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First,

A part of this talk is closely related to Antonio’s talk (the previous talk).

We also analyze Qin-Liu PKE scheme in the tampering attacks with
a different setting.

bounded tampering vs. continual tampering.
standard PKE vs. PKE w/ self-destruction mechanism.

Our impossible result to signature complements their result on
signature.
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Tampering Attacks

device

𝑦 = 𝐶(𝜙 𝑠𝑘 , 𝑥)

𝑠𝑘

𝜙, 𝑥

𝜙: 𝑡𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, or RKD function.

Learn sk.

The tampering attacks allow an adversary to modify the secret of a
target cryptographic device and observe the effect of the changes at the
output (Gennaro etal [GLM+04] and Bellare and Kohno [BK03]).
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Mount tampering on the IND-CCA Game.

decryption 
oracle

𝐷(𝜙 𝑠𝑘 , 𝐶𝑇)

𝑠𝑘𝜙, 𝐶𝑇

IND-CCA Game + tampering

(𝑚0, 𝑚1)

𝐶𝑇∗ = 𝐸(𝑝𝑘,𝑚𝑏∗)

𝑏∗ ← {0,1}

𝑝𝑘

𝑏 Pr 𝑏 = 𝑏∗ −
1

2
?

We focus on tampering attacks with arbitrary function φ. Then, some
restrictions are required.
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Impossible Result [GLM+04]

Theorem
There is no IND-CCA secure (standard) PKE or EUF-CMA secure
(standard) signature resilient to unbounded polynomial many tamperings
of arbitrary function (even in the CRS model or a stronger model (= the
ATP model [GLM+04])).

Proof.
Choose the following φ1, . . . , φ|sk|:

φi (sk) =

{
sk if the i-th bit of sk is 0.

⊥ otherwise.

By querying with φ1, . . . , φ|sk|, the adversary can retrieve sk from the
decyrption or signing oracle.
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To circumvent the impossibility result of
[GLM+04]

1 Only allow a bounded number of tampering queries (Bounded
tampering attacks [DFMV13, FV16]).

[FV16]: The previous talk.

2 Allow an unbounded number of tampering queries, but allow a
device to self-destruct when it detects tampering (Continuous
tampering w/ self-destruction mechanism [KKS11]).

This talk.

3 Allow an unbounded number of tampering queries, but allow a
device to update its secret key (Continuous tampering w/
key-update mechanism [KKS11]).

This talk.
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Option: Persistent or Non-Persistent [JW15]

Persistent tampering attacks: A tampering is applied to the
current version of the secret overwritten by the previous tampering
function.

For queries (φ1, x1) and (φ2, x2) to device G(sk, ·) in this order,
receives G(φ1(sk), x1) and G(φ2(φ1(sk)), x2).

Non-persistent tampering attacks: A tampering is always applied
to the original secret.

For the same series of queries above, instead receives G(φ1(sk), x1)
and G(φ2(sk), x2).

Remarks.

non-key-update: non-persistent attacks > persistent attacks.
because one can simulate persistent query φ′ = φ2 ◦ φ1 in the

non-persistent attack.

key-update: unknown which is stronger.
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Another Impossible Result to PKE

Theorem ([DFMV13])
There is no IND-CCA secure PKE scheme resilient to even one
post-challenge tampering query of arbitrary function.

Proof.
Choose the following φ:

φ(sk) =

{
sk if D(sk ,CT∗) = m0.

⊥ otherwise.

This attack is unavoidable even with self-destruction, key-updating, and
bounded persistent/non-persistent tampering in the ATP
model [GLM+04] (i.e., in the strongest compromised model).
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Public Parameter: CRS vs Others

We concentrate on the CRS model, because we treat tampering of
arbitrary functions.

The CRS model.

The CRS model is popular. The CRS ρ is common among all users
and is not tampered.

ATP (algorithmic tamper-proof) Model [GLM+04] (stronger than
the CRS model) .

The CRS ρ is the verification key of a trusted party. Unlike the CRS
model, the trusted party actively signs on secret of each device after
publishing ρ.

