Identity-based (Lossy) Trapdoor Functions and Applications

Mihir Bellare, Eike Kiltz, Chris Peikert, Brent Waters

Injective trapdoor function

Injective trapdoor function

Injective trapdoor function

- Example: RSA [RSA 78]
- TDF: most fundamental crypto primitive
- History: 6 years before encryption [GM 84]

Security notions

Security notions

- One-wayness: Gen \rightarrow (pk, sk) $\mathrm{pk}, \mathrm{f}_{\mathrm{pk}}(\mathrm{x}) \rightarrow \mathrm{x}$ hard (random x)

Security notions

- One-wayness: Gen \rightarrow (pk, sk) pk, $\mathrm{f}_{\mathrm{pk}}(\mathrm{x}) \rightarrow \mathrm{x}$ hard (random x$)$
- Lossiness [PW08]: exists Gen' \rightarrow "fake" pk:
I. $\mathrm{pk} \approx{ }_{c} \mathrm{pk}$

2. Range $\left(f_{p k}\right)<2^{n}$

Lossy trapdoor functions

Lossy trapdoor functions

- Basic primitives:

One-way TDFs, CR hashing

Lossy trapdoor functions

- Basic primitives:

One-way TDFs, CR hashing

- Advanced encryption:

CCA security, selective opening security, deterministic PKE, hedged PKE

Lossy trapdoor functions

- Basic primitives:

One-way TDFs, CR hashing

- Advanced encryption:

CCA security, selective opening security, deterministic PKE, hedged PKE

- Constructions:

DDH, QR, Paillier, LWE, Phi-Hiding, ...

Our paper

Trapdoor functions in ID-based framework I. Definitions
2. Applications
3. Constructions

- From bilinear maps
- From lattices

ID-based encryption (IBE)

- Gen \rightarrow (pk,sk)
- Enc(pk,ID,m) \rightarrow c for $I D \in\{0, I\}^{n}$
-Extract(sk,ID) \rightarrow trapdoor skiD
- $\operatorname{Dec}\left(\mathrm{sk}_{\mathrm{ID}}, I \mathrm{D}, \mathrm{c}\right)=\mathrm{m}$

ID-based encryption (IBE)

- Gen \rightarrow (pk,sk)
- Enc(pk,ID,m) \rightarrow c for $I D \in\{0, I\}^{n}$
- Extract(sk,ID) \rightarrow trapdoor skiD
- Dec(skiD, ID, c) $=m$

History:

- IBE [S84, BF03]
- ID-based signatures, ...

ID-based trapdoor functions

- Gen \rightarrow (pk,sk)
-Eval(pk,ID, \cdot) $=$ fiD $:\{0, I\}^{n} \rightarrow R$ for $I D \in\{0, I\}^{n}$
- Extract(sk,ID) \rightarrow trapdoor skID
- Invert(skiD, $\left.{ }^{-}\right)=f_{I D^{-1}}(\cdot)$

ID-based trapdoor functions

- Gen \rightarrow (pk,sk)
-Eval(pk,ID, \cdot) $=f_{I D}:\{0, I\}^{n} \rightarrow R$ for $I D \in\{0, I\}^{n}$
-Extract(sk,ID) \rightarrow trapdoor skID
- Invert(skid,$\left.{ }^{\cdot}\right)=f_{I_{D}}{ }^{-1}(\cdot)$

Security?

Intuition: $f_{I D *}$ (.) "secure" even given skID for ID $\neq I^{*}$ *

secure	Selective	Adaptive
one-way	ID-OW-S	ID-OW-A
lossy	ID-LS-S	ID-LS-A

One-wayness

One-wayness

One-wayness

Exp ID-OW-S		Selective adversary
$(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{Gen}$	$\stackrel{\text { lD }}{\stackrel{\text { pk }}{ }}$	chose ID*
	$\xrightarrow[\text { skiDi }]{\stackrel{\mathrm{ID}_{\mathrm{i}} \neq I \mathrm{D}^{*}}{*}}$	

One-wayness

Exp ID-OW-S		Selective adversary
(pk,sk)ヶGen	$\frac{1 \mathrm{D}}{\mathrm{pk}}$	chose ID*
$x \in\{0,1\}^{n}$	$\xrightarrow{\mathrm{fiD}^{*}(\mathrm{x})}$	
Win: $\mathrm{x}=\mathrm{x}$ '	${ }^{\prime}$	

Def: One-way $\Leftrightarrow \operatorname{Pr}[$ Adversay wins] = negl

One-wayness

Exp ID-OW-A		Adaptive adversary
$(\mathrm{pk}, \mathrm{sk}) \leftarrow \mathrm{Gen}$	pk	adaptively chose ID*
	$\stackrel{1 D_{i} \neq 1 D^{*}}{ }$	
	$\xrightarrow{\mathrm{D}^{*}}$	
$x \in\{0,1\}^{n}$	$\xrightarrow{\text { fil }{ }^{(x)}}$	
Win: $x=x^{\prime}$	x^{\prime}	

