

The Past, Present and
Future of Multiparty

Computation

IACR Distingushed lecture, 2006

Ivan Damgård

BRICS, Århus University

The MPC problem (as we usually describe it)

n players P1, P2, …, Pn

Player Pi holds input xi

Goal: for some given function f with n inputs and n outputs,
compute f(x1,…,xn)= (y1,…,yn) securely, i.e., we want a protocol
such that:

• Pi learns the correct value of yi

• No information on inputs in leaked to Pi, other than what follows
from xi and yi.

We want this to hold, even when some of the players are
corrupted by an Adversary.

Generality:
Virtually any protcol problem can in principle be solved using
general MPC

The
scenario

Adv

The players

Communication Network

x2, y2x1,
y1

x3,
y3

x4,y
4

Corrupt

Corruption can be passive:
just observe computation
and mess.
Or active: take full control

Inputs,
Desired
outputs

Goal of MPC – a bit more precisely

Adv

T

Exchange
inputs/results
with players

Corrupt
Want protocol to be
equivalent to a
trusted
(uncorruptible) party
T, who gets inputs
from players,
computes results and
returns them to the
players.

Goal of MPC, con’t

If this equivalence is for real, then protocol must guarantee any
security property that T guarantees, e.g.:

Adv may decide inputs that corrupted players should contribute, but
honest players always get correct results based on the inputs
contributed.

Adv only learns inputs/outputs of corrupted players.

Many technically different ways to fomalize the meaning of
”equivalent”

• Canetti’s UC framework

• Pfitzmann/Waidner/Baches BRS framework

But basic intuition remains the same.

Known Results on general MPC

General flavor of known results: as long as not too much corruption
happens, any function can be securely computed. If there is too much,
some functions become impossible to handle (usually includes the
most interesting ones).

For example, assuming secure point-to-point channels:

•Active, unbounded adversary:
 any function can be securely computed with perfect security iff <
n/3 of the players are corrupted.

If we assume that a broadcast channel is given, and we accept a non-
zero error probability, more is possible:

• active, unbounded adversary:
 any function can be securely computed with small error prob. iff <
n/2 of the players are corrupted.

Results of [Chaum,Crepeau,Damgaard,’88], [Ben-
Or,Goldwasser,Wigderson,’88] [Rabin,Ben-Or,’89], [Hirt,Maurer,’99],
[Cramer,Damgaard,Dziembowskie,Hirt,Rabin,’00]

Known Results, computational security

• Passive, polynomial time adversary:
Assuming one-way trapdoor permutations exist, any function can be
securely computed with computational security if number of
corrupted players is < n.

• Active, polynomial time adversary:
Assuming one-way trapdoor permutations exist, any function can be
securely computed with computational security iff < n/2 corruptions.

Results of [Yao’86], [Chaum, Damgård, Van de Graaf 87]
[Goldreich,Micali,Wigderson,’87],[Canetti,Feige,Goldreich,Naor,’96]

Any big questions left?

Many, if not most major theory questions on MPC answered

(at least) One exception, though:

which functions can be computed securely, with unconditional
security and in a constant number of rounds?

Applications in practice of MPC?

With all these nice general tools around, why are they not used
more in practice?

Obvious answer: general MPC protocols are not efficient enough

- But is it that simple?

My view on applications of MPC

- of course, efficiency is important

But other factors play a role too – perhaps we have the wrong
attitude:

”Great theoretical solutions looking for applications”

Maybe time for a different point of view:

”Take the application as point of departure – shape the solution
accordingly”

More precisely:

Study a (range of) applications scenarios. Find out exactly what sort
of secure computation is needed. What would motivate the players to
participate? What behavior are they likely to show?

And design the protocol based on that.

In the following:
• Some example application scenarios for illustration

• Examples of recent designs and tools that might be useful in the
applications.

The domain we look at:
Applications in ”Information Economy”, more precisely:

• Auctions

• Benchmarking

• Database Privacy

More details to follow..

Double Auction – the ”Stock Exchange”

Several potential buyers and sellers want to exchange a
commodity.

Each seller is willing to sell
various quantities, depending
on the price he can get. Each
buyer will buy various
quantities, again depending on
the price.

Goal: find a fair market price,
given the existing supply and
demand

Market clearing price: price per
unit where total supply in
market = total demand.

Benchmarking

A number of companies work in the same sector. Each
company has data on how their business is running –
productions costs, turnover, etc.

Goal: each company wants to
find out how well it is doing
compared to others.

Database privacy

Several different institutions possess different databases with
information on individual persons.

Goal: to extract statictics drawing on all databases
simultaneously.

Clear that all applications require correctness and some
amount of privacy, and that in principle this can be handled
with MPC.

But exactly what computation is required?

What we found:

Need to do to integer arithmetic on relatively small numbers.
Typically 32 bits enough.

Often addition, multiplication and comparison is sufficient.

Division sometimes needed – but often we can work around.

A concrete example..

On-line Auctions with submitted maximum bids

Many on-line auctions offer to participants that they can submit a
maximum bid. Then the system bids for you, so you don’t have to be
on-line all the time.

