

LOSSY

Identity-based (Lossy) Trapdoor Functions and Applications

Mihir Bellare, Eike Kiltz, Chris Peikert, Brent Waters

Injective trapdoor function

Injective trapdoor function

Injective trapdoor function

- Example: RSA [RSA 78]
- TDF: most fundamental crypto primitive
- History: 6 years before encryption [GM 84]

Security notions

Security notions

• One-wayness: Gen \rightarrow (pk, sk) pk, f_{pk}(x) \rightarrow x hard (random x)

Security notions

- One-wayness: Gen \rightarrow (pk, sk) pk, f_{pk}(x) \rightarrow x hard (random x)
- Lossiness [PW08]: exists Gen' → "fake" pk:
 - I. pk≈c pk
 - 2. Range(f_{pk}) $\ll 2^n$

Lossy trapdoor functions

Lossy trapdoor functions

 Basic primitives: One-way TDFs, CR hashing

Lossy trapdoor functions

- Basic primitives: One-way TDFs, CR hashing
- Advanced encryption: CCA security, selective opening security, deterministic PKE, hedged PKE

Lossy trapdoor functions

- Basic primitives: One-way TDFs, CR hashing
- Advanced encryption: CCA security, selective opening security, deterministic PKE, hedged PKE
- Constructions: DDH, QR, Paillier, LWE, Phi-Hiding, ...

Our paper

Trapdoor functions in ID-based framework

- I. Definitions
- 2. Applications
- 3. Constructions
 - From bilinear maps
 - From lattices

ID-based encryption (IBE)

•Gen
$$\rightarrow$$
 (pk,sk)

- •Enc(pk,ID,m) \rightarrow c for ID \in {0,I}ⁿ
- Extract(sk,ID) → trapdoor skiD
- • $Dec(sk_{ID},ID,c) = m$

ID-based encryption (IBE)

•Gen
$$\rightarrow$$
 (pk,sk)

- •Enc(pk,ID,m) \rightarrow c for ID \in {0,I}ⁿ
- Extract(sk,ID) → trapdoor skiD
- • $Dec(sk_{ID},ID,c) = m$

History:

- IBE [S84, BF03]
- ID-based signatures, ...

ID-based trapdoor functions

•Gen
$$\rightarrow$$
 (pk,sk)

•Eval(pk,ID, \cdot) = f_{ID} : {0, I}ⁿ \rightarrow R for ID \in {0, I}ⁿ

•Extract(sk,ID) → trapdoor sk_{ID}

•Invert(sk_{ID}, ·) =
$$f_{ID}^{-1}(\cdot)$$

ID-based trapdoor functions

•Gen
$$\rightarrow$$
 (pk,sk)

•Eval(pk,ID, \cdot) = f_{ID} : {0, I}ⁿ \rightarrow R for ID \in {0, I}ⁿ

Security?

Intuition: $f_{ID*}(.)$ "secure" even given sk_{ID} for $ID \neq ID^*$

secure	Selective	Adaptive
one-way	ID-OW-S	ID-OW-A
lossy	ID-LS-S	ID-LS-A

<u>Def</u>: One-way ⇔ Pr[Adversay wins] = negl

<u>Def</u>: One-way ⇔ Pr[Adversay wins] = negl

Friday, April 20, 12

<u>Def:</u> Lossy \Leftrightarrow Pr[A(pk)=1] - Pr[A(pk)=1 \land Range(f_{ID*}) \ll 2^n] = negl

<u>Def:</u> Lossy \Leftrightarrow Pr[A(pk)=1] - Pr[A(pk)=1 \land Range(f_{ID*}) \ll 2^n] = negl

<u>Def:</u> Lossy \Leftrightarrow Pr[A(pk)=1] - Pr[A(pk)=1 \land Range(f_{ID*}) \ll 2^n] = negl

Adaptive lossiness

Adaptive lossiness

Adaptive lossiness

<u>Def</u>: d-lossy for scaling parameter 0 < d < I: d Pr[A(pk)=I] - Pr[A(pk)=I \land Range(f_{ID*}) $\ll 2^n$] = negl

Implications

Implications

- Selective lossyness (ID-LS-S):
 - \Rightarrow one-way (ID-OW-S)
 - \Rightarrow deterministic
 - \Rightarrow hedged IBE

Implications

- Selective lossyness (ID-LS-S):
 - \Rightarrow one-way (ID-OW-S)
 - \Rightarrow deterministic
 - \Rightarrow hedged IBE
- Adaptive I/poly-lossyness (ID-LS-A)
 - \Rightarrow one-way (ID-OW-A)
 - \Rightarrow IBE?

