Improving Key Recovery to 784 and 799 rounds of Trivium using Optimized Cube Attacks

Pierre-Alain Fouque ¹ Thomas Vannet ²

¹Université de Rennes 1

²NTT Secure Platform Laboratories

March 13, 2013

Table of contents

Introduction

Trivium Cube Attacks Polynomial testing Polynomial interpolation

Exploiting polynomials of degree 2

Testing the degree Heuristically interpolating Solving the system ?

The Moebius Transform

Exploiting the cipher structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Outline

Introduction Trivium Cube Attacks

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

Stream cipher on 3 NLSFR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Stream cipher on 3 NLSFR

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

▶ 80-bit key *x*₁,...,*x*₈₀

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Trivium (feedback function)

Algorithm 1 Updates Trivium's internal state s_1, \ldots, s_{288}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$t_{1} \leftarrow s_{66} + s_{93}$$

$$t_{2} \leftarrow s_{162} + s_{177}$$

$$t_{3} \leftarrow s_{243} + s_{288}$$

$$z_{i} \leftarrow t_{1} + t_{2} + t_{3}$$

$$t_{1} \leftarrow t_{1} + s_{91} \cdot s_{92} + s_{171}$$

$$t_{2} \leftarrow t_{2} + s_{175} \cdot s_{176} + s_{264}$$

$$t_{3} \leftarrow t_{3} + s_{286} \cdot s_{287} + s_{69}$$

$$(s_{1}, s_{2}, \dots, s_{93}) \leftarrow (t_{3}, s_{1}, \dots, s_{92})$$

$$(s_{94}, s_{95}, \dots, s_{177}) \leftarrow (t_{1}, s_{94}, \dots, s_{176})$$

$$(s_{178}, s_{279}, \dots, s_{288}) \leftarrow (t_{2}, s_{178}, \dots, s_{287})$$

Known Attacks

- ▶ Full key recovery on 735 rounds in 2³⁰ queries [DinSha09]
- 35 key bits recovered after 767 rounds in about 2³⁶ queries [DinSha09]

Distinguisher up to 806 rounds [KneMeiNay10]

Contributions

- Full key recovery on 784 rounds in 2³⁹ queries
- 12 key bits and 6 quadratic expressions recovered after 799 rounds in about 2³⁹ queries, leading to key recovery in 2⁶² queries

Cube Attacks

- Introduced by Dinur and Shamir at EUROCRYPT 2009
- We consider the polynomial representation of a cipher
- Offline phase : Extract low-degree expressions in key bits
- Online phase : Evaluate the expressions and solve a system to recover the key

Cube Attacks

- P_C is a black box polynomial that can be queried
- Complexity of a query : 2^k
- We need to test whether P_C has a low degree and interpolate it if it is the case

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cube is chosen by a random walk depending on the degree of P_C

BLR Test

Algorithm 2 Tests linearity of a polynomial

P a black box polynomial

repeat

 X_1 , X_2 two random inputs in \mathbb{F}_2^k if $P(X_1 + X_2) + P(X_1) + P(X_2) \neq P(0)$ then return false end if until *r* tests have been carried out return True

BLR Test

- The algorithm requires 3 queries for every linearity test
- ► Similarly, it would require 7 queries for a test of degree 2 : Replace the test in BLR with $P(X_1 + X_2 + X_3) + P(X_1 + X_2) + P(X_1 + X_3) + P(X_2 + X_3) + P(X_1) + P(X_2) + P(X_3) \neq P(0)$

Interpolating

Algorithm 3 Interpolates a linear polynomial

$$P \text{ a black box linear polynomial} p_0 \leftarrow P(0) for i = 1 to 80 do p_i \leftarrow P(x_1 \leftarrow 0, \dots, x_i \leftarrow 1, \dots, x_{80} \leftarrow 0) + p_0 end for return $x_0 + \sum_{i=1}^{80} p_i x_i$$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Interpolating

- Complexity : 81 queries for a black box polynomial of degree 1
- For degree k, $\sum_{i=0}^{k} \binom{80}{i}$ queries are necessary since each query returns a binary information

Shortcomings and solutions

- The original attack limits itself to linear polynomials while degree 2 polynomials can be just as useful and easier to find
- The suggested random walk is not efficient, we suggest a different approach testing many parameters at once
- The cube attack does not exploit the structure of the cipher, we study it to find low-density subpolynomials

Outline

Introduction

Exploiting polynomials of degree 2

Testing the degree Heuristically interpolating Solving the system ?

