Reduce-by-Feedback: Timing resistant and DPA-aware Modular Multiplication plus: How to Break RSA by DPA

M. Vielhaber
vielhaber@gmail.com

Hochschule Bremerhaven und/y Universidad Austral de Chile

CHES 2012

Overview

School Multiplication: Montgomery \& Reduce-by-Feedback
Reduce-by-Feedback: Details and Overflow Check
Differential Power Attack against RSA
How to fix it
Conclusion

DH .. EC .. RSA \equiv Modular Addition

DH \equiv Modular Exponentiation
RSA \equiv Modular Power Function
\mapsto "Square-and-Multiply" \qquad
Modular Multiplication
\mapsto "Shift-and-Add" \qquad
Modular Addition
$M^{+}:=(M \ll 3+\alpha \cdot B) \bmod N$
(here in octal base, 3 bits per cycle)
or
$M^{+}:=(M \gg 3+\alpha \cdot B) \bmod N$
(Montgomery multipliction, $M=\left[A \cdot B \cdot 2^{-L}\right] \bmod N$)

Schoolbook Multiplication I: Algorithm Shift-and-Add

Parameters:
operand length L [e.g. = 1024]
shift length per clock cycle
$z[e . g .=3]$, with $Z:=2^{z} \quad[e . g .=8]$
IN $A, B<2^{\prime} / /$ factors, where
$A=\sum_{k=0}^{L-1} a_{k} 2^{k}=\sum_{k=0}^{\lceil L / z\rceil-1} \alpha_{k} Z^{\lceil L / z\rceil-1-k}$
OUT $M / /$ product $M=A \cdot B$
Algorithm:
$M:=0$
FOR $k:=0$ TO $\lceil L / z\rceil-1$

$$
M:=(M \ll z)+\alpha_{k} \cdot B
$$

ENDFOR

$$
172 \times 315
$$

860
172
516

54180

Properties of Shift-and-Add

Four trivial, but remarkable properties of Shift-and-Add:
(i) $\alpha_{k} \in\{0,1, \ldots, Z-1\}$, thus Z possible multiples of B.
(ii) Exactly $\lceil I / z\rceil$ cycles to go in the loop \rightarrow no timing attack.
(iii) Cut number of multiples in half (I):

It is sufficient to store the multiples for $\alpha \geq \boldsymbol{Z} / 2$, and $\alpha=0$, by supplying shifted copies for the smaller cases.
(iv) Cut number of multiples in half (II):

The "1-off trick":
Replace the odd multiples by the next higher even ones, subtract $Z \cdot B$ in the next clock cycle:
$\left(\left(\alpha_{k} \cdot B\right) \ll z\right)+\alpha_{k+1} \cdot B=\left(\left(\left(\alpha_{k}+1\right) \cdot B\right) \ll z\right)+\left(\alpha_{k+1}-Z\right) \cdot B$.
Putting $C_{\alpha, k}:=1$, iff α_{k} is odd, 0 otherwise, we set

$$
\bar{\alpha}_{k}:=\alpha_{k}+C_{\alpha, k}-Z \cdot C_{\alpha, k-1} \text { and } M:=(M \ll z)+\bar{\alpha}_{k} \cdot B
$$

Physically Stored Multiples

(iii) and (iv) combined require multiples
$\pm(Z / 2+2), \pm(Z / 2+4), \ldots, \pm Z, 0$,
where we first applied (iv), then (iii).
Only the $Z / 4$ multiples $Z / 2+2, Z / 2+4, \ldots, Z$ have to be stored in hardware, a 75% savings.

Schoolbook Multiplication II

Montgomery Multiplication

Montgomery Multiplication

Problem II:
Bits run off to the right ...

Solution II:

Add suitable multiple of modulus $N \rightarrow$ only zeroes run off to the right Decimal example, let $N=111$

```
172 * 315
    | 860 |
    + |000|
    = |860|
        >>
    | 86|0
+ |172|
+ |222|
= | 480|0
```


Montgomery: Adjustment of LSBs

Let N end in (e.g.) .. 101

When M	Adjust	which	which is
ends in	by	is $N \cdot \ldots$	also $N \cdot \ldots$. .000
.. 000	0	$8=1 \ll 3$	
.001	.111	3	-5
. .010	. .110	6	$(-1) \ll 1$
. .011	. .101	1	1
. .100	. .100	4	$1 \ll 2$
. .101	. .011	7	-1
. .110	. .010	2	$1 \ll 1$
. .111	. .001	5	5

25\% Physically stored:
.. 01 Physically stored
75% for free:
.. 11 Negative,
2s complement for free
.. 0 Shifts,
for free (only wires, no FF)

