

Public-Key Cryptosystems Resilient to Continuous Tampering and Leakage of Arbitrary Functions

Eiichiro Fujisaki (藤崎 英一郎) Keita Xagawa (草川 恵太)

NTT Secure Platform Laboratories

ASIACRYPT 2016

First,

A part of this talk is closely related to Antonio's talk (the previous talk).

- We also analyze Qin-Liu PKE scheme in the tampering attacks with a different setting.
 - bounded tampering vs. continual tampering.
 - standard PKE vs. PKE w/ self-destruction mechanism.
- Our impossible result to signature complements their result on signature.

Agenda

1 Tampering Attacks

- 2 CTBL-CCA secure PKE scheme
- **3** CTL-CCA secure PKE scheme
- 4 Impossibility Result (Signature)
- 5 Conclusion

Tampering Attacks

φ: tampering function, or RKD function.

The tampering attacks allow an adversary to modify the secret of a target cryptographic device and observe the effect of the changes at the output (Gennaro etal [GLM⁺04] and Bellare and Kohno [BK03]).

Mount tampering on the IND-CCA Game.

We focus on tampering attacks with *arbitrary* function ϕ . Then, some restrictions are required.

Mount tampering on the IND-CCA Game.

We focus on tampering attacks with *arbitrary* function ϕ . Then, some restrictions are required.

Impossible Result [GLM+04]

Theorem

There is no IND-CCA secure (standard) PKE or EUF-CMA secure (standard) signature resilient to unbounded polynomial many tamperings of arbitrary function (even in the CRS model or a stronger model (= the ATP model [GLM⁺04])).

Proof.

Choose the following $\phi_1, \ldots, \phi_{|sk|}$:

$$\phi_i(sk) = \begin{cases} sk & \text{if the } i\text{-th bit of } sk \text{ is } 0. \\ \bot & \text{otherwise.} \end{cases}$$

By querying with $\phi_1, \ldots, \phi_{|sk|}$, the adversary can retrieve sk from the decyrption or signing oracle.

Only allow a bounded number of tampering queries (Bounded tampering attacks [DFMV13, FV16]).

• [FV16]: The previous talk.

Allow an unbounded number of tampering queries, but allow a device to self-destruct when it detects tampering (Continuous tampering w/ self-destruction mechanism [KKS11]).

This talk.

Allow an unbounded number of tampering queries, but allow a device to update its secret key (Continuous tampering w/ key-update mechanism [KKS11]).

Only allow a bounded number of tampering queries (Bounded tampering attacks [DFMV13, FV16]).

[FV16]: The previous talk.

Allow an unbounded number of tampering queries, but allow a device to self-destruct when it detects tampering (Continuous tampering w/ self-destruction mechanism [KKS11]).

This talk.

3 Allow an unbounded number of tampering queries, but allow a device to update its secret key (Continuous tampering w/ key-update mechanism [KKS11]).

Only allow a bounded number of tampering queries (Bounded tampering attacks [DFMV13, FV16]).

■ [FV16]: The previous talk.

2 Allow an unbounded number of tampering queries, but allow a device to self-destruct when it detects tampering (Continuous tampering w/ self-destruction mechanism [KKS11]).

This talk.

Allow an unbounded number of tampering queries, but allow a device to update its secret key (Continuous tampering w/ key-update mechanism [KKS11]).

Only allow a bounded number of tampering queries (Bounded tampering attacks [DFMV13, FV16]).

■ [FV16]: The previous talk.

2 Allow an unbounded number of tampering queries, but allow a device to self-destruct when it detects tampering (Continuous tampering w/ self-destruction mechanism [KKS11]).

- 3 Allow an unbounded number of tampering queries, but allow a device to update its secret key (Continuous tampering w/ key-update mechanism [KKS11]).
 - This talk.

- Persistent tampering attacks: A tampering is applied to the current version of the secret overwritten by the previous tampering function.
 - For queries (φ₁, x₁) and (φ₂, x₂) to device G(sk, ·) in this order, receives G(φ₁(sk), x₁) and G(φ₂(φ₁(sk)), x₂).
- Non-persistent tampering attacks: A tampering is always applied to the original secret.
 - For the same series of queries above, instead receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(sk), x_2)$.

- **non-key-update:** non-persistent attacks > persistent attacks. because one can simulate persistent query $\phi' = \phi_2 \circ \phi_1$ in the non-persistent attack.
- **key-update:** unknown which is stronger.

- Persistent tampering attacks: A tampering is applied to the current version of the secret overwritten by the previous tampering function.
 - For queries (ϕ_1, x_1) and (ϕ_2, x_2) to device $G(sk, \cdot)$ in this order, receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(\phi_1(sk)), x_2)$.
- Non-persistent tampering attacks: A tampering is always applied to the original secret.
 - For the same series of queries above, instead receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(sk), x_2)$.

- **non-key-update:** non-persistent attacks > persistent attacks. because one can simulate persistent query $\phi' = \phi_2 \circ \phi_1$ in the non-persistent attack.
- **key-update:** unknown which is stronger.

- Persistent tampering attacks: A tampering is applied to the current version of the secret overwritten by the previous tampering function.
 - For queries (ϕ_1, x_1) and (ϕ_2, x_2) to device $G(sk, \cdot)$ in this order, receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(\phi_1(sk)), x_2)$.
- Non-persistent tampering attacks: A tampering is always applied to the original secret.
 - For the same series of queries above, instead receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(sk), x_2)$.