Non-CRS models.

Possible only for tampering of a restricted class of functions
(split-state, linear function, etc) .
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Summary of Previous work

Table: Tampering-Resilient Primitives against arbitrary tampering functions (in
the CRS model).

Prim. Self-Dest. Key Update Tamp. Security Model Notes

PKE c-tamp CCA even in ATP Impossible

[GLM+04]

PKE X X b-tamp CCA post-challenge. Impossible
tampering [DFMV13]

PKE b-tamp CCA per./n-per. [DFMV13]

PKE b-tamp CCA per./n-per. [FV16]
(This conference)

PKE X c-tamp CPA persist [KKS11]

PKE X c-tamp CCA persist ?
PKE X c-tamp CCA n-persist ?
PKE X c-tamp CCA persist ?
PKE X c-tamp CCA n-persist ?

Sig c-tamp CMA per./n-per. Impossible

[GLM+04]

Sig X c-tamp persist KKS [KKS11]

Sig X c-tamp− CMA persist KKS [KKS11]

Sig X c-tamp n-persist ?

Sig X c-tamp n-persist ?

b-tamp: bounded tampering. c-tamp: continuous tampering. c-tamp− : somewhat weak continuous tampering.
In non-key-update, n-persist > persist.

*: remark (see the next slide).
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Our Result

[PKE] The first CCA-secure PKE schemes resilient to continuous
(pre-challenge) tampering of arbitrary functions.

Qin-Liu PKE scheme at ASIACRYPT 13 [QL13] w/ self-destructive
mechanism is resilient to continuous tampering and bounded
memory leakage (CTBL-CCA secure).
A variant of Agrawal et al.PKE scheme [ADVW13] w/ a
key-updating mechanism is resilient to continuous tampering and
continuous memory leakage (CTL-CCA secure).

[Sig] Impossible result: There is no signature scheme resilient to
continuous non-persistent tampering even with a self-destructive
mechanism.

(*) If a key-update mechanism works only when a tampering is
detected, then no signature scheme even with a key-update
mechanism.
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Definition: CTBL-CCA Game

Let Π = (Setup,K,E,D) be PKE.

Adversary A is given (ρ, pk) generated by Setup and K, respectively.

A may submit tampering queries (φ,CT) to the decryption oracle D,
where D self-destructs if D(φ(sk),CT) = ⊥; otherwise, returns
D(φ(sk),CT).

A may submit leakage queries L to the leakage oracle Leak, and
Leak returns L(sk) (if the total leakage bits ≤ λ).

A makes (m0,m1) and receives CT∗ = Epk(mb∗) where b∗ ← {0, 1}.
A may submit decryption queries CT (6= CT∗) to the decryption
oracle D, where D self-destructs if D(sk ,CT) = ⊥; otherwise,
returns D(sk ,CT).

A returns b.

Π is CTBL-CCA secure if Advctbl-cca
Π (κ) = |2 Pr[b = b∗]− 1| = negl(κ).
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To begin with

Consider a BL-CCA secure PKE, where BL-CCA security :=
IND-CCA security plus resilience to bounded memory leakage.

(Fact) If |m| is smaller than the limit of bounded leakage, then any
BL-CCA secure PKE is resilient to (at least one) bounded number of
tampering.

Because one can simulate tampering oracle by using leakage oracle, as
L(·) := Dφ(·)(CT).

However, this does not work for continuous tampering.

Even for bounded tampering, this black-box usage of leakage oracle gives
very bad bound.
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(Reminder) Hash Proof System [CS02]

HPS = (HPS.param, HPS.pub, HPS.priv) is a hash proof system if

HPS.param(1κ) outputs params = (Λ, C,V,SK,PK, µ), where
µ : SK → PK.
V is a subset of C
hash Λ is projective and γ-entropic.

{C |C U← V}κ∈N
c
≈ {C ′ |C ′ U← C\V}κ∈N.

HPS.pub(pk ,C ,w) = Λsk(C ) for pk = µ(sk) and w is witness of C
that belongs to V.

