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A theorem of Coppersmith

Theorem (Coppersmith)
Suppose f (x) ∈ Z[x] is monic of degree d and N ∈ Z. There is an
polynomial time algorithm in logN and d for finding all m ∈ Z
for which

f (m) ≡ 0 mod N and |m| < N1/d.

Main Question: Can one increase N1/d in this theorem to
N(1/d)+ε for some ε > 0? What if N = pq for two distinct but
unknown primes p and q?
Answer: One can’t use Coppersmith’s method. We prove
the required auxiliary functions do not exist.



What sort of auxiliary functions did Coppersmith use?
He used LLL to find a non-zero polynomial in Q[x] of the
form

h(x) = ∑
i,j≥0

ai,j xi
( f (x)
N
)j

with ai,j ∈ Z (1)

such that
|h(z)| < 1 for all z ∈ C with |z| < N1/d. (2)

Why h(x) is useful:
Supposem ∈ Z, f (m) ≡ 0 mod N and |m| < N1/d. Then:

h(m) ∈ Z from (1) and |h(m)| < 1 from (2).
So h(m) = 0, and one can then find all rootsm of h(x)
quickly.



Our main theorem

You can’t improve on Coppersmith’s bounds for univariate
polynomials using auxiliary polynomials the way he does.
Theorem
Let f (x) ∈ Z[x] be monic of degree d. Suppose N ∈ Z and ε > 0.
There is no non-zero auxiliary polynomial of the form

h(x) =∑
i,j
ai,j xi

( f (x)
N
)j

with ai,j ∈ Z

so that |h(z)| < 1 for all complex z satisfying |z| ≤ N1/d+ε.



The main tool: Capacity Theory

Let E be a compact subset of C closed under complex
conjugation. Let

Fn = {p(x) ∈ R[x],degp(x) ≤ n, sup
z∈E
|p(z)| < 1}

Then
Fn ⊆ R⊕ Rx · · · ⊕ Rxn = Rn+1

is a convex symmetric subset.
Definition (Sectional capacity of E)

log γ(E) = limn→∞
−2 logVol(Fn)

n2



Fekete Szegő Theorems
[Fekete 1923, Szegő 1955]
Theorem
Let E be a compact subset of C closed under complex
conjugation.
• If γ(E) < 1, there is a non-zero polynomial h(z) ∈ Z[x] such
that |h(z)| < 1 for all z ∈ E.

• If γ(E) > 1, no such h(z) exists.
Application
Theorem
• If γ(E) < 1, then there are finitely many irreducible monic
polynomials with integer coefficients with all roots in E.

• If γ(E) > 1, then for every open neighborhood U of E, there
are infinitely many irreducible monic polynomials with
integer coefficients with all roots lying in U.



Sketch of the first half of the Fekete-Szegö Theorem
Suppose γ(E) < 1. Let

Ln = Z⊕ Zx · · · ⊕ Zxn ⊂ Rn+1

Minkowski’s theorem There will be a non-zero h(x) in
Fn ∩ Ln once Vol(Fn) > 2n+1 Vol(Rn/Ln) = 2n+1.
Computation of volume growth as n→∞:

log Vol(Fn) ≈ (−n2/2) log γ(E)
If γ(E) < 1 then − log γ(E) > 0 so for large n:

log Vol(Fn) ≈ (n2/2)(− log γ(E)) > (n+ 1) log 2
So Vol(Fn) > 2n+1 for large n and Minkowski’s theorem
applies.



Linking capacity theory and Coppersmith’s method
• In the Fekete-Szegö theorem, one starts with a compact
E ⊆ C compact, stable under complex conjugation. One
then asks:
When does there exist a non-zero h(x) ∈ Z[x]− {0} so
that |h(z)| < 1 if z ∈ E?

• For Coppersmith’s theorem, we are looking for a
non-zero auxiliary polynomial in Q[x] of the form

h(x) =∑
i,j
ci,jxi

( f (x)
N
)j
, ai,j ∈ Z (3)

satisfying |h(z)| < 1 for z ∈ C with |z| < T when T = N1/d.
This looks a lot like the capacity theory we were talking
about, except h(x)might not be in Z[x].
But we know (3) implies that if z and f (z)/N are algebraic
integers then h(z) is an algebraic integer.



New Problem

When is there a non-zero h(x) ∈ Q[x] so that
1. |h(z)| < 1 if z ∈ E ⊆ C

2. h(z) is an algebraic integer for all algebraic integers z
satisfying f (z) ≡ 0 mod N in the ring of all algebraic
integers.



Cantor and Rumely’s enhanced capacity theory
Suppose Ep is a subset of Qp for each prime p, and that E∞ is
a subset of C. If these satisfy the appropriate hypotheses,
one can define a capacity

γ(E) = γ∞(E∞) ·
∏
p
γp(Ep)

associated to E =
∏
p Ep × E∞ for which the following is true:

Theorem (Cantor)
• If γ(E) < 1 then there exists a nonzero polynomial
h(x) ∈ Q[x] satisfying
|h(z)|p ≤ 1∀p and z ∈ Ep and |h(z)|∞ < 1 for z ∈ E∞.

• If γ(E) > 1 then no such polynomial exists.



Now we let:

Ep = f−1 ({z | |z|p ≤ |N|p}) and E∞ = {z ∈ C | |z| ≤ T}
With these choices, a polynomial h(x) ∈ Q[x] has the above
properties if and only if:
1. For all algebraic integers z for which f (z) ≡ 0 mod N in
the ring of algebraic integers, h(z) is an algebraic
integer.

2. For all complex z with |z| ≤ T one has |h(z)| < 1.

One now computes, using Rumely and Cantor’s formulas,
that

γ(E) = TN−1/d.
Then γ(E) < 1 is equivalent to

T < N1/d

and this is why Coppersmith’s method cannot be improved!



Lattices of binomial polynomials
Definition (Binomial polynomial)

bi(x) =
(x
i
)

= x · (x − 1) . . . (x − i + 1)/i!

bi(z) ∈ Z for any z ∈ Z.
Theorem (Polya)
h(x) ∈ Q[x] and h(z) ∈ Z for all z ∈ Z ⇐⇒ h(x) is a integer
combination of binomial polynomials bi(x).
Coppersmith asked if one could improve the theorem using
binomial polynomials:

h(x) = ∑
i,j≥0

ai,jbi(x)bj( f (x)N )

These no longer have the property that h(z) is an algebraic
integer whenever both z and f (z)/N are.



Binomial polynomials don’t help
Theorem
Let ε > 0 and M a positive integer, 319 ≤ M ≤ 1.48774Nε.
If there is a nonzero polynomial

h(x) = ∑
0≤i,j≤M

ai,jbi(x)bj( f (x)N )

with ai,j ∈ Z such that
|h(z)| < 1 for z ∈ {z ∈ C | |z| ≤ N1/d+ε}

then N must have a prime factor less than M.

Moral: If N does not already have a very small prime factor,
any auxiliary polynomial h(x) constructed from binomial
polynomials would have to be of too large a degree to be
useful for an algorithm that runs in polynomial time in ln(N).
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• If you want to improve univariate Coppersmith
theorem, you will need to use a new method.

• New links between capacity theory and cryptography.

Current and Future Work
• The same approach shows you can’t improve the
exponent 1/4 in Coppersmith’s proof that if N = pq and
the larger of the primes p and q is known to within N1/4
then one can find p and q quickly.

• Bivariate polynomials.
• Solving equations modulo divisors.
• Multivariate polynomials.

http://arxiv.org/abs/1605.08065