- non-key-update: non-persistent attacks > persistent attacks. because one can simulate persistent query φ' = φ₂ ∘ φ₁ in the non-persistent attack.
- **key-update:** unknown which is stronger.

- Persistent tampering attacks: A tampering is applied to the current version of the secret overwritten by the previous tampering function.
 - For queries (ϕ_1, x_1) and (ϕ_2, x_2) to device $G(sk, \cdot)$ in this order, receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(\phi_1(sk)), x_2)$.
- Non-persistent tampering attacks: A tampering is always applied to the original secret.
 - For the same series of queries above, instead receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(sk), x_2)$.

Remarks.

non-key-update: non-persistent attacks > persistent attacks.

because one can simulate persistent query $\phi'=\phi_2\circ\phi_1$ in the non-persistent attack.

key-update: unknown which is stronger.

- Persistent tampering attacks: A tampering is applied to the current version of the secret overwritten by the previous tampering function.
 - For queries (ϕ_1, x_1) and (ϕ_2, x_2) to device $G(sk, \cdot)$ in this order, receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(\phi_1(sk)), x_2)$.
- Non-persistent tampering attacks: A tampering is always applied to the original secret.
 - For the same series of queries above, instead receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(sk), x_2)$.

- **non-key-update:** non-persistent attacks > persistent attacks. because one can simulate persistent query $\phi' = \phi_2 \circ \phi_1$ in the non-persistent attack.
- **key-update:** unknown which is stronger.

- Persistent tampering attacks: A tampering is applied to the current version of the secret overwritten by the previous tampering function.
 - For queries (ϕ_1, x_1) and (ϕ_2, x_2) to device $G(sk, \cdot)$ in this order, receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(\phi_1(sk)), x_2)$.
- Non-persistent tampering attacks: A tampering is always applied to the original secret.
 - For the same series of queries above, instead receives $G(\phi_1(sk), x_1)$ and $G(\phi_2(sk), x_2)$.

- **non-key-update:** non-persistent attacks > persistent attacks. because one can simulate persistent query $\phi' = \phi_2 \circ \phi_1$ in the non-persistent attack.
- **key-update:** unknown which is stronger.

Another Impossible Result to PKE

Theorem ([DFMV13])

There is no IND-CCA secure PKE scheme resilient to even one post-challenge tampering query of arbitrary function.

Proof.

Choose the following ϕ :

$$\phi(sk) = egin{cases} sk & ext{if } \mathbf{D}(sk,\mathsf{CT}^*) = m_0. \ oldsymbol{oldsymbol{\Delta}} \ oldsymbol{oldsymbol{\Delta}} \ oldsymbol{oldsymbol{\Delta}} \ oldsymbol{otherwise}. \end{cases}$$

This attack is unavoidable even with self-destruction, key-updating, and bounded persistent/non-persistent tampering in the ATP model [GLM⁺04] (i.e., in the strongest compromised model).

Another Impossible Result to PKE

Theorem ([DFMV13])

There is no IND-CCA secure PKE scheme resilient to even one post-challenge tampering query of arbitrary function.

Proof.

Choose the following ϕ :

$$\phi(sk) = egin{cases} sk & ext{if } \mathbf{D}(sk,\mathsf{CT}^*) = m_0. \ oxdot & ext{otherwise}. \end{cases}$$

This attack is unavoidable even with self-destruction, key-updating, and bounded persistent/non-persistent tampering in the ATP model [GLM+04] (i.e., in the strongest compromised model).

Public Parameter: CRS vs Others

We concentrate on the CRS model, because we treat tampering of *arbitrary* functions.

- The CRS model.
 - The CRS model is popular. The CRS ρ is common among all users and is not tampered.
- ATP (algorithmic tamper-proof) Model [GLM⁺04] (stronger than the CRS model).
 - The CRS ρ is the verification key of a trusted party. Unlike the CRS model, the trusted party actively signs on secret of each device after publishing ρ.
- Non-CRS models.
 - Possible only for tampering of a restricted class of functions (split-state, linear function, etc).

Summary of Previous work

Table: Tampering-Resilient Primitives against *arbitrary* tampering functions (in the CRS model).

Prim.	Self-Dest.	Key Update	Tamp.	Security	Model	Notes
PKE			c-tamp	CCA	even in ATP	Impossible
						[GLM ⁺ 04]
PKE	~	\checkmark	b-tamp	CCA	post-challenge.	Impossible
					tampering	[DFMV13]
PKE			b-tamp	CCA	per./n-per.	[DFMV13]
PKE			b-tamp	CCA	per./n-per.	[FV16]
						(This conference)
PKE		\checkmark	c-tamp	CPA	persist	[KKS11]
PKE	\checkmark		c-tamp	CCA	persist	?
PKE	\checkmark		c-tamp	CCA	n-persist	?
PKE		\checkmark	c-tamp	CCA	persist	?
PKE		\checkmark	c-tamp	CCA	n-persist	?
Sig			c-tamp	CMA	per./n-per.	Impossible
						[GLM ⁺ 04]
Sig	~		c-tamp		persist	KKS [KKS11]
Sig		\checkmark	c-tamp —	CMA	persist	KKS [KKS11]
Sig	~		c-tamp		n-persist	?
Sig		\checkmark	c-tamp		n-persist	?

b-tamp: bounded tampering. c-tamp: continuous tampering. c-tamp $^-$: somewhat weak continuous tampering. In non-key-update, n-persist > persist.

