Cryptographic Applications of Capacity Theory

Ted Chinburg, Brett Hemenway, Nadia Heninger, and Zachary Scherr

Asiacrypt, Dec. 8, 2016

A theorem of Coppersmith

Theorem (Coppersmith)

Suppose $f(x) \in \mathbb{Z}[x]$ is monic of degree d and $N \in \mathbb{Z}$. There is an polynomial time algorithm in $\log N$ and d for finding all $m \in \mathbb{Z}$ for which

$$
f(m) \equiv 0 \bmod N \quad \text { and } \quad|m|<N^{1 / d} .
$$

Main Question: Can one increase $N^{1 / d}$ in this theorem to $N^{(1 / d)+\epsilon}$ for some $\epsilon>0$? What if $N=p q$ for two distinct but unknown primes p and q ?

Answer: One can't use Coppersmith's method. We prove the required auxiliary functions do not exist.

What sort of auxiliary functions did Coppersmith use?

 He used LLL to find a non-zero polynomial in $\mathbb{Q}[x]$ of the form$$
\begin{equation*}
h(x)=\sum_{i, j \geq 0} a_{i, j} x^{i}\left(\frac{f(x)}{N}\right)^{j} \quad \text { with } \quad a_{i, j} \in \mathbb{Z} \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
|h(z)|<1 \text { for all } z \in \mathbb{C} \text { with }|z|<N^{1 / d} . \tag{2}
\end{equation*}
$$

Why $\mathbf{h}(\mathrm{x})$ is useful:

Suppose $m \in \mathbb{Z}, f(m) \equiv 0 \bmod N$ and $|m|<N^{1 / d}$. Then:

$$
\begin{equation*}
h(m) \in \mathbb{Z} \text { from (1) and }|h(m)|<1 \text { from } \tag{2}
\end{equation*}
$$

So $h(m)=0$, and one can then find all roots m of $h(x)$ quickly.

Our main theorem

You can't improve on Coppersmith's bounds for univariate polynomials using auxiliary polynomials the way he does.

Theorem

Let $f(x) \in \mathbb{Z}[x]$ be monic of degree d. Suppose $N \in \mathbb{Z}$ and $\epsilon>0$.
There is no non-zero auxiliary polynomial of the form

$$
h(x)=\sum_{i, j} a_{i, j} x^{i}\left(\frac{f(x)}{N}\right)^{j} \quad \text { with } \quad a_{i, j} \in \mathbb{Z}
$$

so that $|h(z)|<1$ for all complex z satisfying $|z| \leq N^{1 / d+\epsilon}$.

The main tool: Capacity Theory

Let E be a compact subset of \mathbb{C} closed under complex conjugation. Let

$$
F_{n}=\left\{p(x) \in \mathbb{R}[x], \operatorname{deg} p(x) \leq n, \sup _{z \in E}|p(z)|<1\right\}
$$

Then

$$
F_{n} \subseteq \mathbb{R} \oplus \mathbb{R} x \cdots \oplus \mathbb{R} x^{n}=\mathbb{R}^{n+1}
$$

is a convex symmetric subset.
Definition (Sectional capacity of E)

$$
\log \gamma(E)=\lim _{n \rightarrow \infty} \frac{-2 \log \operatorname{Vol}\left(F_{n}\right)}{n^{2}}
$$

Fekete Szegő Theorems

[Fekete 1923, Szegő 1955]

Theorem
Let E be a compact subset of \mathbb{C} closed under complex conjugation.

- If $\gamma(E)<1$, there is a non-zero polynomial $h(z) \in \mathbb{Z}[x]$ such that $|h(z)|<1$ for all $z \in E$.
- If $\gamma(E)>1$, no such $h(z)$ exists.

Application

Theorem

- If $\gamma(E)<1$, then there are finitely many irreducible monic polynomials with integer coefficients with all roots in E.
- If $\gamma(E)>1$, then for every open neighborhood \cup of E, there are infinitely many irreducible monic polynomials with integer coefficients with all roots lying in U.

Sketch of the first half of the Fekete-Szegö Theorem

 Suppose $\gamma(E)<1$. Let$$
L_{n}=\mathbb{Z} \oplus \mathbb{Z} x \cdots \oplus \mathbb{Z} x^{n} \subset \mathbb{R}^{n+1}
$$

Minkowski's theorem There will be a non-zero $h(x)$ in $F_{n} \cap L_{n}$ once $\operatorname{Vol}\left(F_{n}\right)>2^{n+1} \operatorname{Vol}\left(\mathbb{R}^{n} / L_{n}\right)=2^{n+1}$.

Computation of volume growth as $n \rightarrow \infty$:

$$
\log \operatorname{Vol}\left(F_{n}\right) \approx\left(-n^{2} / 2\right) \log \gamma(E)
$$

If $\gamma(E)<1$ then $-\log \gamma(E)>0$ so for large n :

$$
\log \operatorname{Vol}\left(F_{n}\right) \approx\left(n^{2} / 2\right)(-\log \gamma(E))>(n+1) \log 2
$$

So $\operatorname{Vol}\left(F_{n}\right)>2^{n+1}$ for large n and Minkowski's theorem applies.

