dilithium-cortexm

Denisa O. C. Greconici, Matthias J. Kannwischer, Daan Sprenkels

25 January 2021

This repository contains the supplementary code for our efforts to write an optimized implementation
of Dilithium for the ARM Cortex M4 and Cortex M3 architectures. We are targeting the STM32F407
Discovery and the Arduino Due development boards, which respectively hold an STMicroelectronics
STM32F407 and Atmel SAM3X8E microcontroller.

The corresponding paper is available at https://eprint.iacr.org/2020/1278.

Table of contents

Repository structure

Getting started

STM32F4 Discovery setup
Arduino Due setup

Building and running dilithium/
Building kyber/ and newhope/
Troubleshooting (Cortex-M3)
Troubleshooting (Cortex-M4)

P NSO W

Repository structure

e dilithium holds our optimized implementation of the Dilithium signature scheme for the Cortex-
M4 and Cortex-M3.

e kyber holds the optimized NTTs for Kyber.

e newhope holds the optimized NTTs for NewHope.

e libopencm3 contains a version of the libopencm3 library, which is used for abstracting the
hardware from the STM32F407 board.

o vendor contains some (boilerplate) build tools, primarily the tooling for building binaries to the
Arduino Due, without needing the Arduino IDE.

In each code directory, the m3 will contain the code that is specific to the Cortex-M3. If applicable,
the m4 directory contains the code specific for the Cortex-M4. Typically, these are the directories that
contain the handwritten assembly code. Furthermore, common/ holds some vendored building blocks
(mainly SHAKE256).

Getting started

We have tried to make this README file as clear as possible. However as always the case with
embedded programming, problems may arise that we have not foreseen. Of course, it will not possible
to exactly match your setup as well.

Cloning the repository
If you do not have this package locally yet, clone the repository using the —-recursive option:

git clone --recursive https://github.com/dilithium-cortexm/dilithium-cortexm.git

In case you have a downloaded CHES artifact, you should already have everything you need, including
the submodules. We have kept the .git/ directories intact.

https://pq-crystals.org/dilithium/

Required software

First, install the following software: - GCC for bare-metal ARM (arm-none-eabi-gcc). If you are
installing this using your operating system’s package manager, you might need to install other packages
aside from GCC (like Newlib/Binutils). - pyserial - stlink version >=1.6.0 (we have had some issues
with other versions during development, including 1.6.1) (only for M4) - The Arduino IDE (only for
M3) - bossa >=1.9.0. Some older versions, particularly those in the Ubuntu repositories do not work
(only for M3)

On Arch Linux, use:
yay -S arm-none-eabi-gcc arduino arduino-cli bossa python-pyserial stlink

User-access to serial devices

Depending on your operating system, your user may or may not be able to directly access the serial
devices in /dev. If you know that you are not affected by this, you can skip this step.

Fix via udev One way to fix this is to whitelist the device in udev, i.e., add a rule to your udev
configuration that allows user access to the USB device.

Whitelist the Arduino SA device for user access in udev.
echo 'ATTRS{idVendor}=="2341", ATTRS{idProduct}=="003d", TAG+="uaccess" # Arduino Due'
sudo tee /etc/udev/rules.d/10-arduino-due.rules >/dev/null

Reload udev rules.
sudo udevadm control --reload-rules && sudo udevadm trigger

You can use 1susb to find out what the vendor and product ID is of a USB device. For example, 1susb
reports, for the ST-LINK/V2 device:

Bus 003 Device 021: ID 0483:3748 STMicroelectronics ST-LINK/V2
Here, 0483 is the vendor ID, and 3748 is the product ID. Then you will construct a udev rule like this:

STM32F3DISCOVERY rev A/B - ST-LINK/V2
ATTRS{idVendor}=="0483", ATTRS{idProduct}=="3748", TAG+="uaccess"

Fix via dialout group There is another way to fix this, should the regular udev method does not
work for you, you can allow blanket access to the usb devices for your user. To enable this, add your
user to the dialout group. Logout and login again after applying this change. Beware that on some
systems, this group may exist under a different name.

