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Secure Multi-Party Computation (MPC)                         
[Yao82, GMW87, BGW88, CCD88, RB89,…] 

Mutually distrustful parties wish to 

evaluate function of their inputs 
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Secure Multi-Party Computation (MPC) (2)                   
[GMW87, C00, C01,…] 
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Secure Multi-Party Computation (MPC) (2)                   
[GMW87, C00, C01,…] 

MPC protocol should emulate a 

trusted third party 
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Secure Multi-Party Computation (MPC) (3) 
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Secure Multi-Party Computation (MPC) (3) 

Simulation-based 

security definition in 

the Universal 

Composability (UC) 

framework  [C01] 
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Synchronous Communication Network 

 Each pair of parties connected by secure channels 

 Protocol proceeds in rounds 

 Messages sent in particular round guaranteed to arrive by 

beginning of next round 
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Synchronous Communication Network 

 Each pair of parties connected by secure channels 

 Protocol proceeds in rounds 

 Messages sent in particular round guaranteed to arrive by 

beginning of next round 

 “Plain” UC framework is inherently asynchronous 

• Adversary has full control over message delivery; may choose to delete 

messages sent between honest parties 

• “Synchronous” UC using clock functionality and bounded-delay 

channels [KMTZ13] 
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Asynchronous Communication Network 

 Synchronous network: great for analysis 

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T) 

• Round length typically (much) higher than average transmission time 
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Asynchronous Communication Network 

 Synchronous network: great for analysis 

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T) 

• Round length typically (much) higher than average transmission time 

 UC asynchrony: overly pessimistic 

“It takes advantage of the nature of information being easy to 

spread but hard to stifle.” 

                                                        Satoshi Nakamoto 
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Asynchronous Communication Network (2) 

 Each pair of parties connected by secure channels 

 Messages sent guaranteed to arrive only eventually 

 Adversary may: 

• Delay message delivery by arbitrary finite amount of time 

• Reorder messages 

• Note: No deletions! (Unlike UC) 

 Model considered early on in fault-tolerant distributed computing (e.g., 

[FLP83]) and asynchronous MPC [BCG93,…] 
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Asynchronous Communication Network (2) 

 Each pair of parties connected by secure channels 

 Messages sent guaranteed to arrive only eventually 

 Adversary may: 

• Delay message delivery by arbitrary finite amount of time 

• Reorder messages 

• Note: No deletions! (Unlike UC) 

 Model considered early on in fault-tolerant distributed computing (e.g., 

[FLP83]) and asynchronous MPC [BCG93,…] 

 “Opportunistic”: protocols terminate as quickly as the network allows 
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Asynchronous Communication Network (2) 

 Each pair of parties connected by secure channels 

 Messages sent guaranteed to arrive only eventually 

 Adversary may: 

• Delay message delivery by arbitrary finite amount of time 

• Reorder messages 

• Note: No deletions! (Unlike UC) 

 Model considered early on in fault-tolerant distributed computing (e.g., 

[FLP83]) and asynchronous MPC [BCG93,…] 

 “Opportunistic”: protocols terminate as quickly as the network allows 

 To date: Asynchronous MPC with eventual delivery not modeled in UC 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and  

async. Byzantine agreement (A-BA) 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and  

async. Byzantine agreement (A-BA) 

 Constant-round MPC protocol  

• I.e., round complexity independent of circuit’s multiplicative depth 

• Based on standard assumptions (PRFs) 

• Tolerates t < n/3 corruptions 

• Adaptive adversary 
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Prior Work: Constant-Round MPC Protocols 

 Synchronous model: 

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08] 

• Based on FHE [AJLTVW12] 

• t < n/2 corruptions 

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16]) 
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Prior Work: Constant-Round MPC Protocols 

 Synchronous model: 

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08] 

• Based on FHE [AJLTVW12] 

• t < n/2 corruptions 

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16]) 

 Asynchronous model (recall: eventual delivery): 

• Based on FHE [Coh16] 

• t < n/3 corruptions 

• Static security 

• Assume A-BA 

• (Other known protocols are GMW-based → circuit depth) 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and  

async. Byzantine agreement (A-BA) 

 Constant-round MPC protocol  

• I.e., round complexity independent of circuit’s multiplicative depth 

• Based on standard assumptions (PRFs) 