Linking capacity theory and Coppersmith's method

- In the Fekete-Szegö theorem, one starts with a compact $E \subseteq \mathbb{C}$ compact, stable under complex conjugation. One then asks:
When does there exist a non-zero $h(x) \in \mathbb{Z}[x]-\{0\}$ so that $|h(z)|<1$ if $z \in E$?
- For Coppersmith's theorem, we are looking for a non-zero auxiliary polynomial in $\mathbb{Q}[x]$ of the form

$$
\begin{equation*}
h(x)=\sum_{i, j} c_{i, j} x^{i}\left(\frac{f(x)}{N}\right)^{j}, \quad a_{i, j} \in \mathbb{Z} \tag{3}
\end{equation*}
$$

satisfying $|h(z)|<1$ for $z \in \mathbb{C}$ with $|z|<T$ when $T=N^{1 / d}$.
This looks a lot like the capacity theory we were talking about, except $h(x)$ might not be in $\mathbb{Z}[x]$.
But we know (3) implies that if z and $f(z) / N$ are algebraic integers then $h(z)$ is an algebraic integer.

New Problem

When is there a non-zero $h(x) \in \mathbb{Q}[x]$ so that

1. $|h(z)|<1$ if $z \in E \subseteq \mathbb{C}$
2. $h(z)$ is an algebraic integer for all algebraic integers z satisfying $f(z) \equiv 0 \bmod N$ in the ring of all algebraic integers.

Cantor and Rumely's enhanced capacity theory

Suppose E_{p} is a subset of $\overline{\mathbb{Q}}_{p}$ for each prime p, and that E_{∞} is a subset of \mathbb{C}. If these satisfy the appropriate hypotheses, one can define a capacity

$$
\gamma(\mathbb{E})=\gamma_{\infty}\left(E_{\infty}\right) \cdot \prod_{p} \gamma_{p}\left(E_{p}\right)
$$

associated to $\mathbb{E}=\prod_{p} E_{p} \times E_{\infty}$ for which the following is true:
Theorem (Cantor)

- If $\gamma(\mathbb{E})<1$ then there exists a nonzero polynomial $h(x) \in \mathbb{Q}[x]$ satisfying

$$
|h(z)|_{p} \leq 1 \forall p \text { and } z \in E_{p} \text { and }|h(z)|_{\infty}<1 \text { for } z \in E_{\infty} .
$$

- If $\gamma(\mathbb{E})>1$ then no such polynomial exists.

Now we let:

$$
E_{p}=f^{-1}\left(\left\{\left.z| | z\right|_{p} \leq|N|_{p}\right\}\right) \quad \text { and } \quad E_{\infty}=\{z \in \mathbb{C}| | z \mid \leq T\}
$$

With these choices, a polynomial $h(x) \in \mathbb{Q}[x]$ has the above properties if and only if:

1. For all algebraic integers z for which $f(z) \equiv 0 \bmod N$ in the ring of algebraic integers, $h(z)$ is an algebraic integer.
2. For all complex z with $|z| \leq T$ one has $|h(z)|<1$.

One now computes, using Rumely and Cantor's formulas, that

$$
\gamma(\mathbb{E})=T N^{-1 / d}
$$

Then $\gamma(\mathbb{E})<1$ is equivalent to

$$
T<N^{1 / d}
$$

and this is why Coppersmith's method cannot be improved!

Lattices of binomial polynomials

Definition (Binomial polynomial)

$$
b_{i}(x)=\binom{x}{i}=x \cdot(x-1) \ldots(x-i+1) / i!
$$

$b_{i}(z) \in \mathbb{Z}$ for any $z \in \mathbb{Z}$.
Theorem (Polya)
$h(x) \in \mathbb{Q}[x]$ and $h(z) \in \mathbb{Z}$ for all $z \in \mathbb{Z} \Longleftrightarrow h(x)$ is a integer
combination of binomial polynomials $b_{i}(x)$.
Coppersmith asked if one could improve the theorem using binomial polynomials:

$$
h(x)=\sum_{i, j \geq 0} a_{i, j} b_{i}(x) b_{j}\left(\frac{f(x)}{N}\right)
$$

These no longer have the property that $h(z)$ is an algebraic integer whenever both z and $f(z) / N$ are.

Binomial polynomials don't help

Theorem
Let $\epsilon>0$ and M a positive integer, $319 \leq M \leq 1.48774 N^{\epsilon}$. If there is a nonzero polynomial

$$
h(x)=\sum_{0 \leq i, j \leq M} a_{i, j} b_{i}(x) b_{j}\left(\frac{f(x)}{N}\right)
$$

with $a_{i, j} \in \mathbb{Z}$ such that

$$
|h(z)|<1 \text { for } z \in\left\{z \in \mathbb{C}\left||z| \leq N^{1 / d+\epsilon}\right\}\right.
$$

then N must have a prime factor less than M.
Moral: If N does not already have a very small prime factor, any auxiliary polynomial $h(x)$ constructed from binomial polynomials would have to be of too large a degree to be useful for an algorithm that runs in polynomial time in $\ln (N)$.

Summary

Cryptographic applications of capacity theory: On the optimality of Coppersmith's method for univariate polynomials Ted Chinburg, Brett Hemenway, Nadia Heninger, and Zachary Scherr http://arxiv.org/abs/1605.08065

- If you want to improve univariate Coppersmith theorem, you will need to use a new method.
- New links between capacity theory and cryptography.

Current and Future Work

- The same approach shows you can't improve the exponent $1 / 4$ in Coppersmith's proof that if $N=p q$ and the larger of the primes p and q is known to within $N^{1 / 4}$ then one can find p and q quickly.
- Bivariate polynomials.
- Solving equations modulo divisors.
- Multivariate polynomials.