STM32F4 Discovery setup

The STM32F407 device is connected with USB to the host computer. For serial communication we use
a separate serial device. To connect the serial, communication device, connect its rx and tx pins to the
PA2 and PA3 pins of the STM32F407 discovery board. GND should be connected through the USB cable,
but you might also need to connect the serial-device GND to the GND of the STM32F407 board.

To interact with the hardware, we use the 1ibopencm3 library, which provides full support for the
STM32F407.
Flashing the code

STM32F407 binaries are flashed using the st-flash command, which is part of the stlink package.
To flash a binary, use:

Flash a dilithium test binary
st-flash write m4/bin/dilithium3_test.bin 0x8000000

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://github.com/pyserial/pyserial
https://github.com/texane/stlink
https://www.arduino.cc/en/main/software
https://www.shumatech.com/web/products/bossa

Serial console

The PySerial package provides the miniterm tool, which is used to start a serial monitor to some
device.

To start up the console for the STM32F407, use:
Start a serial console to the /dev/ttyUSBO device with a baud rate of 115200.
miniterm /dev/ttyUSBO 115200

Use Ctrl+] to exit the console

Arduino Due setup

The Arduino Due is connected with USB to the host computer. The USB driver has serial communication
built-in, so it is not necessary to attach a separate serial-communication device. Beware though that
the Arduino has two micro-USB sockets. For programming, use the one closest to the power jack.

For interaction with the hardware, we have tried to use the Arduino library wherever we can. However
it turns out that the Arduino library is not very complete at all. Therefore, we sometimes fall back to
using libsam (which exposes some of the ATSAM3XS8E’s peripherals) or programming in bare-metal.
Flashing the code

For flashing code to an Arduino Due, we use the Bossa tool.

Serial console

The PySerial package provides the miniterm tool, which is used to start a serial monitor to some
device.

To start up the console for the STM32F407, use:
Start a sertal console to the /dev/ttyUSBO device with a baud rate of 115200.
miniterm /dev/ttyUSBO 115200

Use Ctrl+] to exit the comnsole

Building and running dilithium/

First, cd into the dilithium/ directory. In this directory, m3/ contains the files specific to the Cortex-
M3 and m4/ contains the files specific to the Cortex-M4. dilithium/ contains the platform-independent
implementation of dilithium, and common/ holds some vendored building blocks (mainly SHAKE256).

To build and test the software for the Cortex-M4, run:
Build the software, this will put a binary file at “m4/bin/dilithium3_test.bin’ .

make -C m4

In a separate terminal, start up miniterm.
miniterm /dev/ttyUSBO 115200

Flash the firmware to the device
st-flash write m4/bin/dilithium3_test.bin 0x8000000

Trigger a reset
st-flash reset

Now the testing will start, and the test results should be printed to the serial console.

To build and test the software for the Cortex-M3, run:

Butld the software, this will put a binary file at “m3/build-arduino_due_z/m3_.bin".
make -C m3

Flash the firmware to the Arduino
bossac -a
bossac --erase --write --verify --boot=1 --port=/dev/ttyACMO m3/build-arduino_due_x/m3_.bin

In a separate terminal, start up miniterm (Arduinos use a baud rate of 9600).
miniterm /dev/ttyACMO 9600

You may need to manually reset the device to start the program.
The test results should be printed to the serial console.

At this point, feel free to take a look at the m3/Makefile and m4/Makefile. There you will find all the
customizations that are available for our implementations. For example, DILITHIUM_MODE describes
which parameter set of Dilithium should be used; and SIGN_STACKSTRATEGY specifies which of the
stack-space scenarios should be compiled. Also there are binaries available for testing, benchmarking,
profiling, and generating testvectors.

Building kyber/ and newhope/

Building the kyber/ and newhope/ code for the Cortex-M3 is similar to building Dilithium for that
platform, except all the code is already in the top-level directory, i.e., you cd to that directory and do
make immediately without -C m3.

The other settings remain the same. To switch to the different parameter set, change the CRYPTO_PATH
in kyber/Makefile or newhope/Makefile. Available parameter sets are

e kyber/kyber512/

o kyber/kyber768/

e kyber/kyber1024/

e newhope/newhopel024cca/
e newhope/newhopel024cpa/

Reproducing results
Running benchmarks

During the writing of our paper, we have automated most of our benchmarking pipeline. The scripts
that we used are included in the dilithium directory. The mdbenchmarks.py script instruments the
discovery board to generate benchmarks, and m3benchmarks.py instruments the Arduino Due to
generate its benchmarks.