The Moebius Transform

Exploiting the cipher structure

Conclusion

Weakened BLR Test

- The original BLR algorithm assumes the inputs are independently chosen at random
- In practice, reusing previous inputs proves to be efficient
- Pick 10 random inputs X_1, \ldots, X_{10}
- Test linearity for every couple (X_i, X_j) (45 total)
- 45 linearity tests are performed in 55 queries, against 135 with the true BLR test

Weakened BLR Test for degree 2

- Pick 10 random inputs X_1, \ldots, X_{10}
- ▶ Test linearity for every couple (X_i, X_j) (45 total)
- ► For every i_1, i_2, i_3 , test if $P(X_{i_1} + X_{i_2} + X_{i_3}) + P(X_{i_1} + X_{i_2}) + P(X_{i_1} + X_{i_3}) + P(X_{i_2} + X_{i_3}) + P(X_{i_1}) + P(X_{i_2}) + P(X_{i_3}) \neq P(0)$
- After the linearity test, only $P(X_{i_1} + X_{i_2} + X_{i_3})$ is unknown
- To sum up, we perform 45 linearity tests and 45 degree 2 tests in 100 queries (450 queries required if independent inputs are used)

Interpolating (heuristic)

- We need to restrict the space potentially covered by the degree 2 polynomials
- First rounds of Trivium : $x_i + x_{i+25} \cdot x_{i+26} + x_{i+27}$
- We performed a formal interpolation on cubes of size 30 after 784 rounds
- Assume this form and check that it is correct
- The interpolation was successful over 95% of the time with only 81 queries

Solving the system ?

- Solving a linear system requires few equations, but a system of degree 2 may require a lot more
- ► All obtained polynomials have the form x_i + x_{i+25} · x_{i+26} + x_{i+27}
- With cubes of size 35, bruteforcing 40 key bits does not increase the complexity
- In this configuration, for every 2 bruteforced bits, a linear relation is obtained
- In most cases, polynomials of degree 2 cost no more than linear polynomials to obtain and bring as much information

Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

Moebius Transform

$$P = \sum_{\sigma \in \{0,1\}^n} \alpha_{\sigma} X^{\sigma} \text{ with } \sigma, \ \alpha_{\sigma} \in \mathbb{F}_2$$

$$P^m : \begin{array}{c} \{0,1\}^n \to \mathbb{F}_2 \\ \sigma \to \alpha_{\sigma} \end{array}$$

 Basically, it is a an efficient tool for interpolating high degree polynomials

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Time complexity : $n \cdot 2^n$
- Memory complexity : 2ⁿ

Moebius Transform (application)

- Cube $C = \{v_{c_1}, \ldots, v_{c_k}\}$ of size k
- $Q(v_{c_1}, \ldots, v_{c_k})$ is a restriction of $P(x_1, \ldots, x_n, v_1, \ldots, v_p)$
- $D \subset C$ and for $i \in \{1, \dots, k\}$ $d_i = 1 \iff v_{c_i} \in D$
- $Q^m(d_1,\ldots,d_k)$ is the associated value of P_D
- In a cube of size 40, over 3.8 millions of cubes of size 34

The only freedom resides in the choosing of the cube

Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

The density problem

Measurements done with the Moebius Transform

observed polynomial density after 755 rounds		
Monomial size	Density (random cube)	Density (chosen cube)
33	49.89%	38.44%
34	49.55%	28.36%
35	48.25%	16.82%
36	44.19%	7.31%
37	34.07%	1.84%
38	16.47%	0.15%
39	3.66%	0%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Observed polynomial density after 799 rounds

Exploiting the cipher structure

- Output of Trivium is a sum of 6 registers $s_{66} + s_{93} + s_{162} + s_{177} + s_{243} + s_{288}$
- Each of those is a product of 2 registers around 96 rounds before added to some terms of degree one
- We assume those terms have a degree lower than the cube size and neglect them

•
$$P = \sum_{i=1}^{6} P_{i,1} P_{i,2} = v_{c_1} \dots v_{c_k} P_C + P_R$$

Exploiting the cipher structure

•
$$P = \sum_{i=1}^{6} P_{i,1} P_{i,2} = v_{c_1} \dots v_{c_k} P_C + P_R$$

- ► We assume that for every partition {C₁, C₂} of the cube, C_k yields a low-degree polynomial on P_{i,j}
- Find two disjoint cubes producing the 0 polynomial on those 12 registers
- Hopefully, the union of those cubes will produce a low-degree expression

Exploiting the cipher structure (improvement)

- C_1 and C_2 of size k
- ► Every subcube of size at least k 3 has an associated P_C = 0 on the 12 registers
- Realize a Moebius Transform on $C_1 \cup C_2$
- Result : After 799 rounds, the density is greatly reduced and we find maxterms for the first time

Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

Conclusion

- We addressed 3 major issues from the standard attack
- Key bits recovered in practical time up to 799 rounds
- While it may go a bit further, density issues suggest the full cipher is still secure