Improving Key Recovery to 784 and 799 rounds of Trivium using Optimized Cube Attacks

Pierre-Alain Fouque ${ }^{1}$ Thomas Vannet ${ }^{2}$

${ }^{1}$ Université de Rennes 1
${ }^{2}$ NTT Secure Platform Laboratories

March 13, 2013

Table of contents

Introduction
Trivium
Cube Attacks
Polynomial testing
Polynomial interpolation
Exploiting polynomials of degree 2
Testing the degree
Heuristically interpolating
Solving the system ?
The Moebius Transform
Exploiting the cipher structure
Conclusion

Outline

Introduction
Trivium
Cube Attacks

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

Trivium

- Stream cipher on 3 NLSFR

Trivium

- Stream cipher on 3 NLSFR
- 80-bit key x_{1}, \ldots, x_{80}

Trivium

Trivium

Trivium (feedback function)

```
Algorithm 1 Updates Trivium's internal state \(s_{1}, \ldots, s_{288}\)
    \(t_{1} \leftarrow s_{66}+s_{93}\)
    \(t_{2} \leftarrow s_{162}+s_{177}\)
    \(t_{3} \leftarrow s_{243}+s_{288}\)
    \(z_{i} \leftarrow t_{1}+t_{2}+t_{3}\)
    \(t_{1} \leftarrow t_{1}+s_{91} \cdot s_{92}+s_{171}\)
    \(t_{2} \leftarrow t_{2}+s_{175} \cdot s_{176}+s_{264}\)
    \(t_{3} \leftarrow t_{3}+s_{286} \cdot s_{287}+s_{69}\)
    \(\left(s_{1}, s_{2}, \ldots, s_{93}\right) \leftarrow\left(t_{3}, s_{1}, \ldots, s_{92}\right)\)
    \(\left(s_{94}, s_{95}, \ldots, s_{177}\right) \leftarrow\left(t_{1}, s_{94}, \ldots, s_{176}\right)\)
    \(\left(s_{178}, s_{279}, \ldots, s_{288}\right) \leftarrow\left(t_{2}, s_{178}, \ldots, s_{287}\right)\)
```


Known Attacks

- Full key recovery on 735 rounds in 2^{30} queries [DinSha09]
- 35 key bits recovered after 767 rounds in about 2^{36} queries [DinSha09]
- Distinguisher up to 806 rounds [KneMeiNay10]

Contributions

- Full key recovery on 784 rounds in 2^{39} queries
- 12 key bits and 6 quadratic expressions recovered after 799 rounds in about 2^{39} queries, leading to key recovery in 2^{62} queries

Cube Attacks

- Introduced by Dinur and Shamir at EUROCRYPT 2009
- We consider the polynomial representation of a cipher
- Offline phase : Extract low-degree expressions in key bits
- Online phase : Evaluate the expressions and solve a system to recover the key

Cube Attacks

- Cube $C=\left\{v_{c_{1}}, \ldots, v_{c_{k}}\right\}$ of size k
- $P\left(x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{p}\right) \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{p}\right]$
- $P=v_{c_{1}} \ldots v_{c_{k}} P_{C}+P_{R}$
- $\sum_{C} P=P_{C}$.
- P_{C} is a black box polynomial that can be queried
- Complexity of a query : 2^{k}
- We need to test whether P_{C} has a low degree and interpolate it if it is the case
- The cube is chosen by a random walk depending on the degree of P_{C}

BLR Test

Algorithm 2 Tests linearity of a polynomial
P a black box polynomial
repeat
X_{1}, X_{2} two random inputs in \mathbb{F}_{2}^{k}
if $P\left(X_{1}+X_{2}\right)+P\left(X_{1}\right)+P\left(X_{2}\right) \neq P(0)$ then
return false
end if
until r tests have been carried out
return True

BLR Test

- The algorithm requires 3 queries for every linearity test
- Similarly, it would require 7 queries for a test of degree 2 : Replace the test in BLR with $P\left(X_{1}+X_{2}+X_{3}\right)+P\left(X_{1}+X_{2}\right)+$ $P\left(X_{1}+X_{3}\right)+P\left(X_{2}+X_{3}\right)+P\left(X_{1}\right)+P\left(X_{2}\right)+P\left(X_{3}\right) \neq P(0)$

Interpolating

Algorithm 3 Interpolates a linear polynomial
P a black box linear polynomial
$p_{0} \leftarrow P(0)$
for $i=1$ to 80 do

$$
p_{i} \leftarrow P\left(x_{1} \leftarrow 0, \ldots, x_{i} \leftarrow 1, \ldots, x_{80} \leftarrow 0\right)+p_{0}
$$

end for
return $x_{0}+\sum_{i=1}^{80} p_{i} x_{i}$

Interpolating

- Complexity: 81 queries for a black box polynomial of degree 1
- For degree $k, \sum_{i=0}^{k}\binom{80}{i}$ queries are necessary since each query returns a binary information

Shortcomings and solutions

- The original attack limits itself to linear polynomials while degree 2 polynomials can be just as useful and easier to find
- The suggested random walk is not efficient, we suggest a different approach testing many parameters at once
- The cube attack does not exploit the structure of the cipher, we study it to find low-density subpolynomials

Outline

Introduction

Exploiting polynomials of degree 2
Testing the degree Heuristically interpolating Solving the system ?

