

Sandro Coretti (New York University)

Juan Garay (Yahoo Research)

Martin Hirt (ETH Zurich)
Vassilis Zikas (RPI)

Constant-Round Asynchronous

Mult i -Party Computat ion Based on

One-Way Funct ions

2 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC)
[Yao82, GMW87, BGW88, CCD88, RB89,…]

3 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC)
[Yao82, GMW87, BGW88, CCD88, RB89,…]

Mutually distrustful parties wish to

evaluate function of their inputs

4 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (2)
[GMW87, C00, C01,…]

5 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (2)
[GMW87, C00, C01,…]

MPC protocol should emulate a

trusted third party

6 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (3)

7 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (3)

Simulation-based

security definition in

the Universal

Composability (UC)

framework [C01]

8 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Synchronous Communication Network

 Each pair of parties connected by secure channels

 Protocol proceeds in rounds

 Messages sent in particular round guaranteed to arrive by

beginning of next round

9 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Synchronous Communication Network

 Each pair of parties connected by secure channels

 Protocol proceeds in rounds

 Messages sent in particular round guaranteed to arrive by

beginning of next round

 “Plain” UC framework is inherently asynchronous

• Adversary has full control over message delivery; may choose to delete

messages sent between honest parties

• “Synchronous” UC using clock functionality and bounded-delay

channels [KMTZ13]

10 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

11 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

 UC asynchrony: overly pessimistic

12 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

 UC asynchrony: overly pessimistic

“It takes advantage of the nature of information being easy to

spread but hard to stifle.”

13 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

 UC asynchrony: overly pessimistic

“It takes advantage of the nature of information being easy to

spread but hard to stifle.”

 Satoshi Nakamoto

14 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network (2)

 Each pair of parties connected by secure channels

 Messages sent guaranteed to arrive only eventually

 Adversary may:

• Delay message delivery by arbitrary finite amount of time

• Reorder messages

• Note: No deletions! (Unlike UC)

 Model considered early on in fault-tolerant distributed computing (e.g.,

[FLP83]) and asynchronous MPC [BCG93,…]

15 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network (2)

 Each pair of parties connected by secure channels

 Messages sent guaranteed to arrive only eventually

 Adversary may:

• Delay message delivery by arbitrary finite amount of time

• Reorder messages

• Note: No deletions! (Unlike UC)

 Model considered early on in fault-tolerant distributed computing (e.g.,

[FLP83]) and asynchronous MPC [BCG93,…]

 “Opportunistic”: protocols terminate as quickly as the network allows

16 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network (2)

 Each pair of parties connected by secure channels

 Messages sent guaranteed to arrive only eventually

 Adversary may:

• Delay message delivery by arbitrary finite amount of time

• Reorder messages

• Note: No deletions! (Unlike UC)

 Model considered early on in fault-tolerant distributed computing (e.g.,

[FLP83]) and asynchronous MPC [BCG93,…]

 “Opportunistic”: protocols terminate as quickly as the network allows

 To date: Asynchronous MPC with eventual delivery not modeled in UC

17 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and

async. Byzantine agreement (A-BA)

18 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and

async. Byzantine agreement (A-BA)

 Constant-round MPC protocol

• I.e., round complexity independent of circuit’s multiplicative depth

• Based on standard assumptions (PRFs)

• Tolerates t < n/3 corruptions

• Adaptive adversary

19 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Prior Work: Constant-Round MPC Protocols

 Synchronous model:

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]

• Based on FHE [AJLTVW12]

• t < n/2 corruptions

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

20 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Prior Work: Constant-Round MPC Protocols

 Synchronous model:

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]

• Based on FHE [AJLTVW12]

• t < n/2 corruptions

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

 Asynchronous model (recall: eventual delivery):

• Based on FHE [Coh16]

• t < n/3 corruptions

• Static security

• Assume A-BA

• (Other known protocols are GMW-based → circuit depth)

21 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and

async. Byzantine agreement (A-BA)

 Constant-round MPC protocol

• I.e., round complexity independent of circuit’s multiplicative depth

• Based on standard assumptions (PRFs)

• Tolerates t < n/3 corruptions

• Adaptive adversary

22 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Communication in UC

Sender Receiver

Input messages

• Poll for messages:

T = T-1

• If T = 0, first message

in buffer output

A-SMT Functionality:

• Stores messages in buffer

• Maintains delay T

Adversary

• Reorder messages in buffer

• Increase T, specified in unary

23 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Communication in UC (2)

 Protocol execution:

• Party either sends message or

• polls A-SMT channels in round-robin fashion

24 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Communication in UC (2)

 Protocol execution:

• Party either sends message or

• polls A-SMT channels in round-robin fashion

 Round complexity: Maximum number of times any party switches

between sending and polling

25 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Secure Function Evaluation in UC

Parties P

• Provide input

• Poll for output: T = T-1

• If T = 0, first message in

buffer output

A-SFE Functionality:

• Collects inputs and computes output

• Maintains delay T

Adversary

• Decide on set of n-t input providers

• Increase T, specified in unary

26 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Byzantine Agreement in UC

Parties P

• Provide input

• Poll for output: T = T-1

• If T = 0, first message in

buffer output

A-BA Functionality:

• Maintains delay T

• Collects inputs and computes output

• If there is agreement in C output

corresponding value

• Otherwise, output a value specified by

attacker

Adversary

• Decide on set C of n-t input providers

• Increase T, specified in unary

27 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and async.