HPS.priv(sk ,C ) = Λsk(C ) for C ∈ C.

Λ : SK × C → K: projective and γ-entropic if

projective: For all sk, sk ′ s.t. µ(sk) = µ(sk ′) and all C ∈ V(⊂ C),
Λsk(C) = Λsk′(C).

γ-entropic: For all pk ∈ PK, C ∈ C\V, and all K ∈ K,

Pr[K = Λsk(C)|(pk,C)] ≤ 2−γ .
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All-But-One Injective (ABO) Fuction

ABO function (called one-time lossy filter in [QL13]) is a weaker version
of all-but-one trapdoor function [PW08], where a trapdoor function is
replaced by an injective function.

Let A be an ABO function. For only one tag t (called the lossy branch),
A(t, ·) is lossy, while for all-but-one tags t ′(6= t), A(t ′, ·) is injective.

One cannot distinguish lossy branch t from injective branch t ′.
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Qin-Liu PKE at ASIACRYPT 2013

Qin-Liu PKE scheme [QL13] is an IND-CCA secure and resilient to
bounded memory leakage (BL-CCA secure).

Qin-Liu PKE: (construction) hash proof system (HPS) + all-but-one
injective (ABO) function.

Encryption of m: CT = (C ,m ⊕ K ,A(vk ,K ), vk , σ) where K = Λsk(C ),
and σ is a one-time signature on (C ,m ⊕ K ,A(vk ,K ), vk) w.r.t. vk .

(Our claim) Put the HPS parameter and ABO public-key A in the CRS.
Then, Qin-Liu scheme is CTBL-CCA secure, with a self-destruction
mechanism.
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Useful Lemma

Lemma

For any random variables, X and Z ,

H∞(X |Z = z) ≥ H∞(X )− log
( 1

Pr[Z = z ]

)
.

Proof.
For any z ∈ Z ,

− log
(

max
x

(
Pr[X = x |Z = z]

))
= − log

(
max
x

(
Pr[X = x ∧ Z = z]

Pr[Z = z]

))

≥ − log
(

max
x

(
Pr[X = x]

))
− log

( 1

Pr[Z = z]

)
.
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Observation

Let CT = (C ,m ⊕ K ,A(vk ,K ), vk , σ) be a query ciphertext of Qin-Liu
PKE and K∗ = Λsk(C∗) be the challenge hash in CT∗ (in the simulation:
C∗ 6∈ V).

(1) When D(φ(SK ),CT) = ⊥,

H∞(K∗|D(φ(SK ),CT) = ⊥) ≥ H∞(K∗)− log(1/p0),

where p0 = Pr[D(φ(SK ),CT) = ⊥].

(2) When D(φ(SK ),CT) 6= ⊥,

H∞(K∗|D(φ(SK ),CT) 6= ⊥) ≥ H∞(K∗)− log(1/p1)

where p1 = Pr[D(φ(SK ),CT) 6= ⊥].

(1) immediately follows from the useful lemma.
But, how about (2)? Except for revealing the fact D(φ(SK ),CT) 6= ⊥, it
apparently reveals message D(φ(SK ),CT)...
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(1) immediately follows from the useful lemma.
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Except for revealing the fact D(φ(SK ),CT) 6= ⊥, it
apparently reveals message D(φ(SK ),CT)...
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Observation, Cont.

However, the entropy of D(φ(SK ),CT) is zero, given CT, because of
injective A(vk ,K ). Therefore,

H̃∞(K∗|D(φ(SK ),CT) 6= ⊥) ≥ H̃∞(K∗|D(φ(SK ),CT))− log(1/p1)

= H̃∞(K∗|Λφ(SK)(C ))− log(1/p1)

= H̃∞(K∗|K )− log(1/p1)

= H∞(K∗)− log(1/p1)

where p1 = Pr[D(φ(SK ),CT) 6= ⊥].
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Now,

Let pi (1 ≤ i < `) be the probability that D does not reject i-th query
ciphertext. Let p` be the probability that D rejects `-th query ciphertext.