The maximum is confidential!

If known ahead of time, consequences for other bidders and for
auction house.

 Auction house not the best candidate for a trusted party..

Demands to a protocol solution?

- Same functionality for client as in conventional solutions: just submit
your maximum bid, and you don’t have to be involved later.

- Speed is important: the auction runs on-line, cannot wait for a slow
protocol to finish.

- Good if solution mimics conventional way to establish trust: ”we are
subject to external review and accounting” – so protocol should
involve the auction house and an external ”reviewer”.

Implies Design Goals for Protocol:

• Protocol is built for A (auction house), B(A’s accounting
company) and C(client).

• C submits securely a number m to A and B, preferably no
interaction.

• Later, when public number x is given (the current price), A and B
can work together to compute securely whether m >= x

• A or B should not be able to learn information on m by
themselves.

• Do not necessarily need security against active cheating, as
long as incorrect behavior by A,B can be detected, this may be
enough incentive to behave correctly: Cheating is bad for
business (cf. Rational crypto).

• Speed more important than compact representation of data (we
don’t have much secret data around anyway).

A solution

[Damgård, Krøigaard and Geisler 06, see Eprint soon]

Notation m= m0 + 2m1 + …+ 2^lml x= x0 + 2x1 + …+ 2^lxl

C secret-shares each bit mi in m additively modulo a small prime v,

i.e., mi = mi
A + mi

B mod v. [mi] denotes the set of shares in mi

 C sends all shares of A to A
encrypted under A’s public key, same for B.

Now A, B have public number x and [m0],…,,[ml]

Note that [x0 m0] = [m0] + x0 – 2x0[m0] - can be computed locally

Define ei = 1 + xi – mi + (xi+1 mi+1) + …+ (xl ml) Note that:

m > x iff there exists an i such that ei =0.

[e0], … ,[el] can be computed locally by A and B

Variant of technique by Kolesnikov – our variant uses smaller
numbers, just need v > l to avoid overflow
  better efficiency

The Final Problem

Given [e0], … ,[el], want to detect if we have a zero somewhere.

Assume A has a key pair (pk, sk) for a cryptosystem that is
homomorphic modulo v.

Each ei = ei
A + ei

B mod v. A sends Epk(ei
A) to B.

B computes Epk(ei) from Epk(ei
A) and ei

B.

B randomizes the encryptions and sends them to A in random
rotated order.

A decrypts and checks for occurrence of a 0.

Security

Passive attacks: straightforward.

Active attacks:
 C can submit shares of non-binary values, but behavior of A,B
still consistent with some legal input

A or B can cause incorrect results, but if encrypted inputs are
logged, C can later prove that he was cheated.

A Suitable Cryptosystem

Choose modulus n= pq such that p-1, q-1 both divisible by primes v
and u, where u is about 160 bits.

Generate g,h in Zn* such that ord(g) = uv, ord(h) =u

pk: n,g,h

sk: u

Epk(m,r) = gmhr mod n

To decrypt, raise to power u, get (gu)m mod n
 - we just need to check if m=0, so can check if this is 1. General
decryption possible also since v is small.

Performance

We did an implementation in Java with 1024 bit modulus.

Comparison of 16 bit numbers takes 0.28 seconds including all
computation and communication. Can save a factor of about 10 using
preprocessing.

Applications with large amounts of data
- such as database applications or some auctions.

Previous representation no good: each l-bit number gets expanded to
l full-scale encryptions (= 1000 l bits).

So need more compact ways to handle numbers…

Shamir Secret Sharing

A Dealer holds a secret value s in Zp*, p > n is a prime, p large
enough so that we have room for our numbers (typical cases p about
265).

Dealer chooses a random polynomial f() over Zp* of degree at most t,
such that f(0)=s:

f(x) = s + a1 x + a2 x
2 + …+ at x

t

Dealer sends si = f(i) privately to Pi.

Properties:

• Any subset of at most t players has no information on s

• Any subset of at least t+1 players can easily compute s – can be
done by taking a linear combination of the shares they know.

 If Adversary corrupts at most t players, secure to share secrets
this way.

Notation: [s] means s, secret shared

Computation involving addition and multiplication

- threshold adversary, may corrupt up to t players, t< n/2 (so
cannot have n=2, nor t >= n/2 in the following..)

Compute new sharings:

[a], [b] -> [a+b] easy, just add shares locally, no communication
[a] public constant v -> [av] easy, multiply shares by v locally.
[a], [b] -> [ab] only a bit harder, requires constant-round
communication: multiply shares locally, share results, and take
linear combination locally.

More work in multiplication for active security, but still constant
round and OK efficiency.

1 7 3 2

+ ·

·

Circuit and inputs given

Create sharings
representing inputs,
jointly held by players,
value not accessible to
adversary.

Computing phase:
compute new sharings.

Open outputs

48

8 6

A Caveat?

We wanted integer addition and multiplication, whereas the
protocol comes with add/mult modulo p?