The Moebius Transform

Exploiting the cipher structure

Conclusion

Weakened BLR Test

- The original BLR algorithm assumes the inputs are independently chosen at random
- In practice, reusing previous inputs proves to be efficient
- Pick 10 random inputs X_{1}, \ldots, X_{10}
- Test linearity for every couple $\left(X_{i}, X_{j}\right)$ (45 total)
- 45 linearity tests are performed in 55 queries, against 135 with the true BLR test

Weakened BLR Test for degree 2

- Pick 10 random inputs X_{1}, \ldots, X_{10}
- Test linearity for every couple $\left(X_{i}, X_{j}\right)$ (45 total)
- For every i_{1}, i_{2}, i_{3}, test if $P\left(X_{i_{1}}+X_{i_{2}}+X_{i_{3}}\right)+P\left(X_{i_{1}}+X_{i_{2}}\right)+$ $P\left(X_{i_{1}}+X_{i_{3}}\right)+P\left(X_{i_{2}}+X_{i_{3}}\right)+P\left(X_{i_{1}}\right)+P\left(X_{i_{2}}\right)+P\left(X_{i_{3}}\right) \neq P(0)$
- After the linearity test, only $P\left(X_{i_{1}}+X_{i_{2}}+X_{i_{3}}\right)$ is unknown
- To sum up, we perform 45 linearity tests and 45 degree 2 tests in 100 queries (450 queries required if independent inputs are used)

Interpolating (heuristic)

- We need to restrict the space potentially covered by the degree 2 polynomials
- First rounds of Trivium : $x_{i}+x_{i+25} \cdot x_{i+26}+x_{i+27}$
- We performed a formal interpolation on cubes of size 30 after 784 rounds
- Assume this form and check that it is correct
- The interpolation was successful over 95% of the time with only 81 queries

Solving the system?

- Solving a linear system requires few equations, but a system of degree 2 may require a lot more
- All obtained polynomials have the form

$$
x_{i}+x_{i+25} \cdot x_{i+26}+x_{i+27}
$$

- With cubes of size 35 , bruteforcing 40 key bits does not increase the complexity
- In this configuration, for every 2 bruteforced bits, a linear relation is obtained
- In most cases, polynomials of degree 2 cost no more than linear polynomials to obtain and bring as much information

Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

Moebius Transform

- $P=\sum_{\sigma \in\{0,1\}^{n}} \alpha_{\sigma} X^{\sigma}$ with $\sigma, \alpha_{\sigma} \in \mathbb{F}_{2}$
- $P^{m}: \begin{aligned}\{0,1\}^{n} & \rightarrow \mathbb{F}_{2} \\ \sigma & \rightarrow \alpha_{\sigma}\end{aligned}$
- Basically, it is a an efficient tool for interpolating high degree polynomials
- Time complexity : $n \cdot 2^{n}$
- Memory complexity : 2^{n}

Moebius Transform (application)

- Cube $C=\left\{v_{c_{1}}, \ldots, v_{c_{k}}\right\}$ of size k
- $Q\left(v_{c_{1}}, \ldots, v_{c_{k}}\right)$ is a restriction of $P\left(x_{1}, \ldots, x_{n}, v_{1}, \ldots, v_{p}\right)$
- $D \subset C$ and for $i \in\{1, \ldots, k\} d_{i}=1 \Longleftrightarrow v_{c_{i}} \in D$
- $Q^{m}\left(d_{1}, \ldots, d_{k}\right)$ is the associated value of P_{D}
- In a cube of size 40, over 3.8 millions of cubes of size 34
- The only freedom resides in the choosing of the cube

Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

The density problem

- Measurements done with the Moebius Transform

Observed polynomial density after 799 rounds

Monomial size	Density (random cube)	Density (chosen cube)
33	49.89%	38.44%
34	49.55%	28.36%
35	48.25%	16.82%
36	44.19%	7.31%
37	34.07%	1.84%
38	16.47%	0.15%
39	3.66%	0%

Exploiting the cipher structure

- Output of Trivium is a sum of 6 registers $s_{66}+s_{93}+s_{162}+s_{177}+s_{243}+s_{288}$
- Each of those is a product of 2 registers around 96 rounds before added to some terms of degree one
- We assume those terms have a degree lower than the cube size and neglect them
- $P=\sum_{i=1}^{6} P_{i, 1} P_{i, 2}=v_{c_{1}} \ldots v_{c_{k}} P_{C}+P_{R}$

Exploiting the cipher structure

- $P=\sum_{i=1}^{6} P_{i, 1} P_{i, 2}=v_{c_{1}} \ldots v_{c_{k}} P_{C}+P_{R}$
- We assume that for every partition $\left\{C_{1}, C_{2}\right\}$ of the cube, C_{k} yields a low-degree polynomial on $P_{i, j}$
- Find two disjoint cubes producing the 0 polynomial on those 12 registers
- Hopefully, the union of those cubes will produce a low-degree expression

Exploiting the cipher structure (improvement)

- C_{1} and C_{2} of size k
- Every subcube of size at least $k-3$ has an associated $P_{C}=0$ on the 12 registers
- Realize a Moebius Transform on $C_{1} \cup C_{2}$
- Result : After 799 rounds, the density is greatly reduced and we find maxterms for the first time

Outline

Introduction

Exploiting polynomials of degree 2

The Moebius Transform

Exploiting the cipher structure

Conclusion

Conclusion

- We addressed 3 major issues from the standard attack
- Key bits recovered in practical time up to 799 rounds
- While it may go a bit further, density issues suggest the full cipher is still secure