• Tolerates t < n/3 corruptions 

• Adaptive adversary 
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Modeling Asynchronous Communication in UC 

Sender Receiver 

Input messages 

• Poll for messages:     

T = T-1 

• If T = 0, first message 

in buffer output 

A-SMT Functionality: 

• Stores messages in buffer 

• Maintains delay T 

Adversary 

• Reorder messages in buffer 

• Increase T, specified in unary 
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Modeling Asynchronous Communication in UC (2) 

 Protocol execution: 

• Party either sends message or 

• polls A-SMT channels in round-robin fashion 
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Modeling Asynchronous Communication in UC (2) 

 Protocol execution: 

• Party either sends message or 

• polls A-SMT channels in round-robin fashion 

 

 Round complexity:  Maximum number of times any party switches 

between sending and polling 
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Modeling Asynchronous Secure Function Evaluation in UC 

Parties P 

• Provide input 

• Poll for output: T = T-1 

• If T = 0, first message in 

buffer output 

 

 

A-SFE Functionality: 

• Collects inputs and computes output 

• Maintains delay T 

Adversary 

• Decide on set of n-t input providers 

• Increase T, specified in unary 
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Modeling Asynchronous Byzantine Agreement in UC 

Parties P 

• Provide input 

• Poll for output: T = T-1 

• If T = 0, first message in 

buffer output 

 

 
A-BA Functionality: 

• Maintains delay T 

• Collects inputs and computes output 

• If there is agreement in C output 

corresponding value 

• Otherwise, output a value specified by 

attacker 

Adversary 

• Decide on set C of n-t input providers 

• Increase T, specified in unary 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and async. 

Byzantine agreement (A-BA) 

 Constant-round MPC protocol  

• I.e., round complexity independent of circuit’s multiplicative depth 

• Based on standard assumptions (PRFs) 

• Tolerates t < n/3 corruptions 

• Adaptive adversary 
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Our Constant-Round Async. MPC Protocol 

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model 

 Function computed specified by Boolean circuit 

 Computational security against adversary adaptively corrupting up 

to t < n/3 parties (optimal [BCG93, Can95] ) 

 Constant-round 

 Black-box from one-way functions 
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Protocol Overview 

 Three phases for computing Boolean circuit C: 

I. Compute distributed version of garbled circuit  

• Evaluate constant-depth function using asynchronous (unconditionally secure) 

MPC protocol by [BKR94] (whose round complexity depends on depth of 

evaluated circuit) 

II. With output from Phase I, complete circuit garbling 

III. Locally evaluate garbled circuit 
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Circuit Garbling [Yao86,BMR90] 

 Idea: Associated with every wire w of Boolean circuit C: 

• mask mw (to hide actual value on wire) and 

• two keys kw,0, kw,1 

 

 Evaluate circuit on masked values while maintaining invariant: 

 

If masked value is z, kw,z is known and kw,1-z is secret 
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Circuit Garbling [Yao86,BMR90] (2) 

z1 z2 Masked Output Bit z Garbled Entry 

0 0 ((0 + ma) NAND (0 + mb)) + mc  E(ka,0,kb,0, z || kc,z) 

0 1 ((0 + ma) NAND (1 + mb)) + mc  E(ka,0,kb,1, z || kc,z) 

1 0 ((1 + ma) NAND (0 + mb)) + mc  E(ka,1,kb,0, z || kc,z) 

1 1 ((1 + ma) NAND (1 + mb)) + mc  E(ka,1,kb,1, z || kc,z) 

To evaluate garbled circuit, use: 

• Masked values on input wires and 
corresponding keys 

• Masks of output wires 

NAND 

a b 

c 
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Issue 1 

  Evaluating encryption function in MPC → non-black-box 
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  Solution:  “Distributed encryption” [DI05] 

Regular encryption: E(k,m) 
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Issue 1 

  Evaluating encryption function in MPC → non-black-box 

  Solution:  “Distributed encryption” [DI05] 

Regular encryption: E(k,m) 

Distributed encryption:  Use sub-keys k1,…,kn instead of k 

 Secret-share m  

 Give ith share mi and ki to party Pi 

 Pi computes E(ki,mi) and sends to all 
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Circuit Garbling with Distributed Encryption 

 Idea: Associated with every wire w of circuit C: 