Summary of Previous work

Table: Tampering-Resilient Primitives against *arbitrary* tampering functions (in the CRS model).

Prim.	Self-Dest.	Key Update	Tamp.	Security	Model	Notes
PKE			c-tamp	CCA	even in ATP	Impossible [GLM ⁺ 04]
PKE	~	\checkmark	b-tamp	CCA	post-challenge. tampering	Impossible [DFMV13]
PKE			b-tamp	CCA	per./n-per.	[DFMV13]
PKE			b-tamp	CCA	per./n-per.	[FV16] (This conference)
PKE		✓	c-tamp	CPA	persist	[KKS11]
PKE	\checkmark		c-tamp	CCA	persist	This work
PKE	\checkmark		c-tamp	CCA	n-persist	This work
PKE		\checkmark	c-tamp	CCA	persist	?
PKE		~	c-tamp	CCA	n-persist	This work
Sig			c-tamp	СМА	per./n-per.	Impossible [GLM ⁺ 04]
Sig	~		c-tamp		persist	KKS [KKS11]
Sig		\checkmark	c-tamp	CMA	persist	KKS [KKS11]
Sig	~		c-tamp		n-persist	Impossible (This work)
Sig		√*	c-tamp		n-persist	Impossible (This work)

b-tamp: bounded tampering. c-tamp: continuous tampering. c-tamp⁻: somewhat weak continuous tampering. In non-key-update, n-persist > persist. *: remark (see the next slide).

Our Result

- **[PKE]** The first CCA-secure PKE schemes resilient to continuous (pre-challenge) tampering of *arbitrary* functions.
 - Qin-Liu PKE scheme at ASIACRYPT 13 [QL13] w/ self-destructive mechanism is resilient to continuous tampering and bounded memory leakage (CTBL-CCA secure).
 - A variant of Agrawal et al.PKE scheme [ADVW13] w/ a key-updating mechanism is resilient to *continuous tampering and continuous memory leakage* (CTL-CCA secure).
- [Sig] Impossible result: There is no signature scheme resilient to continuous non-persistent tampering even with a self-destructive mechanism.
 - (*) If a key-update mechanism works only when a tampering is detected, then no signature scheme even with a key-update mechanism.

1 Tampering Attacks

- 2 CTBL-CCA secure PKE scheme
- 3 CTL-CCA secure PKE scheme
- 4 Impossibility Result (Signature)

5 Conclusion

Definition: CTBL-CCA Game

Let $\Pi = (Setup, \mathbf{K}, \mathbf{E}, \mathbf{D})$ be PKE.

- Adversary A is given (ρ, pk) generated by Setup and K, respectively.
- A may submit tampering queries (ϕ, CT) to the decryption oracle D, where D self-destructs if $D(\phi(sk), CT) = \bot$; otherwise, returns $D(\phi(sk), CT)$.
- A may submit leakage queries L to the leakage oracle Leak, and Leak returns L(sk) (if the total leakage bits $\leq \lambda$).
- A makes (m_0, m_1) and receives $CT^* = \mathbf{E}_{pk}(m_{b^*})$ where $b^* \leftarrow \{0, 1\}$.
- A may submit decryption queries CT (≠ CT*) to the decryption oracle D, where D self-destructs if D(sk, CT) = ⊥; otherwise, returns D(sk, CT).

A returns b.

 Π is CTBL-CCA secure if $\operatorname{Adv}_{\Pi}^{\operatorname{ctbl-cca}}(\kappa) = |2 \operatorname{Pr}[b = b^*] - 1| = \operatorname{negl}(\kappa)$.

Consider a BL-CCA secure PKE, where BL-CCA security := IND-CCA security plus resilience to bounded memory leakage.

Consider a BL-CCA secure PKE, where BL-CCA security := IND-CCA security plus resilience to bounded memory leakage.

(Fact) If |m| is smaller than the limit of bounded leakage, then any BL-CCA secure PKE is resilient to (at least one) bounded number of tampering.

Consider a BL-CCA secure PKE, where BL-CCA security := IND-CCA security plus resilience to bounded memory leakage.

(Fact) If |m| is smaller than the limit of bounded leakage, then any BL-CCA secure PKE is resilient to (at least one) bounded number of tampering.

Because one can simulate tampering oracle by using leakage oracle, as $L(\cdot) := \mathbf{D}_{\phi(\cdot)}(CT).$

Consider a BL-CCA secure PKE, where BL-CCA security := IND-CCA security plus resilience to bounded memory leakage.

(Fact) If |m| is smaller than the limit of bounded leakage, then any BL-CCA secure PKE is resilient to (at least one) bounded number of tampering.

Because one can simulate tampering oracle by using leakage oracle, as $L(\cdot) := \mathbf{D}_{\phi(\cdot)}(CT).$

However, this does not work for continuous tampering.

Consider a BL-CCA secure PKE, where BL-CCA security := IND-CCA security plus resilience to bounded memory leakage.