Byzantine agreement (A-BA)

 Constant-round MPC protocol

• I.e., round complexity independent of circuit’s multiplicative depth

• Based on standard assumptions (PRFs)

• Tolerates t < n/3 corruptions

• Adaptive adversary

28 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Our Constant-Round Async. MPC Protocol

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model

 Function computed specified by Boolean circuit

 Computational security against adversary adaptively corrupting up

to t < n/3 parties (optimal [BCG93, Can95])

 Constant-round

 Black-box from one-way functions

29 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Protocol Overview

 Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using asynchronous (unconditionally secure)

MPC protocol by [BKR94] (whose round complexity depends on depth of

evaluated circuit)

II. With output from Phase I, complete circuit garbling

III. Locally evaluate garbled circuit

30 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling [Yao86,BMR90]

 Idea: Associated with every wire w of Boolean circuit C:

• mask mw (to hide actual value on wire) and

• two keys kw,0, kw,1

 Evaluate circuit on masked values while maintaining invariant:

If masked value is z, kw,z is known and kw,1-z is secret

31 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling [Yao86,BMR90] (2)

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

To evaluate garbled circuit, use:

• Masked values on input wires and
corresponding keys

• Masks of output wires

NAND

a b

c

32 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

33 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

 Solution: “Distributed encryption” [DI05]

34 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

 Solution: “Distributed encryption” [DI05]

Regular encryption: E(k,m)

35 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

 Solution: “Distributed encryption” [DI05]

Regular encryption: E(k,m)

Distributed encryption: Use sub-keys k1,…,kn instead of k

 Secret-share m

 Give ith share mi and ki to party Pi

 Pi computes E(ki,mi) and sends to all

36 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling with Distributed Encryption

 Idea: Associated with every wire w of circuit C:

• mask mw (to hide actual value on wire) and

• two key sets kw,0, kw,1, each consisting of n subkeys

 Evaluate circuit on masked values while maintaining invariant:

If masked value is z, kw,z is known and kw,1-z is secret.

37 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling without Distributed Encryption

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

NAND

a b

c

38 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling with Distributed Encryption

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc [z , kc,z]

0 1 ((0 + ma) NAND (1 + mb)) + mc [z , kc,z]

1 0 ((1 + ma) NAND (0 + mb)) + mc [z , kc,z]

1 1 ((1 + ma) NAND (1 + mb)) + mc [z , kc,z]

NAND

a b

c

Instead of encrypting garbled entry, compute

secret-sharing of (each component of) it

39 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phase I: Setting the Stage for Garbling with Distributed

Encryption

Phase I: Described by (randomized) constant-depth function that

 Randomly chooses masks and subkeys

 Computes masked inputs and corresponding subkeys based on player

inputs and masks

 Computes shared function tables (can be done in parallel)

 Outputs to Pi:

• Masked inputs and corresponding subkeys

• ith shares of all shared function tables

• Masks of output wires

40 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phase I: Setting the Stage for Garbling with Distributed

Encryption (2)

 Actual Phase I: Evaluate Phase I function using [BKR94] protocol

 Round complexity of [BKR94] depends on depth of evaluated

circuit

 But: Phase I function is constant-depth!

41 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 2

 [BKR94] protocol evaluates arithmetic circuits

 Phase I function described by Boolean circuit

 → Conversion to circuit over extension field of GF(2)

• Replace each NAND gate with inputs x,y by a computation of 1−xy

 Ensure that all inputs are 0,1 as follows:

• After input phase, for every input x, jointly open x – x2 [BGN05]

• If result is 0, accept x, otherwise replace by 0

42 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Protocol Overview

 Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using asynchronous (unconditionally secure)

MPC protocol by [BKR94] (whose round complexity depends on depth of

evaluated circuit)

II. With output from Phase I, complete circuit garbling

III. Locally evaluate garbled circuit

43 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phases II + III: Encrypting and Evaluating

 Phase II: Compute encryption of garbled entries

• Each party Pi locally encrypts its shares with the appropriate subkeys and

sends resulting ciphertexts to all

44 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phases II + III: Encrypting and Evaluating

 Phase II: Compute encryption of garbled entries

• Each party Pi locally encrypts its shares with the appropriate subkeys and

sends resulting ciphertexts to all

 Phase III: Locally evaluate garbled circuit

• Decryption of a function table entry with decryption subkeys k1,…,kn:

o Upon receiving encrypted share from Pi, decrypt it with ki

o Wait until 2t+1 shares on degree-t polynomial received and interpolate

45 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Recap: Constant-Round Async. MPC Protocol

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model

 Function computed specified by Boolean circuit

 Computationally secure against adversary adaptively corrupting up

to t < n/3 parties (optimal [BCG93, Can95])

 Constant-round

 Black-box from one-way functions

 S. Coretti, J. Garay, M. Hirt and V. Zikas, “Constant-Round Asynchronous

Multi-Party Computation Based on One-Way Functions.” Cryptology

ePrint Archive Report 2016/208

 http://eprint.iacr.org/2016/208

46 The Bitcoin Backbone Protocol: Analysis and Applications

Full Version

Thanks!