Note that there is a trade-off between leakage bit log(1/p) and
probability p, i.e., If log(1/p) is big, then p is small, and vice versa.

If the total leakage bits from all tampering queries∑`
i=1 log(1/pi ) ≥ ω(log κ), then the probability that occurs is

∏̀
i=1

pi = 2−ω(log κ) = negl(κ).

So, Qin-Liu PKE reveals at most ω(log κ) bits against tampering attacks
w/ overwhelming prob.
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To sum up,

Qin-Liu PKE reveals at most ω(log κ) bits against tampering attacks.

Qin-Liu PKE is BL-CCA secure and can afford O(κ) bit memory
leakage.

Instantiations: (1− o(1))|SK | from DCR. 1
4 (1− o(1))|SK | from

DDH, where |SK | = O(κ).

Therefore, Qin-Liu PKE is CTBL-CCA secure.
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Remark

The CTBL-CCA security notion does not imply the IND-CCA
security notion, because the decryption oracle self-destructs even when it
receives an invalid ciphertext under the original secret sk – it cannot
distinguish a tampering query from a normal decryption query.

The CTL-CCA security notion implies the IND-CCA security notion.
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Definition: PKE with a Key-Update
mechanism [BKKV10]

Π = (Setup,Update,K,E,D) is PKE with a key-update mechanism if

(Setup,K,E,D) is a standard PKE and

Update takes sk and updates it to sk ′ (with fresh randomness)
without changing pk.
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Definition: CTL-CCA Game

Let Π = (Setup,Update,K,E,D) be PKE with key-update.

Adversary A is given (ρ, pk) generated by Setup and K, respectively.

A may submit tampering queries (φ,CT) to the decryption oracle D,
and D returns D(φ(sk),CT). If D(φ(sk),CT) = ⊥, then D updates
sk to sk ′.

A may submit leakage queries L to the leak oracle Leak, and Leak
returns L(sk) (if the total leak bits ≤ λ for the same sk).

A makes (m0,m1) and receives CT∗ = Epk(mb∗) where b∗ ← {0, 1}.
A may submit decryption queries CT (6= CT∗) to the decryption
oracle D and D returns D(sk ,CT). If D(sk ,CT) = ⊥, then D
updates sk to sk ′.

A returns b.

Π is CTL-CCA secure if Advctl-cca
Π (κ) = |2 Pr[b = b∗]− 1| = negl(κ).
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Reminder: Why is Qin-Liu PKE CTBL-CCA
secure ?

Remember Qin-Liu PKE (= HPS+ABO).

HPS makes BL-CPA secure PKE.

ABO transforms BL-CPA secure PKE to BL-CCA secure one
(proven by Qin and Liu), and also keeps it small to reveal secret key
sk by answering one tampering query.

Although the leakage is small for one tampering, it is leaked step by step.
So, the self-destruction is needed. The decryption algorithm can detect
tampering before it reveals too much.

(Observation) If there is HPS with a key-update mechanism, then, by
combining it with ABO, we can construct CTL-CCA secure PKE.
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ADVW PKE Scheme at ASIACRYPT 2013

Agrawal et al. [ADVW13] PKE scheme is hash proof system based and
IND-CPA secure and resilient to continuous leakage in the floppy disk
model.

The floppy disk model: There are two secret-keys, sk and usk , for a user.

sk is used for decryption, which is the target of leakage.

usk is not revealed and is used to update sk to sk ′ (with fresh
randomness), i.e., sk ′ ← Update(usk, sk).

(Goal) Modify the key-update algorithm in the floppy disk model to one
in the key-update model [BKKV10], such as sk ′ ← Update(sk).
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Proof Idea (CTL-CCA)

There are two steps.

A hash proof system in Agrawal et al. [ADVW13] is defined on an
ordinary prime order group. We translate it in bilinear groups, which
makes it possible to key-update without other secret.

For security proof, we modify the random subspace lemma in
[ADVW13].
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Proof Idea (CTL-CCA)

The Agrawal et al.version of Random subspace lemma [ADVW13].