(Fact) If |m| is smaller than the limit of bounded leakage, then any BL-CCA secure PKE is resilient to (at least one) bounded number of tampering.

Because one can simulate tampering oracle by using leakage oracle, as $L(\cdot) := \mathbf{D}_{\phi(\cdot)}(CT)$.

However, this does not work for continuous tampering.

Even for bounded tampering, this black-box usage of leakage oracle gives very bad bound.

(Reminder) Hash Proof System [CS02]

HPS = (HPS.param, HPS.pub, HPS.priv) is a hash proof system if

- HPS.param (1^{κ}) outputs params = $(\Lambda, C, V, SK, PK, \mu)$, where
 - $\bullet \mu: \mathcal{SK} \to \mathcal{PK}.$
 - V is a subset of C
 - hash Λ is projective and γ-entropic.
 - $\{C \mid C \stackrel{\cup}{\leftarrow} \mathcal{V}\}_{\kappa \in \mathbb{N}} \stackrel{c}{\approx} \{C' \mid C' \stackrel{\cup}{\leftarrow} \mathcal{C} \setminus \mathcal{V}\}_{\kappa \in \mathbb{N}}.$
- HPS.pub(pk, C, w) = Λ_{sk}(C) for pk = µ(sk) and w is witness of C that belongs to V.

• HPS.priv
$$(sk, C) = \Lambda_{sk}(C)$$
 for $C \in C$.

 $\Lambda: \mathcal{SK} \times \mathcal{C} \rightarrow \mathcal{K}$: projective and γ -entropic if

- projective: For all sk, sk' s.t. $\mu(sk) = \mu(sk')$ and all $C \in \mathcal{V}(\subset C)$, $\Lambda_{sk}(C) = \Lambda_{sk'}(C)$.
- γ -entropic: For all $pk \in \mathcal{PK}$, $C \in \mathcal{C} \setminus \mathcal{V}$, and all $K \in \mathcal{K}$,

$$\Pr[K = \Lambda_{sk}(C)|(pk, C)] \leq 2^{-\gamma}$$

All-But-One Injective (ABO) Fuction

ABO function (called one-time lossy filter in [QL13]) is a weaker version of all-but-one trapdoor function [PW08], where a trapdoor function is replaced by an injective function.

Let A be an ABO function. For only one tag t (called the lossy branch), $A(t, \cdot)$ is lossy, while for all-but-one tags $t'(\neq t)$, $A(t', \cdot)$ is injective.

One cannot distinguish lossy branch t from injective branch t'.

Qin-Liu PKE at ASIACRYPT 2013

Qin-Liu PKE scheme [QL13] is an IND-CCA secure and resilient to bounded memory leakage (BL-CCA secure).

Qin-Liu PKE: (construction) hash proof system (HPS) + all-but-one injective (ABO) function.

Encryption of *m*: CT = (*C*, $m \oplus K$, A(vk, K), vk, σ) where $K = \Lambda_{sk}(C)$, and σ is a one-time signature on (*C*, $m \oplus K$, A(vk, K), vk) w.r.t. vk.

(Our claim) Put the HPS parameter and ABO public-key A in the CRS. Then, Qin-Liu scheme is CTBL-CCA secure, with a self-destruction mechanism.

Qin-Liu PKE at ASIACRYPT 2013

Qin-Liu PKE scheme [QL13] is an IND-CCA secure and resilient to bounded memory leakage (BL-CCA secure).

Qin-Liu PKE: (construction) hash proof system (HPS) + all-but-one injective (ABO) function.

Encryption of m: $CT = (C, m \oplus K, A(vk, K), vk, \sigma)$ where $K = \Lambda_{sk}(C)$, and σ is a one-time signature on $(C, m \oplus K, A(vk, K), vk)$ w.r.t. vk.

(Our claim) Put the HPS parameter and ABO public-key A in the CRS. Then, Qin-Liu scheme is CTBL-CCA secure, with a self-destruction mechanism.

Qin-Liu PKE at ASIACRYPT 2013

Qin-Liu PKE scheme [QL13] is an IND-CCA secure and resilient to bounded memory leakage (BL-CCA secure).

Qin-Liu PKE: (construction) hash proof system (HPS) + all-but-one injective (ABO) function.

Encryption of m: $CT = (C, m \oplus K, A(vk, K), vk, \sigma)$ where $K = \Lambda_{sk}(C)$, and σ is a one-time signature on $(C, m \oplus K, A(vk, K), vk)$ w.r.t. vk.

(Our claim) Put the HPS parameter and ABO public-key A in the CRS. Then, Qin-Liu scheme is CTBL-CCA secure, with a self-destruction mechanism.

Useful Lemma

Lemma

For any random variables, X and Z,

$$\mathsf{H}_{\infty}(X|Z=z) \geq \mathsf{H}_{\infty}(X) - \log\left(\frac{1}{\Pr[Z=z]}\right).$$

Useful Lemma

Lemma

For any random variables, X and Z,

$$\mathsf{H}_{\infty}(X|Z=z) \geq \mathsf{H}_{\infty}(X) - \log\Big(rac{1}{\mathsf{Pr}[Z=z]}\Big).$$

Proof.