No problem if sizes of numbers can be controlled: just choose p
large enough so that no overflow occurs. We found that 65-bit p
was OK in the cases we looked at (where inputs were 32 bits or
less).

But what about comparison?

Given [a], [b] want to compute [v] where v is a bit such that v=0 if
a< b, and 1 otherwise. - Not trivial!

Could do add/multiply efficiently because all numbers are shared
”in one piece.”

But this also means we have no direct access to the binary
representation of a and b  can’t directly use the ideas from
earlier in the talk. No small arithmetic circuit over p exists for
comparison.

A solution
[Damgård et al., TCC 06, plus recent work..]

Problem: hard to go from [c] to [c0], [c1],…, [cn] where [ci] is i’th bit

of c.

Observation: much easier go from [c0], [c1],…, [cn] to [c] since

Shamir secret sharing is linear - just multiply by 2-powers and add.

Algorithm

1. Generate random shared 0/1 values [r0],…., [rn], compute [r],

where r= r0+ 2 r1 + … + 2nrn n chosen so r >> a,b

2. Compute and open T= r + a – b (statistically secure since r >>
a,b).

3. Now we just need to compare public number T to bit-wise shared
number r – same problem as before!

Improvements?
So far, best protocols for comparison have constant round and use a
O(n) secure multiplications to compare n –bit numbers.

Is O(n) multiplications really necessary? It seems we should be able
to do better since we have arithmetic available that can handle
many bits ”in one go”.

But it’s open!

Another open problem: the compact representation using Shamir-
sharing only allows efficient multiplication if t< n/2.

If t >= n/2 we need some form of public-key crypto to do
multiplications. How do we do this (really) efficiently?

Implementation..
Secure, Computing Economy and Trust (SCET), see [Damgård et al. FC
06].

A research project aimed at developing protocols and software to do
MPC solutions for auctions and related problems.

Implementation in C# on .net platform. Current implementation, only
passive security, working on the active case..

Set-up:

Input Clients
- provide inputs:
shares encrypted
under servers’ keys

Coordinator
- handles
communication

Servers
 – perform the actual
computation

Application Scenario

A double auction with 500-1000 input clients, 3-5 servers ( secure if
at most 1 resp. 2 corrupt)

Need only additions and 10-12 comparisons to run double auction.

Additions trivial, time for comparisons (seconds):

(n,t) Preproc. On-line Total

(3,1) 0.42 0.35 0.77
(5,2) 0.68 0.40 1.08
(7,3) 1.78 0.62 2.40

Measurements on standard Internet connections, coordinator inside
University firewall, 1 server outside using VPN.

More info and downloadable demo:

http://www.sikkerhed.alexandra.dk/uk/projects/scet.htm

Going a step further: Research project SIMAP (Secure
Information Managing and Processing)

Goal: develop domain specific programming language for applications
of MPC: SMCL

Easily describe computation you want, who participates, what should
be known by whom and when, how many corruptions do we want to
tolerate.

Compiler produces code to be run by participants, will execute the
computation securely.

Language contains so far secret and public Integers and Booleans,
simple arithmetic and control structures. Client/Server model as in
SCET.

Partners: Crypto and Programming language groups from Aarhus
University, economists from Copenhagen, IBM, Danisco, Lauritz.com.

So far: First version of compiler is ready, based on runtime system
written in Java.

Example Program in SMCL

For a variant of the millionaries problem by Yao: a number of
billionaries. Each wants to know if he is the richest or not.
Clients: deliver personal net worth as a secret integer and recieve the
result.
Servers: The servers must decide which millionary is the richest and
send a boolean value of true to him and only him. The rest should get a
false.

Declare Client Billionaire:
 Tunnel of int netWorth; //tunnels provide secure transport to server side

 function void main(int[] args) { ask(); }

 function void ask() {
 netWorth.put(readInt()); //client starts by putting input in tunnel, then waits
 }

 function void tell(bool b) { //called by server side when result is ready
 if (b)
 display("You are the richest!");
 else
 display("You are not rich enough!");
 }

The server side

Declare Server server:

 function void main(int[] args) {
 Group of Billionaire billionaires;

 sClient richest; //secret pointer to richest client
 sint max = 0; //eventually holds size of largest fortune

 foreach (Client c in billionaires) {
 sint netWorth = c.netWorth.get(); // get input from client
 sbool b = netWorth > max; //richer then current record?
 max = b ? netWorth : max; //set max according to b
 richest = b ? c : richest; //set pointer to richest client
 }

 foreach (Client c in billionaires) {
 sbool b = (c == richest);
 c.tell(b);
 }
 }

In Conclusion..

Many applications of MPC can be realized with the efficiency and
functionality that is required in real life.

Soon, you can write and maintain your own secure computation in a
high-level language.

Will all this be used?

I think yes, but give it time!

Compare to Digital signatures: invented in 1977, first nation-wide
system in Denmark started 2 years ago!

More info on research projects, see

http://www.sikkerhed.alexandra.dk/uk/projects/simap.htm

New collaborators welcome!