Lemma

Let 2 ≤ d < t ≤ n and λ < (d − 1) log(q). Let W ⊂ Fn
q be an arbitrary

vector subspace in Fn
q of dimension t. Let L : {0, 1}∗ → {0, 1}λ be an

arbitrary function. Then, we have

Dist

((
A, L(A~v)

)
,
(

A, L(~u)
))

= negl(κ)

where A := (~a1, . . . , ~ad) ←Wd (seen as a n × d matrix), ~v ← Fd
q , and

~u ←W.
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Proof Idea (CTL-CCA), Ctd.

We instead use the random sub subspace lemma in this work.

Lemma

Let 2 ≤ d ≤ t ′ < t ≤ n and λ < (d − 1) log(q). Let W ⊂ Fn
q be an

arbitrary vector subspace in Fn
q of dimension t. Let L : {0, 1}∗ → {0, 1}λ

be an arbitrary function. Then, we have

Dist

((
A, L(A~v)

)
,
(

A, L(~u)
))

= negl(κ),

where W ′ is a random vector subspace in W of dimension t ′

(independent of function L), A := (~a1, . . . , ~ad) ←W ′d (seen as a n × d
matrix), ~v ← Fd

q , and ~u ←W.

Then, we succeed in constructing a CTL-CCA secure PKE scheme.
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Impossibility result to SIG

Theorem
There is no EUF-CMA signature resilient to unbounded polynomial
many non-persistent tamperings of arbitary function even with a
key-destruction mechanisim.

Proof.
The adversary runs the key-generation algorithm, Gen, and obtains two
legitimate key pairs, (vk0, sk0) and (vk1, sk1). Then, it sets a set of
functions {φi(sk0,sk1)}, such that

φi(sk0,sk1)(sk) =

{
sk0 if the i-th bit of sk is 0,

sk1 otherwise.

For query (φi(sk0,sk1),m), the adversary can obtain i-th bit of sk while the
signing oracle cannot detect tampering.
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Summary

[PKE] The first CCA-secure PKE schemes resilient to continuous
(pre-challenge) tampering of arbitrary functions.

Qin-Liu PKE scheme at ASIACRYPT 13 [QL13] w/ self-destructive
mechanism is resilient to continuous tampering and bounded
memory leakage (CTBL-CCA secure).
A variant of Agrawal et al.PKE scheme [ADVW13] w/ a
key-updating mechanism is resilient to continuous tampering and
continuous memory leakage (CTL-CCA secure).

[Sig] Impossible result: There is no signature scheme resilient to
continuous non-persistent tampering even with a self-destructive
mechanism.

(*) If a key-update mechanism works only when a tampering is
detected, then no signature scheme even with a key-update
mechanism.
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Comparison

Table: Tampering-Resilient Primitives against arbitrary tampering functions.

Prim. Self-Dest. Key Tamp. Leak Security Model Notes
Update

PKE c-tamp CCA even in ATP Impossible

[GLM+04]

PKE X X b-tamp CCA post-cha. Impossible
tampering [DFMV13]

PKE b-tamp b-leak CCA per./n-per. [DFMV13]

PKE X c-tamp c-leak− CCA Floppy [DFMV13]

PKE b-tamp b-leak CCA per./n-per. [FV16]

PKE X c-tamp c-leak CPA persist [KKS11]

PKE X c-tamp b-leak CCA per./n-per. This work
PKE X c-tamp c-leak CCA persist ?
PKE X c-tamp c-leak CCA n-persist This work

Sig c-tamp CMA per./n-per. Impossible

[GLM+04]

Sig X c-tamp b-leak ? persist KKS [KKS11]

Sig X c-tamp− c-leak CMA persist KKS [KKS11]

Sig X c-tamp CMA n-persist Impossible
Sig (X∗) c-tamp CMA n-persist Impossible

(This work)

b-tamp: bounded tampering. c-tamp: continuous tampering.
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Public-key cryptosystems resilient to
continuous tampering and leakage of arbitrary
functions

Thank you! （完）
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