For any
$$z \in Z$$
,

$$-\log\left(\max_{x}\left(\Pr[X=x|Z=z]\right)\right) = -\log\left(\max_{x}\left(\frac{\Pr[X=x \land Z=z]}{\Pr[Z=z]}\right)\right)$$

$$\geq -\log\left(\max_{x}\left(\Pr[X=x]\right)\right) - \log\left(\frac{1}{\Pr[Z=z]}\right).$$

Let $CT = (C, m \oplus K, A(vk, K), vk, \sigma)$ be a query ciphertext of Qin-Liu PKE and $K^* = \Lambda_{sk}(C^*)$ be the challenge hash in CT^* (in the simulation: $C^* \notin V$).

• (1) When $\mathbf{D}(\phi(SK), CT) = \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\boldsymbol{\mathsf{D}}(\phi(\mathcal{S}\mathcal{K}),\mathsf{CT})=\bot)\geq\mathsf{H}_{\infty}(\mathcal{K}^*)-\mathsf{log}(1/p_0),$

where $p_0 = \Pr[\mathbf{D}(\phi(SK), CT) = \bot]$.

• (2) When $\mathbf{D}(\phi(SK), CT) \neq \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\mathbf{D}(\phi(\mathcal{SK}),\mathsf{CT})\neq\bot)\geq\mathsf{H}_{\infty}(\mathcal{K}^*)-\mathsf{log}(1/p_1)$

where $p_1 = \Pr[\mathbf{D}(\phi(SK), CT) \neq \bot]$.

Let $CT = (C, m \oplus K, A(vk, K), vk, \sigma)$ be a query ciphertext of Qin-Liu PKE and $K^* = \Lambda_{sk}(C^*)$ be the challenge hash in CT^* (in the simulation: $C^* \notin V$).

• (1) When $\mathbf{D}(\phi(SK), \mathsf{CT}) = \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\boldsymbol{\mathsf{D}}(\phi(\mathcal{S}\mathcal{K}),\mathsf{CT})=\bot)\geq\mathsf{H}_{\infty}(\mathcal{K}^*)-\mathsf{log}(1/p_0),$

where $p_0 = \Pr[\mathbf{D}(\phi(SK), CT) = \bot]$.

• (2) When $\mathbf{D}(\phi(SK), CT) \neq \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\mathbf{D}(\phi(\mathcal{SK}),\mathsf{CT})\neq\bot)\geq\mathsf{H}_{\infty}(\mathcal{K}^*)-\mathsf{log}(1/p_1)$

where $p_1 = \Pr[\mathbf{D}(\phi(SK), CT) \neq \bot]$.

(1) immediately follows from the useful lemma.

Let $CT = (C, m \oplus K, A(vk, K), vk, \sigma)$ be a query ciphertext of Qin-Liu PKE and $K^* = \Lambda_{sk}(C^*)$ be the challenge hash in CT^* (in the simulation: $C^* \notin V$).

• (1) When $\mathbf{D}(\phi(SK), \mathsf{CT}) = \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\mathbf{D}(\phi(\mathcal{SK}),\mathsf{CT})=\bot)\geq\mathsf{H}_{\infty}(\mathcal{K}^*)-\mathsf{log}(1/p_0),$

where
$$p_0 = \Pr[\mathbf{D}(\phi(SK), CT) = \bot]$$
.

(2) When
$$\mathbf{D}(\phi(SK), CT) \neq \bot$$
,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\mathbf{D}(\phi(\mathcal{SK}),\mathsf{CT})\neq \bot)\geq \mathsf{H}_{\infty}(\mathcal{K}^*)-\log(1/p_1)$

where $p_1 = \Pr[\mathbf{D}(\phi(SK), CT) \neq \bot]$.

(1) immediately follows from the useful lemma. But, how about (2)?

Let $CT = (C, m \oplus K, A(vk, K), vk, \sigma)$ be a query ciphertext of Qin-Liu PKE and $K^* = \Lambda_{sk}(C^*)$ be the challenge hash in CT^* (in the simulation: $C^* \notin V$).

• (1) When $\mathbf{D}(\phi(\mathcal{SK}), \mathsf{CT}) = \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\boldsymbol{\mathsf{D}}(\phi(\mathcal{S}\mathcal{K}),\mathsf{CT})=\bot)\geq\mathsf{H}_{\infty}(\mathcal{K}^*)-\mathsf{log}(1/p_0),$

where $p_0 = \Pr[\mathbf{D}(\phi(SK), CT) = \bot]$.

(2) When $\mathbf{D}(\phi(SK), CT) \neq \bot$,

 $\mathsf{H}_{\infty}(\mathcal{K}^*|\mathbf{D}(\phi(\mathcal{SK}),\mathsf{CT})\neq \bot)\geq \mathsf{H}_{\infty}(\mathcal{K}^*)-\log(1/p_1)$

where $p_1 = \Pr[\mathbf{D}(\phi(SK), CT) \neq \bot]$.

(1) immediately follows from the useful lemma. But, how about (2)? Except for revealing the fact $\mathbf{D}(\phi(SK), CT) \neq \bot$, it apparently reveals message $\mathbf{D}(\phi(SK), CT)$...

Observation, **Cont**.