Def: One-way $\Leftrightarrow \operatorname{Pr}[$ Adversay wins] = negl

Selective lossiness

Selective lossiness

Selective lossiness

Selective lossiness

Def: Lossy $\Leftrightarrow \operatorname{Pr}[\mathrm{A}(\mathrm{pk})=\mathrm{I}]-\operatorname{Pr}\left[\mathrm{A}(\mathrm{pk})=\mathrm{I} \wedge\right.$ Range $\left.\left(\mathrm{flim}^{*}\right)<2^{\mathrm{n}}\right]=$ negl

Selective lossiness

Def: Lossy $\Leftrightarrow \operatorname{Pr}[\mathrm{A}(\mathrm{pk})=\mathrm{I}]-\operatorname{Pr}\left[\mathrm{A}(\mathrm{pk})=\mathrm{I} \wedge\right.$ Range $\left(\mathrm{f}_{\left.\mathrm{f} \mathrm{D}^{*}\right)}<2^{\mathrm{n}}\right]=$ negl

Selective lossiness

Def: Lossy $\Leftrightarrow \operatorname{Pr}[\mathrm{A}(\mathrm{pk})=\mathrm{I}]-\operatorname{Pr}\left[\mathrm{A}(\mathrm{pk})=\mathrm{I} \wedge \operatorname{Range}\left(\mathrm{flim}^{*}\right)<2^{\mathrm{n}}\right]=$ negl

Adaptive lossiness

Adaptive lossiness

Adaptive lossiness

Def: d -lossy for scaling parameter $0<\mathrm{d}<1$:
$\mathrm{d} \operatorname{Pr}[\mathrm{A}(\mathrm{pk})=\mathrm{I}]-\operatorname{Pr}\left[\mathrm{A}(\mathrm{pk})=\mathrm{I} \wedge \operatorname{Range}\left(\mathrm{f}_{\left.\mathrm{I} \mathrm{D}^{*}\right)}<2^{\mathrm{n}}\right]=\right.$ negl

Implications

Implications

- Selective lossyness (ID-LS-S):
- \Rightarrow one-way (ID-OW-S)
- \Rightarrow deterministic
- \Rightarrow hedged IBE

Implications

- Selective lossyness (ID-LS-S):
- \Rightarrow one-way (ID-OW-S)
- \Rightarrow deterministic
- \Rightarrow hedged IBE
- Adaptive I/poly-lossyness (ID-LS-A) - \Rightarrow one-way (ID-OW-A)
- \Rightarrow IBE ?

Construction

Construction

- Difficulty:

IBE: EncID(.) probabilistic Vs
LTDF: $f_{I D}($.$) deterministic$

Construction

- Difficulty:

IBE: EncID(.) probabilistic VS
LTDF: $f_{I D}($.$) deterministic$

- Random oracle model:

$$
\mathrm{fiD}_{\mathrm{ID}}(\mathrm{x}):=\operatorname{EncID}_{\mathrm{ID}}(\mathrm{x} ; \mathrm{r}=\mathrm{H}(\mathrm{x}))
$$

Construction

- Difficulty:

IBE: EncID(.) probabilistic VS
LTDF: $f_{I D}($.$) deterministic$

- Random oracle model:

$$
\mathrm{fiD}_{\mathrm{ID}}(\mathrm{x}):=\operatorname{EncID}_{\mathrm{ID}}(\mathrm{x} ; \mathrm{r}=\mathrm{H}(\mathrm{x}))
$$

- Standard model?

Construction I: pairings

Construction I: pairings

- Idea: anonymous IBE scheme ("ciphertexts hide identity")

Construction I: pairings

- Idea: anonymous IBE scheme ("ciphertexts hide identity")
- Boyen-Waters 06?

Construction l: pairings

- Idea: anonymous IBE scheme ("ciphertexts hide identity")
- Boyen-Waters 06?
- New construction from linear assumption, more efficient!