• mask mw (to hide actual value on wire) and 

• two key sets kw,0, kw,1, each consisting of n subkeys 

 Evaluate circuit on masked values while maintaining invariant: 

 

If masked value is z, kw,z is known and kw,1-z is secret. 
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Circuit Garbling without Distributed Encryption 

z1 z2 Masked Output Bit z Garbled Entry 

0 0 ((0 + ma) NAND (0 + mb)) + mc  E(ka,0,kb,0, z || kc,z) 

0 1 ((0 + ma) NAND (1 + mb)) + mc  E(ka,0,kb,1, z || kc,z) 

1 0 ((1 + ma) NAND (0 + mb)) + mc  E(ka,1,kb,0, z || kc,z) 

1 1 ((1 + ma) NAND (1 + mb)) + mc  E(ka,1,kb,1, z || kc,z) 

NAND 

a b 

c 
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Circuit Garbling with Distributed Encryption 

 

z1 z2 Masked Output Bit z Garbled Entry 

0 0 ((0 + ma) NAND (0 + mb)) + mc  [ z , kc,z ] 

0 1 ((0 + ma) NAND (1 + mb)) + mc  [ z , kc,z ] 

1 0 ((1 + ma) NAND (0 + mb)) + mc  [ z , kc,z ] 

1 1 ((1 + ma) NAND (1 + mb)) + mc  [ z , kc,z ] 

NAND 

a b 

c 

Instead of encrypting garbled entry, compute 

secret-sharing of (each component of) it 
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Phase I: Setting the Stage for Garbling with Distributed 

Encryption 

Phase I: Described by (randomized) constant-depth function that 

 Randomly chooses masks and subkeys 

 Computes masked inputs and corresponding subkeys based on player 

inputs and masks 

 Computes shared function tables (can be done in parallel) 

 Outputs to Pi: 

• Masked inputs and corresponding subkeys 

• ith shares of all shared function tables 

• Masks of output wires 
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Phase I: Setting the Stage for Garbling with Distributed 

Encryption (2) 

 Actual Phase I: Evaluate Phase I function using [BKR94] protocol 

 Round complexity of [BKR94] depends on depth of evaluated 

circuit 

 But: Phase I function is constant-depth! 
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Issue 2 

 [BKR94] protocol evaluates arithmetic circuits 

 Phase I function described by Boolean circuit 

 → Conversion to circuit over extension field of GF(2) 

• Replace each NAND gate with inputs x,y by a computation of  1−xy 

 Ensure that all inputs are 0,1 as follows: 

• After input phase, for every input x, jointly open x – x2  [BGN05]  

• If result is 0, accept x, otherwise replace by 0 
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Protocol Overview 

 Three phases for computing Boolean circuit C: 

I. Compute distributed version of garbled circuit  

• Evaluate constant-depth function using asynchronous (unconditionally secure) 

MPC protocol by [BKR94] (whose round complexity depends on depth of 

evaluated circuit) 

II. With output from Phase I, complete circuit garbling 

III. Locally evaluate garbled circuit 



43 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions  

Phases II + III: Encrypting and Evaluating 

 Phase II: Compute encryption of garbled entries 

• Each party Pi locally encrypts its shares with the appropriate subkeys and 

sends resulting ciphertexts to all 
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Phases II + III: Encrypting and Evaluating 

 Phase II: Compute encryption of garbled entries 

• Each party Pi locally encrypts its shares with the appropriate subkeys and 

sends resulting ciphertexts to all 

 Phase III: Locally evaluate garbled circuit 

• Decryption of a function table entry with decryption subkeys k1,…,kn: 

o Upon receiving encrypted share from Pi, decrypt it with ki 

o Wait until 2t+1 shares on degree-t polynomial received and interpolate 
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Recap: Constant-Round Async. MPC Protocol 

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model 

 Function computed specified by Boolean circuit 

 Computationally secure against adversary adaptively corrupting up 

to t < n/3 parties (optimal [BCG93, Can95] ) 

 Constant-round 

 Black-box from one-way functions 



 S. Coretti, J. Garay, M. Hirt and V. Zikas, “Constant-Round Asynchronous 

Multi-Party Computation Based on One-Way Functions.” Cryptology 
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          http://eprint.iacr.org/2016/208 
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Full Version  
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