However, the entropy of $D(\phi(SK), CT)$ is zero, given CT, because of injective A(vk, K). Therefore,

$$\begin{split} \widetilde{\mathsf{H}}_{\infty}(\mathcal{K}^* | \mathbf{D}(\phi(\mathcal{S}\mathcal{K}), \mathsf{CT}) \neq \bot) &\geq \widetilde{\mathsf{H}}_{\infty}(\mathcal{K}^* | \mathbf{D}(\phi(\mathcal{S}\mathcal{K}), \mathsf{CT})) - \log(1/p_1) \\ &= \widetilde{\mathsf{H}}_{\infty}(\mathcal{K}^* | \Lambda_{\phi(\mathcal{S}\mathcal{K})}(\mathcal{C})) - \log(1/p_1) \\ &= \widetilde{\mathsf{H}}_{\infty}(\mathcal{K}^* | \mathcal{K}) - \log(1/p_1) \\ &= \mathsf{H}_{\infty}(\mathcal{K}^*) - \log(1/p_1) \end{split}$$

where $p_1 = \Pr[\mathbf{D}(\phi(SK), CT) \neq \bot]$.

Now,

Let p_i $(1 \le i < \ell)$ be the probability that **D** does not reject *i*-th query ciphertext. Let p_ℓ be the probability that **D** rejects ℓ -th query ciphertext.

Note that there is a trade-off between leakage bit log(1/p) and probability p, i.e., If log(1/p) is big, then p is small, and vice versa.

Now,

Let p_i $(1 \le i < \ell)$ be the probability that **D** does not reject *i*-th query ciphertext. Let p_ℓ be the probability that **D** rejects ℓ -th query ciphertext.

Note that there is a trade-off between leakage bit $\log(1/p)$ and probability p, i.e., If $\log(1/p)$ is big, then p is small, and vice versa.

If the total leakage bits from all tampering queries $\sum_{i=1}^{\ell} \log(1/p_i) \ge \omega(\log \kappa)$, then the probability that occurs is

$$\prod_{i=1}^{\ell} p_i = 2^{-\omega(\log \kappa)} = \operatorname{negl}(\kappa).$$

Now,

Let p_i $(1 \le i < \ell)$ be the probability that **D** does not reject *i*-th query ciphertext. Let p_ℓ be the probability that **D** rejects ℓ -th query ciphertext.

Note that there is a trade-off between leakage bit $\log(1/p)$ and probability p, i.e., If $\log(1/p)$ is big, then p is small, and vice versa.

If the total leakage bits from all tampering queries $\sum_{i=1}^{\ell} \log(1/p_i) \ge \omega(\log \kappa)$, then the probability that occurs is

$$\prod_{i=1}^{\ell} p_i = 2^{-\omega(\log \kappa)} = \operatorname{negl}(\kappa).$$

So, Qin-Liu PKE reveals at most $\omega(\log \kappa)$ bits against tampering attacks w/ overwhelming prob.

To sum up,

Qin-Liu PKE reveals at most $\omega(\log \kappa)$ bits against tampering attacks.

Qin-Liu PKE is $\operatorname{BL-CCA}$ secure and can afford $\mathcal{O}(\kappa)$ bit memory leakage.

Instantiations: (1 - o(1))|SK| from DCR. $\frac{1}{4}(1 - o(1))|SK|$ from DDH, where $|SK| = O(\kappa)$.

Therefore, Qin-Liu PKE is CTBL-CCA secure.

1 Tampering Attacks

2 CTBL-CCA secure PKE scheme

3 CTL-CCA secure PKE scheme

4 Impossibility Result (Signature)

5 Conclusion

Remark

The CTBL-CCA security notion does not imply the IND-CCA security notion, because the decryption oracle self-destructs even when it receives an invalid ciphertext under the original secret sk – it cannot distinguish a tampering query from a normal decryption query.

The CTL-CCA security notion implies the IND-CCA security notion.

Definition: PKE with a Key-Update mechanism [BKKV10]

 $\Pi = (\mathsf{Setup}, \mathsf{Update}, \textbf{K}, \textbf{E}, \textbf{D})$ is PKE with a key-update mechanism if

- (Setup, K, E, D) is a standard PKE and
- Update takes sk and updates it to sk' (with fresh randomness) without changing pk.

Definition: CTL-CCA Game

Let $\Pi = (Setup, Update, \mathbf{K}, \mathbf{E}, \mathbf{D})$ be PKE with key-update.

- Adversary A is given (ρ, pk) generated by Setup and K, respectively.
- A may submit tampering queries (ϕ, CT) to the decryption oracle D, and D returns $D(\phi(sk), CT)$. If $D(\phi(sk), CT) = \bot$, then D updates sk to sk'.
- A may submit leakage queries L to the leak oracle Leak, and Leak returns L(sk) (if the total leak bits $\leq \lambda$ for the same sk).
- A makes (m_0, m_1) and receives $CT^* = \mathbf{E}_{pk}(m_{b^*})$ where $b^* \leftarrow \{0, 1\}$.
- A may submit decryption queries CT (≠ CT*) to the decryption oracle D and D returns D(sk, CT). If D(sk, CT) = ⊥, then D updates sk to sk'.

A returns b.

 Π is CTL-CCA secure if $\operatorname{Adv}_{\Pi}^{\operatorname{ctl-cca}}(\kappa) = |2 \operatorname{Pr}[b = b^*] - 1| = \operatorname{negl}(\kappa)$.

