
Improving Key Recovery to 784 and 799 rounds
of Trivium using Optimized Cube Attacks

Pierre-Alain Fouque 1 Thomas Vannet 2

1Université de Rennes 1

2NTT Secure Platform Laboratories

March 13, 2013



Table of contents

Introduction
Trivium
Cube Attacks

Polynomial testing
Polynomial interpolation

Exploiting polynomials of degree 2
Testing the degree
Heuristically interpolating
Solving the system ?

The Moebius Transform

Exploiting the cipher structure

Conclusion



Outline

Introduction
Trivium
Cube Attacks

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion



Trivium

I Stream cipher on 3 NLSFR



Trivium

I Stream cipher on 3 NLSFR

I 80-bit key x1, . . . , x80



Trivium

I Stream cipher on 3 NLSFR

I 80-bit key x1, . . . , x80

I 80-bit IV v1, . . . , v80



Trivium

I Stream cipher on 3 NLSFR

I 80-bit key x1, . . . , x80

I 80-bit IV v1, . . . , v80

I 1152 initialization rounds



Trivium (feedback function)

Algorithm 1 Updates Trivium’s internal state s1, . . . , s288

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

zi ← t1 + t2 + t3

t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s279, . . . , s288)← (t2, s178, . . . , s287)



Known Attacks

I Full key recovery on 735 rounds in 230 queries [DinSha09]

I 35 key bits recovered after 767 rounds in about 236 queries
[DinSha09]

I Distinguisher up to 806 rounds [KneMeiNay10]



Contributions

I Full key recovery on 784 rounds in 239 queries

I 12 key bits and 6 quadratic expressions recovered after 799
rounds in about 239 queries, leading to key recovery in 262

queries



Cube Attacks

I Introduced by Dinur and Shamir at EUROCRYPT 2009

I We consider the polynomial representation of a cipher

I Offline phase : Extract low-degree expressions in key bits

I Online phase : Evaluate the expressions and solve a system to
recover the key



Cube Attacks

I Cube C = {vc1 , . . . , vck} of size k

I P(x1, . . . , xn, v1, . . . , vp) ∈ F2[x1, . . . , xn, v1, . . . , vp]

I P = vc1 . . . vckPC + PR

I
∑
C

P = PC .

I PC is a black box polynomial that can be queried

I Complexity of a query : 2k

I We need to test whether PC has a low degree and interpolate
it if it is the case

I The cube is chosen by a random walk depending on the
degree of PC



BLR Test

Algorithm 2 Tests linearity of a polynomial

P a black box polynomial
repeat

X1, X2 two random inputs in Fk
2

if P(X1 + X2) + P(X1) + P(X2) 6= P(0) then
return false

end if
until r tests have been carried out
return True



BLR Test

I The algorithm requires 3 queries for every linearity test

I Similarly, it would require 7 queries for a test of degree 2 :
Replace the test in BLR with P(X1 +X2 +X3) +P(X1 +X2) +
P(X1 + X3) + P(X2 + X3) + P(X1) + P(X2) + P(X3) 6= P(0)



Interpolating

Algorithm 3 Interpolates a linear polynomial

P a black box linear polynomial
p0 ← P(0)
for i = 1 to 80 do

pi ← P(x1 ← 0, . . . , xi ← 1, . . . , x80 ← 0) + p0

end for

return x0 +
80∑
i=1

pixi



Interpolating

I Complexity : 81 queries for a black box polynomial of degree 1

I For degree k,
k∑

i=0

(
80

i

)
queries are necessary since each query

returns a binary information



Shortcomings and solutions

I The original attack limits itself to linear polynomials while
degree 2 polynomials can be just as useful and easier to find

I The suggested random walk is not efficient, we suggest a
different approach testing many parameters at once

I The cube attack does not exploit the structure of the cipher,
we study it to find low-density subpolynomials



Outline

Introduction

Exploiting polynomials of degree 2
Testing the degree
Heuristically interpolating
Solving the system ?