Construction l: pairings

- Idea: anonymous IBE scheme ("ciphertexts hide identity")
- Boyen-Waters 06?
- New construction from linear assumption, more efficient!
- ID-LTDF: homomorphic properties of ciphertexts (inspired by [PW08])

ID-based TDF

ID-based TDF

$\underset{\square}{\square} \bullet$ Gen $\rightarrow(\mathrm{pk}, \mathrm{sk}), \mathrm{pk}=$ matrix of IBE ciphertexts
$\begin{array}{r}\text { U } \\ \text { U } \\ \text { U } \\ \text { 드 } \\ \hline\end{array}$

ID-based TDF

$\underset{\square}{\circ} \bullet$ Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts
$\stackrel{\otimes}{\geq}$ • Evaluation $f_{I D}:\{0, \mid\}^{n} \rightarrow G^{2+2 n}$

- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that
$\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}[\mathrm{i}], \mathrm{C}_{4}[i]\right) \in E n c(I D, x[i])$

ID-based TDF

$\underset{\square}{\circ} \bullet$ Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts
$\stackrel{\otimes}{\geq}$ • Evaluation $f_{I D}:\{0, \mid\}^{n} \rightarrow G^{2+2 n}$

- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that
$\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}[\mathrm{i}], \mathrm{C}_{4}[i]\right) \in E n c(I D, x[i])$

ID-based TDF

$\underset{\square}{\sim}$ • Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts

- Evaluation $f_{I D}:\{0, I\}^{n} \rightarrow G^{2+2 n}$
- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that

$$
\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}[\mathrm{i}], \mathrm{C}_{4}[\mathrm{i}]\right) \in \mathrm{Enc}(\mathrm{ID}, x[i])
$$

$\underset{\sim}{v}$ Gen'(F) \rightarrow (pk,sk) for controlling function $F:\{0, I\}^{n} \rightarrow Z_{p}$

ID-based TDF

$\underset{\square}{\circ} \bullet$ Gen \rightarrow (pk,sk), pk $=$ matrix of IBE ciphertexts

- Evaluation $f_{I D}:\{0, I\}^{n} \rightarrow G^{2+2 n}$
- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that

$$
\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}[\mathrm{i}], \mathrm{C}_{4}[\mathrm{i}]\right) \in \mathrm{Enc}(\mathrm{ID}, \mathrm{x}[\mathrm{i}])
$$

- Gen'(F) \rightarrow (pk,sk) for controlling function $F:\{0, I\}^{n} \rightarrow Z_{p}$
$f_{I D}(x)=\left(C_{I}, C_{2}, C_{3}, C_{4}\right)$ such that
$\left(C_{1}, C_{2}, C_{3}[i], C_{4}[i]\right) \in E n c(I D, x[i]): \quad F(I D) \neq 0$ independent of $x[i]: F(I D)=0$

ID-based TDF

$\underset{\sim}{\circ} \bullet$ Gen \rightarrow (pk,sk), pk $=$ matrix of IBE ciphertexts

- Evaluation $f_{I D}:\{0, I\}^{n} \rightarrow G^{2+2 n}$
- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that

$$
\left(C_{1}, C_{2}, C_{3}[i], C_{4}[i]\right) \in E n c(I D, x[i])
$$

- Gen'(F) \rightarrow (pk,sk) for controlling function $F:\{0, I\}^{n} \rightarrow Z_{p}$
- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that

$$
\begin{aligned}
\left(C_{1}, C_{2}, C_{3}[i], C_{4}[i]\right) \in & E n c(I D, x[i]): \quad \\
& \text { independent of } x[i]: F(I D)=0
\end{aligned}
$$

- Security: $\mathrm{pk} \approx{ }_{\mathrm{c}} \mathrm{pk}$ by anonymity of IBE (pk hides F)

ID-based TDF

- Selective lossiness: F(ID):=ID-ID*
- $f_{I D}(x)$ invertible if $F(I D) \neq 0$ iff ID $\neq I D^{*}$
- $f_{I D}{ }^{*}(x)$ loses information on x
- Full lossiness: $F(I D)=\sum I D_{i} F_{i}$
- Gen'(F) \rightarrow (pk,sk) for controlling function $F:\{0, I\}^{n} \rightarrow Z_{p}$
- $f_{I D}(x)=\left(C_{1}, C_{2}, C_{3}, C_{4}\right)$ such that

$$
\begin{array}{rlr}
\left(C_{1}, C_{2}, C_{3}[i], C_{4}[i]\right) \in & E n c(I D, x[i]): \quad & F(I D) \neq 0 \\
& \text { independent of } x[i]: F(I D)=0
\end{array}
$$

- Security: $\mathrm{pk} \approx{ }_{\mathrm{c}} \mathrm{pk}$ by anonymity of IBE (pk hides F)

Lattice construction

- LWE function

$$
\begin{gathered}
(\mathrm{x}, \mathrm{e}) \rightarrow \mathrm{Ax}+\mathrm{e} \\
\text { is lossy TDF (under LWE assumption) }
\end{gathered}
$$

- ID-based lossy TDF using delegation of lattice IBE [CHKPIO,ABBIO]

Summary

- ID-based trapdoor functions
- Security: oneway/lossy
- Applications
- Constructions
- Eprint 2011/479

Summary

- ID-based trapdoor functions
- Security: oneway/lossy
- Applications
- Constructions
- Eprint 201 I/479