Reminder: Why is Qin-Liu PKE CTBL-CCA secure ?

Remember Qin-Liu PKE (= HPS+ABO).

- \blacksquare HPS makes $\operatorname{BL-CPA}$ secure PKE.
- ABO transforms BL-CPA secure PKE to BL-CCA secure one (proven by Qin and Liu), and also keeps it small to reveal secret key *sk* by answering *one* tampering query.

Reminder: Why is Qin-Liu PKE CTBL-CCA secure ?

Remember Qin-Liu PKE (= HPS+ABO).

- \blacksquare HPS makes $\operatorname{BL-CPA}$ secure PKE.
- ABO transforms BL-CPA secure PKE to BL-CCA secure one (proven by Qin and Liu), and also keeps it small to reveal secret key *sk* by answering *one* tampering query.

Although the leakage is small for one tampering, it is leaked step by step. So, the self-destruction is needed. The decryption algorithm can detect tampering before it reveals too much.

Reminder: Why is Qin-Liu PKE CTBL-CCA secure ?

Remember Qin-Liu PKE (= HPS+ABO).

- \blacksquare HPS makes $\operatorname{BL-CPA}$ secure PKE.
- ABO transforms BL-CPA secure PKE to BL-CCA secure one (proven by Qin and Liu), and also keeps it small to reveal secret key *sk* by answering *one* tampering query.

Although the leakage is small for one tampering, it is leaked step by step. So, the self-destruction is needed. The decryption algorithm can detect tampering before it reveals too much.

(Observation) If there is HPS with a key-update mechanism, then, by combining it with ABO, we can construct ${\rm CTL-CCA}$ secure PKE.

ADVW PKE Scheme at ASIACRYPT 2013

Agrawal et al. [ADVW13] PKE scheme is hash proof system based and IND-CPA secure and resilient to continuous leakage in the floppy disk model.

The floppy disk model: There are two secret-keys, *sk* and *usk*, for a user.

- *sk* is used for decryption, which is the target of leakage.
- *usk* is not revealed and is used to update *sk* to *sk'* (with fresh randomness), i.e., $sk' \leftarrow Update(usk, sk)$.

(Goal) Modify the key-update algorithm in the floppy disk model to one in the key-update model [BKKV10], such as $sk' \leftarrow \text{Update}(sk)$.

Proof Idea (CTL-CCA)

There are two steps.

- A hash proof system in Agrawal et al. [ADVW13] is defined on an ordinary prime order group. We translate it in bilinear groups, which makes it possible to key-update without other secret.
- For security proof, we modify the random subspace lemma in [ADVW13].

Proof Idea (CTL-CCA)

The Agrawal et al.version of Random subspace lemma [ADVW13].

Lemma

Let $2 \leq d < t \leq n$ and $\lambda < (d-1)\log(q)$. Let $\mathcal{W} \subset \mathbb{F}_q^n$ be an arbitrary vector subspace in \mathbb{F}_q^n of dimension t. Let $L : \{0,1\}^* \to \{0,1\}^{\lambda}$ be an arbitrary function. Then, we have

$$\operatorname{Dist}\left(\left(\mathbf{A}, L(\mathbf{A}\vec{v})\right), \left(\mathbf{A}, L(\vec{u})\right)\right) = \operatorname{negl}(\kappa)$$

where $\mathbf{A} := (\vec{a_1}, \dots, \vec{a_d}) \leftarrow \mathcal{W}^d$ (seen as a $n \times d$ matrix), $\vec{v} \leftarrow \mathbb{F}_q^d$, and $\vec{u} \leftarrow \mathcal{W}$.

Proof Idea (CTL-CCA), Ctd.

We instead use the random sub subspace lemma in this work.

Lemma

Let $2 \leq d \leq t' < t \leq n$ and $\lambda < (d-1)\log(q)$. Let $\mathcal{W} \subset \mathbb{F}_q^n$ be an arbitrary vector subspace in \mathbb{F}_q^n of dimension t. Let $L : \{0,1\}^* \to \{0,1\}^\lambda$ be an arbitrary function. Then, we have

$$\operatorname{Dist}\left(\left(\mathbf{A}, L(\mathbf{A}\vec{v})\right), \left(\mathbf{A}, L(\vec{u})\right)\right) = \operatorname{negl}(\kappa),$$

where \mathcal{W}' is a random vector subspace in \mathcal{W} of dimension t'(independent of function L), $\mathbf{A} := (\vec{a_1}, \dots, \vec{a_d}) \leftarrow {\mathcal{W}'}^d$ (seen as a $n \times d$ matrix), $\vec{v} \leftarrow \mathbb{F}_q^d$, and $\vec{u} \leftarrow \mathcal{W}$.

Then, we succeed in constructing a CTL-CCA secure PKE scheme.

1 Tampering Attacks

2 CTBL-CCA secure PKE scheme

3 CTL-CCA secure PKE scheme

4 Impossibility Result (Signature)

5 Conclusion

Impossibility result to SIG

Theorem

There is no EUF-CMA signature resilient to unbounded polynomial many non-persistent tamperings of arbitary function even with a key-destruction mechanisim.

Proof.