The Moebius Transform

Exploiting the cipher structure

Conclusion



Weakened BLR Test

I The original BLR algorithm assumes the inputs are
independently chosen at random

I In practice, reusing previous inputs proves to be efficient

I Pick 10 random inputs X1, . . . ,X10

I Test linearity for every couple (Xi ,Xj) (45 total)

I 45 linearity tests are performed in 55 queries, against 135 with
the true BLR test



Weakened BLR Test for degree 2

I Pick 10 random inputs X1, . . . ,X10

I Test linearity for every couple (Xi ,Xj) (45 total)

I For every i1, i2, i3, test if P(Xi1 + Xi2 + Xi3) + P(Xi1 + Xi2) +
P(Xi1 +Xi3) +P(Xi2 +Xi3) +P(Xi1) +P(Xi2) +P(Xi3) 6= P(0)

I After the linearity test, only P(Xi1 + Xi2 + Xi3) is unknown

I To sum up, we perform 45 linearity tests and 45 degree 2 tests
in 100 queries (450 queries required if independent inputs are
used)



Interpolating (heuristic)

I We need to restrict the space potentially covered by the
degree 2 polynomials

I First rounds of Trivium : xi + xi+25 · xi+26 + xi+27

I We performed a formal interpolation on cubes of size 30 after
784 rounds

I Assume this form and check that it is correct

I The interpolation was successful over 95% of the time with
only 81 queries



Solving the system ?

I Solving a linear system requires few equations, but a system
of degree 2 may require a lot more

I All obtained polynomials have the form
xi + xi+25 · xi+26 + xi+27

I With cubes of size 35, bruteforcing 40 key bits does not
increase the complexity

I In this configuration, for every 2 bruteforced bits, a linear
relation is obtained

I In most cases, polynomials of degree 2 cost no more than
linear polynomials to obtain and bring as much information



Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion



Moebius Transform

I P =
∑

σ∈{0,1}n
ασX

σ with σ, ασ ∈ F2

I Pm :
{0, 1}n → F2

σ → ασ
I Basically, it is a an efficient tool for interpolating high degree

polynomials

I Time complexity : n · 2n

I Memory complexity : 2n



Moebius Transform (application)

I Cube C = {vc1 , . . . , vck} of size k

I Q(vc1 , . . . , vck ) is a restriction of P(x1, . . . , xn, v1, . . . , vp)

I D ⊂ C and for i ∈ {1, . . . , k} di = 1 ⇐⇒ vci ∈ D

I Qm(d1, . . . , dk) is the associated value of PD

I In a cube of size 40, over 3.8 millions of cubes of size 34

I The only freedom resides in the choosing of the cube



Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion



The density problem

I Measurements done with the Moebius Transform

Observed polynomial density after 799 rounds
Monomial size Density (random cube) Density (chosen cube)

33 49.89% 38.44%
34 49.55% 28.36%
35 48.25% 16.82%
36 44.19% 7.31%
37 34.07% 1.84%
38 16.47% 0.15%
39 3.66% 0%



Exploiting the cipher structure

I Output of Trivium is a sum of 6 registers
s66 + s93 + s162 + s177 + s243 + s288

I Each of those is a product of 2 registers around 96 rounds
before added to some terms of degree one

I We assume those terms have a degree lower than the cube
size and neglect them

I P =
6∑

i=1

Pi ,1Pi ,2 = vc1 . . . vckPC + PR



Exploiting the cipher structure

I P =
6∑

i=1

Pi ,1Pi ,2 = vc1 . . . vckPC + PR

I We assume that for every partition {C1,C2} of the cube, Ck

yields a low-degree polynomial on Pi ,j

I Find two disjoint cubes producing the 0 polynomial on those
12 registers

I Hopefully, the union of those cubes will produce a low-degree
expression



Exploiting the cipher structure (improvement)

I C1 and C2 of size k

I Every subcube of size at least k − 3 has an associated PC = 0
on the 12 registers

I Realize a Moebius Transform on C1 ∪ C2

I Result : After 799 rounds, the density is greatly reduced and
we find maxterms for the first time



Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion



Conclusion

I We addressed 3 major issues from the standard attack

I Key bits recovered in practical time up to 799 rounds

I While it may go a bit further, density issues suggest the full
cipher is still secure


	Introduction
	Trivium
	Cube Attacks

	Exploiting polynomials of degree 2
	Testing the degree
	Heuristically interpolating
	Solving the system ?

	The Moebius Transform
	Exploiting the cipher structure
	Conclusion

