_3' || m_4' || m_5'$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation



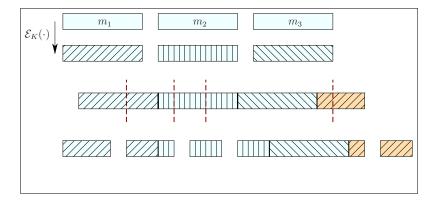
Then $m_1 || \| m_2 || \| m_3 || \|$ is a prefix of $m_1' || m_2' || m_3' || m_4' || m_5'$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation



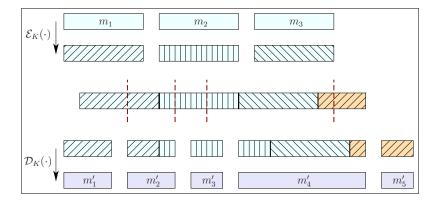
Then $m_1 || \| m_2 || \| m_3 || \|$ is a prefix of $m_1' || m_2' || m_3' || m_4' || m_5'$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation



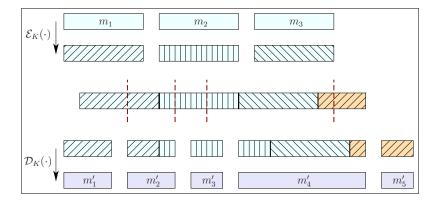
Then $m_1 || \| m_2 || \| m_3 || \|$ is a prefix of $m_1' || m_2' || m_3' || m_4' || m_5'$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation



Then $m_1 || \| m_2 || \| m_3 || \|$ is a prefix of $m_1' || m_2' || m_3' || m_4' || m_5'$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation



Then $m_1 || \| \| m_2 || \| m_3 || \|$ is a prefix of $m'_1 || m'_2 || m'_3 || m'_4 || m'_5$.

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation

Then $m_1 || \P || m_2 || \P || m_3 || \P$ is a prefix of $m'_1 || m'_2 || m'_3 || m'_4 || m'_5$.

Chosen-Fragment Security

・ロト ・ 同ト ・ ヨト ・ ヨト

- IND-sfCCA [BKN 04] extends IND-CCA to protect against replay and out-of-order delivery attack.
- We extend IND-sfCCA to the fragmented setting, IND-sfCFA (Chosen Fragment Attack).
- We provide a generic construction for transforming an atomic scheme into a fragmented scheme.
- Starting from an atomic IND-sfCCA secure scheme, and a prefix-free encoding, the construction gives a fragmented scheme that is IND-sfCFA secure.

Chosen-Fragment Security

・ロト ・ 同ト ・ ヨト ・ ヨト

- IND-sfCCA [BKN 04] extends IND-CCA to protect against replay and out-of-order delivery attack.
- We extend IND-sfCCA to the fragmented setting, IND-sfCFA (Chosen Fragment Attack).
- We provide a generic construction for transforming an atomic scheme into a fragmented scheme.
- Starting from an atomic IND-sfCCA secure scheme, and a prefix-free encoding, the construction gives a fragmented scheme that is IND-sfCFA secure.

End of the Story?

・ロト ・雪 ト ・ ヨ ト ・

- Our construction shows that Chosen-Fragment Security is not that hard to achieve!
- A closer look at the SSH example, reveals that its designers were aiming for more than just confidentiality.
- We formalize these security goals as: boundary-hiding and robustness against fragmentation-related DoS attacks.
- Meeting such security goals without compromising confidentiality is more difficult! - as exemplified by the details of the SSH attack.

Boundary-Hiding

・ロト ・雪 ト ・ ヨ ト ・

- In the theoretical community it is often regarded as inevitable that a ciphertext leaks the message length. However in practice this is a real problem!
- Practical schemes employ some heuristic techniques in order to protect against traffic analysis [TV 11], [PRS 11], [DCRS 12].
- As we saw earlier SSH encrypts the length field. This does not conceal the message length but can be seen as an attempt to hide ciphertext boundaries.

Boundary-Hiding

・ロト ・ 同ト ・ ヨト ・ ヨト

- **BH-CPA** (Informally): Given a concatenation of ciphertexts, no adversary can determine where the ciphertext boundaries lie.
- Correctness requires the decryption algorithm to determine ciphertext boundaries. Thus to achieve boundary-hiding, boundaries should be evident only if the secret key is known.
- We extend our earlier generic construction to also achieve BH-CPA by replacing the prefix-free encoding with a keyed prefix-free encoding.
- The notion is easily extended to the active setting: BH-sfCFA, but is more challenging to achieve.

Denial of Service

- The SSH standard (RFC 4253) suggests limiting the maximum value of the length field in order to mitigate against certain denial-of-service attacks.
- Otherwise an adversary could alter the contents of the length field to indicate a very large value. The receiver would then interpret all subsequent ciphertexts as part of this large ciphertext – connection hang.
- Such denial-of-service attacks are not specific to SSH, but to encryption schemes supporting fragmentation in general.
- Informally a scheme is N-DOS-sfCFA secure, if no adversary can produce an N-bit long sequence of ciphertext fragments (not output by the encryption oracle) such that the decryption algorithm returns ε throughout.

Denial of Service

- The SSH standard (RFC 4253) suggests limiting the maximum value of the length field in order to mitigate against certain denial-of-service attacks.
- Otherwise an adversary could alter the contents of the length field to indicate a very large value. The receiver would then interpret all subsequent ciphertexts as part of this large ciphertext – connection hang.
- Such denial-of-service attacks are not specific to SSH, but to encryption schemes supporting fragmentation in general.
- Informally a scheme is N-DOS-sfCFA secure, if no adversary can produce an N-bit long sequence of ciphertext fragments (not output by the encryption oracle) such that the decryption algorithm returns ε throughout.

Comparing Constructions

(ロ)

Scheme	IND-sfCFA	BH-CPA	BH-sfCFA	$N-\text{DOS-sfCFA} \\ N < \max_{m \in \mathcal{M}}(m)$
SSH-CBC	×	 	×	×
SSH-CTR	 ✓ 	 	×	×
PF	 ✓ 	×	×	×
KPF	 ✓ 	 	×	×
InterMAC	 ✓ 	 	 	 ✓

Boldyreva, Degabriele, Paterson, and Stam | Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation

Concluding Remarks

・ロト ・ 同ト ・ ヨト ・ ヨト

- Our work provides a general framework for analyzing the security of symmetric encryption schemes over fragmented channels.
- We describe practical constructions using standard primitives, showing that security in the presence of ciphertext fragmentation can be achieved efficiently and from standard assumptions.
- A full version will be available soon on eprint.