The adversary runs the key-generation algorithm, Gen, and obtains two legitimate key pairs, (vk_0, sk_0) and (vk_1, sk_1) . Then, it sets a set of functions $\{\phi_{(sk_0, sk_1)}^i\}$, such that

$$\phi^i_{(sk_0,sk_1)}(sk) = egin{cases} sk_0 & ext{if the i-th bit of sk is 0,} \\ sk_1 & ext{otherwise.} \end{cases}$$

For query $(\phi_{(sk_0,sk_1)}^i, m)$, the adversary can obtain *i*-th bit of *sk* while the signing oracle cannot detect tampering.

1 Tampering Attacks

2 CTBL-CCA secure PKE scheme

3 CTL-CCA secure PKE scheme

4 Impossibility Result (Signature)

5 Conclusion

Summary

- **[PKE]** The first CCA-secure PKE schemes resilient to continuous (pre-challenge) tampering of *arbitrary* functions.
 - Qin-Liu PKE scheme at ASIACRYPT 13 [QL13] w/ self-destructive mechanism is resilient to *continuous tampering and bounded memory leakage* (CTBL-CCA secure).
 - A variant of Agrawal et al.PKE scheme [ADVW13] w/ a key-updating mechanism is resilient to *continuous tampering and continuous memory leakage* (CTL-CCA secure).
- [Sig] Impossible result: There is no signature scheme resilient to continuous non-persistent tampering even with a self-destructive mechanism.
 - (*) If a key-update mechanism works only when a tampering is detected, then no signature scheme even with a key-update mechanism.

Comparison

Prim.	Self-Dest.	Key	Tamp.	Leak	Security	Model	Notes
		Update					
PKE			c-tamp		CCA	even in ATP	Impossible
							[GLM ⁺ 04]
PKE	~	~	b-tamp		CCA	post-cha.	Impossible
						tampering	[DFMV13]
PKE			b-tamp	b-leak	CCA	per./n-per.	[DFMV13]
PKE		\checkmark	c-tamp	c-leak —	CCA	Floppy	[DFMV13]
PKE			b-tamp	b-leak	CCA	per./n-per.	[FV16]
PKE		\checkmark	c-tamp	c-leak	CPA	persist	[KKS11]
PKE	\checkmark		c-tamp	b-leak	CCA	per./n-per.	This work
PKE		\checkmark	c-tamp	c-leak	CCA	persist	?
PKE		\checkmark	c-tamp	c-leak	CCA	n-persist	This work
Sig			c-tamp		CMA	per./n-per.	Impossible
							[GLM ⁺ 04]
Sig	~		c-tamp	b-leak	?	persist	KKS [KKS11]
Sig		\checkmark	c-tamp —	c-leak	CMA	persist	KKS [KKS11]
Sig	\checkmark		c-tamp		CMA	n-persist	Impossible
Sig		(√*)	c-tamp		CMA	n-persist	Impossible
							(This work)

Table: Tampering-Resilient Primitives against arbitrary tampering functions.

b-tamp: bounded tampering. c-tamp: continuous tampering.

References I

[ADVW13] Shweta Agrawal, Yevgeniv Dodis, Vinod Vaikuntanathan, and Daniel Wichs, On continual leakage of discrete log representations. In Sako and Sarkar [SS13], pages 401-420. [BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 491-506. Springer, Heidelberg, 2003. Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikuntanathan. [BKKV10] Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In FOCS 2010, pages 501-510, IEEE Computer Society, 2010, [CS02] Ronald Cramer and Victor Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 45-64. Springer, Heidelberg, 2002. [DFMV13] Ivan Damgård, Sebastian Faust, Pratvav Mukheriee, and Daniele Venturi, Bounded tamper resilience: How to go beyond the algebraic barrier. In Sako and Sarkar [SS13], pages 140-160, See also http://eprint.iacr.org/2013/677 and http://eprint.iacr.org/2013/124. [FV16] Antonio Faonio and Daniele Venturi. Efficient public-key cryptography with bounded leakage and tamper resilience. IACR Cryptology ePrint Archive, 2016:529, 2016 [GLM⁺04] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic tamper-proof (ATP) security: Theoretical foundations for security against hardware tampering. In Moni Naor, editor, TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 258-277. Springer, Heidelberg, 2004

References II

 [JW15] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, *TCC 2015 (1)*, volume 9014 of *Lecture Notes in Computer Science*, pages 451-480. Springer, Heidelberg, 2015. See also http://eprint.iacr.org/2014/956.
 [KKS11] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable and leaky memory. In Phillip Rogaway, editor, *CRYPTO 2011*, volume 6841 of *Lecture Notes in Computer Science*, pages 373–390. Springer, Heidelberg, 2011.
 [PW08] Chris Peikert and Brent Waters. Lossy trapdor functions and their applications.

In Richard E. Ladner and Cynthia Dwork, editors, STOC 2008, pages 187-196. ACM, 2008.

[QL13] Baodong Qin and Shengli Liu. Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time lossy filter. In Sako and Sarkar [SS13], pages 381–400.

[SS13] Kazue Sako and Palash Sarkar, editors. Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and Application of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, volume 8270 of Lecture Notes in Computer Science. Springer, Heidelberg, 2013. Public-key cryptosystems resilient to continuous tampering and leakage of arbitrary functions

Thank you! (完)

