International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Alexander Schlösser

Publications

Year
Venue
Title
2022
PKC
Financially Backed Covert Security 📺
The security notion of covert security introduced by Aumann and Lindell (TCC'07) allows the adversary to successfully cheat and break security with a fixed probability 1-e, while with probability e, honest parties detect the cheating attempt. Asharov and Orlandi (ASIACRYPT'12) extend covert security to enable parties to create publicly verifiable evidence about misbehavior that can be transferred to any third party. This notion is called publicly verifiable covert security (PVC) and has been investigated by multiple works. While these two notions work well in settings with known identities in which parties care about their reputation, they fall short in Internet-like settings where there are only digital identities that can provide some form of anonymity. In this work, we propose the notion of financially backed covert security (FBC), which ensures that the adversary is financially punished if cheating is detected. Next, we present three transformations that turn PVC protocols into FBC protocols. Our protocols provide highly efficient judging, thereby enabling practical judge implementations via smart contracts deployed on a blockchain. In particular, the judge only needs to non-interactively validate a single protocol message while previous PVC protocols required the judge to emulate the whole protocol. Furthermore, by allowing an interactive punishment procedure, we can reduce the amount of validation to a single program instruction, e.g., a gate in a circuit. An interactive punishment, additionally, enables us to create financially backed covert secure protocols without any form of common public transcript, a property that has not been achieved by prior PVC protocols.
2021
EUROCRYPT
Generic Compiler for Publicly Verifiable Covert Multi-Party Computation 📺
Covert security has been introduced as a compromise between semi-honest and malicious security. In a nutshell, covert security guarantees that malicious behavior can be detected by the honest parties with some probability, but in case detection fails all bets are off. While the security guarantee offered by covert security is weaker than full-fledged malicious security, it comes with significantly improved efficiency. An important extension of covert security introduced by Asharov and Orlandi (ASIACRYPT'12) is \emph{public verifiability}, which allows the honest parties to create a publicly verifiable certificate of malicious behavior. Public verifiability significantly strengthen covert security as the certificate allows punishment via an external party, e.g., a judge. Most previous work on publicly verifiable covert (PVC) security focuses on the two-party case, and the multi-party case has mostly been neglected. In this work, we introduce a novel compiler for multi-party PVC secure protocols with no private inputs. The class of supported protocols includes the preprocessing of common multi-party computation protocols that are designed in the offline-online model. Our compiler leverages time-lock encryption to offer high probability of cheating detection (often also called deterrence factor) independent of the number of involved parties. Moreover, in contrast to the only earlier work that studies PVC in the multi-party setting (CRYPTO'20), we provide the first full formal security analysis.
2012
CHES

Program Committees

CHES 2016