 Difficulty: IBE: Enc_{ID}(.) probabilistic vs LTDF: f_{ID}(.) deterministic

 Difficulty: IBE: Enc_{ID}(.) probabilistic vs LTDF: f_{ID}(.) deterministic

Random oracle model:
 f_{ID}(x) := Enc_{ID}(x; r=H(x))

- Difficulty: IBE: Enc_{ID}(.) probabilistic vs
 LTDF: f_{ID}(.) deterministic
- Random oracle model:
 f_{ID}(x) := Enc_{ID}(x; r=H(x))
- Standard model?

 Idea: anonymous IBE scheme ("ciphertexts hide identity")

- Idea: anonymous IBE scheme ("ciphertexts hide identity")
- Boyen-Waters 06?

- Idea: anonymous IBE scheme ("ciphertexts hide identity")
- Boyen-Waters 06?
- New construction from linear assumption, more efficient!

- Idea: anonymous IBE scheme ("ciphertexts hide identity")
- Boyen-Waters 06?
- New construction from linear assumption, more efficient!
- ID-LTDF: homomorphic properties of ciphertexts (inspired by [PW08])

Injective pk	Gen → (pk,sk), pk = matrix of IBE ciphertexts
Lossy pk	

- Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts Injective pk
 - Evaluation $f_{ID}: \{0, I\}^n \rightarrow G^{2+2n}$
 - $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i])$

$\mathbf{\underline{\vee}}$
Δ
vsso

- Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts Injective pk
 - Evaluation $f_{ID}: \{0, I\}^n \rightarrow G^{2+2n}$
 - $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i])$

$\mathbf{\underline{\vee}}$
Δ
vsso

- Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts Injective pk
 - Evaluation $f_{ID}: \{0, I\}^n \rightarrow G^{2+2n}$
 - $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i])$

- Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts Injective pk
 - Evaluation $f_{ID}: \{0, I\}^n \rightarrow G^{2+2n}$
 - $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i])$

- Gen'(F) \rightarrow (pk,sk) for controlling function F: {0, I}ⁿ \rightarrow Z_P
- -ossy pl • $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i]):$ F(ID) ≠ 0 independent of x[i]: F(ID) = 0

- Gen \rightarrow (pk,sk), pk = matrix of IBE ciphertexts Injective pk
 - Evaluation $f_{ID}: \{0, I\}^n \rightarrow G^{2+2n}$
 - $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i])$

- Gen'(F) \rightarrow (pk,sk) for controlling function F: {0, I}ⁿ \rightarrow Z_P
- Lossy pk • $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i]):$ F(ID) ≠ 0 independent of x[i]: F(ID) = 0

Security: $pk \approx_c pk$ by anonymity of IBE (pk hides F)

- Selective lossiness: F(ID):=ID-ID*
 - $f_{ID}(x)$ invertible if $F(ID) \neq 0$ iff $ID \neq ID^*$
 - f_{ID*}(x) loses information on x
- Full lossiness: $F(ID) = \sum ID_i F_i$

• Gen'(F) \rightarrow (pk,sk) for controlling function F: {0, I}ⁿ \rightarrow Z_P

• $f_{ID}(x) = (C_1, C_2, C_3, C_4)$ such that $(C_1, C_2, C_3[i], C_4[i]) \in Enc(ID, x[i]):$ F(ID) $\neq 0$ independent of x[i]: F(ID) = 0

Security: pk≈_c pk by anonymity of IBE (pk hides F)

Lattice construction

- LWE function

 (x,e) → Ax+e
 is lossy TDF (under LWE assumption)
- ID-based lossy TDF using delegation of lattice IBE [CHKP10, ABB10]

Summary

- ID-based trapdoor functions
- Security: oneway/lossy
- Applications
- Constructions
- Eprint 2011/479

Summary

- ID-based trapdoor functions
- Security: oneway/lossy
- Applications
- Constructions

• Eprint 2011/479