Please excuse us for the quality of that code. It was not initially written for being published. The
benchmarking scripts do not expose a command-line interface; you have to edit any settings in the
source.

These scripts generate the literal latex files that are used in the paper. Note that, because of the
variable runtime of the Dilithium signing algorithm, you’ll need to run about 10000 iterations. Be
advised that the Arduino Due is pretty slow, and that our benchmarking is not really optimized; these
benchmarks can take a while to complete (a couple of days).

Version info

The benchmarking scripts have been confirmed to run from a host using the following software:
python --version

Python 3.9.1

arm-none-eabi-gcc --version

arm-none-eabi-gcc (Arch Repository) 10.2.0

Copyright (C) 2020 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

st-flash --version
v1.6.1

bossac --help | head -n2 | tail -ni
Basic Open Source SAM-BA Application (BOSSA) Version 1.9.1

python -c 'import serial; print(serial.VERSION)'
3.5

make --version | head -nl
GNU Make 4.3

libopencm3 is included in the libopencm3/ directory.
(cd libopencm3 && git rev-parse HEAD)
2cebccb8cebab6b6a5026357bc8a2716£8839033

Arduino-Makefile is included in the vendor/ directory.
(cd vendor/Arduino-Makefile/ && git rev-parse HEAD)
e870443£4824cbbcdb60£500c6072012dd668£62

ArduinoCore-sam is included in the vendor/ directory.
(cd vendor/ArduinoCore-sam/ && git rev-parse HEAD)
eed66e7977b4037£49bbcd832437d4bcf72c0£f3f

Pandoc is used to convert markdown text files to PDFs.

pandoc --version | head -n 3

pandoc 2.11.3

Compiled with pandoc-types 1.22, texmath 0.12.1, skylighting 0.10.2,
citeproc 0.3.0.2, ipynb 0.1.0.1

Troubleshooting (Cortex-M3)
No device found on /dev/ttyACMO

This error occurs when executing make raw_upload. It is caused by bossac not being able to reach
the Arduino Due through the /dev/ttyACMO serial port.

touch /dev/ttyACMO

touch: cannot access '/dev/ttyACMO': No such file or directory Check your connections,
and check if the serial port is exposed on a different device. If the serial port is exposed on a different
device, use the ISP_PORT setting to override it.

touch: cannot touch '/dev/ttyACMO': Permission denied Make sure your user has the correct
permissions for writing to the serial port. Refer to the udev configuration listed in the intro.

No error (option 1)

sudo 1lsof | grep /dev/ttyACMO

If another process is currently using the device, make sure to kill it. In particular, I have bad experiences
with the modem-manager service on Debian-based systems in the past.

No error (option 2) The Arduino Due may be in an uninterruptable state. Reset it using the
RESET button on the board.

Device unsupported

The Arduino Due is probably in an uninterruptable state. Reset it using the RESET button on the
board.

If this does not unstuck the device, erase the chip by holding the ERASE button for 5 seconds and/or
waiting for 5 seconds more or replug the device.

Troubleshooting (Cortex-M4)

[!] send_recv send request failed: LIBUSB_ERROR_TIMEOUT

The STM32F407 is unresponsive. This happens (for example), when a flashing operation is interrupted.
Replug the device to unstuck it.

miniterm comand not found

miniterm may not be installed in your $PATH. Perhaps, on your installation it is called miniterm.py.
Otherwise, put this tool in your path; or alternatively call it using python -m serial.tools.miniterm.

	Table of contents
	Repository structure
	Getting started
	Cloning the repository
	Required software
	User-access to serial devices

	STM32F4 Discovery setup
	Flashing the code
	Serial console

	Arduino Due setup
	Flashing the code
	Serial console

	Building and running dilithium/
	Building kyber/ and newhope/
	Reproducing results
	Running benchmarks
	Version info

	Troubleshooting (Cortex-M3)
	No device found on /dev/ttyACM0
	Device unsupported

	Troubleshooting (Cortex-M4)
	[!] send_recv send request failed: LIBUSB_ERROR_TIMEOUT
	miniterm comand not found