Schoolbook Multiplication III

Once again, but in reverse order, shifting to the left ...
$172 * 315$
$-\quad 516$
172
860
------180

$$
\begin{gathered}
|516| \\
\ll \\
5|160| \\
+\quad|172| \\
=5|332| \\
=\ll \\
53|320| \\
+\quad|860| \\
=54|180|
\end{gathered}
$$

Problem:
 Digits run off to the left

Solution:
Reduce-by-Feedback
(LFSR-style)

Reduce-by-Feedback

Reduce-by-Feedback: The Idea

Reduce-by-Feedback: Mix of LFSR and Shift-and-Add ideas
The original idea stems from the analogy with LFSR's
The z bits running off in front for each Shift-and-Add step are fed back into the accumulator:

Partition M into its lower $L+z+1$ bits and the higher part,

$$
M_{H}=\left\lfloor M / 2^{L+z+1}\right\rfloor, M_{L}=M \quad \bmod 2^{L+z+1}, M=\left(M_{H} \mid M_{L}\right) .
$$

Also, let $K \equiv 2^{L+2 z+1} \bmod N, 0 \leq K<N$.
Then

$$
\left(M_{H} \mid M_{L}\right) \ll z=M_{H} \cdot 2^{L+2 z+1}+M_{L} \cdot 2^{z} \equiv M_{H} \cdot K+M_{L} \cdot 2^{z} \quad \bmod N
$$

Algorithm Reduce-by-Feedback

Shift-and-Add-with-Reduce-by-Feedback

$$
\begin{aligned}
& M:=0, C_{\alpha,-1}:=0, C_{\mu,-1}:=0 \\
& \text { FOR } k:=0 \text { TO }\lceil I / z\rceil-1 \\
& \qquad C_{\alpha, k}:=\alpha_{k} \text { AND } 1, \bar{\alpha}_{k}:=\alpha_{k}+C_{\alpha, k}-Z \cdot C_{\alpha, k-1} \\
& \quad \mu_{k}:=\left\lfloor M / 2^{I+z+1}\right\rfloor \\
& C_{\mu, k}:=\mu_{k} \text { AND } 1, \bar{\mu}_{k}:=\mu_{k}+C_{\mu, k}-Z \cdot C_{\mu, k-1} / / \text { this is } M_{H} \\
& \quad M:=\left(\left(M \bmod 2^{I+z+1}\right) \ll z\right)+\bar{\alpha}_{k} \cdot B+\bar{\mu}_{k} \cdot K \\
& \text { ENDFOR }
\end{aligned}
$$

Reduce-by-Feedback preserves the 4 properties of Shift-and-Add

(i) The standard range for the multiples of K is

$$
\mu_{k} \in\left\{-1,0,1, \ldots, 2^{z}\right\}
$$

(ii) The FOR loop excutes exactly $\lceil I / z\rceil$ times, each run comprising a shift and 2 additions.
NO Timing Attack!
(iii) Required multiples of K :
$\mu_{k} \in\{0\} \cup\{Z / 2+1, \ldots, Z\}$, the others by shifting.
(iv) NO odd multiples of K by the " 1 -off trick" In total we need $\alpha_{k}, \mu_{k} \in\{0, \pm(Z / 2+2), \pm(Z / 2+4), \ldots, \pm Z\}$, with 0 and \pm for free in hardware.

Reduce-by-Feedback is thus completely analogous to Shift-anַd-Add.

Historic Timetable

1985 Montgomery, "Modular multiplication without trial division"
Reduce-by-Feedback:
1987 V., Diploma thesis (TH Karlsruhe, Prof. Thomas Beth)
1989 V., E.I.S.S. Report 89/14
1989 Beth,Gollmann, "Algorithm Engineering ..."
1990 Patent DE 3924344 (V., "Multiplikations-/Reduktionseinricht.")
Rediscovery of Reduce-by-Feedback:
1995 Benaloh, Dai "Fast Modular Reduction (Crypto Rump S.) Re-Re-Discovery of Reduce-by-Feedback:
1997 Jeong, Burleson, "VLSI Array Algorithms ..."
1998 Patent US 5724279 (Josh Benaloh, Wei Dai, "Computer-implemented method ...")

Comparison Montgomery Multiplication and Reduce-by-Feedback

Montgomery multiplication (1985):
1st factor: Bits from LSB to MSB - shift down and add residue classes $\left[x \cdot 2^{L}\right] \bmod N$ instead of standard residue classes $[x]$

Reduce-by-Feedback (1987 etc.)
1st factor: Bits from MSB to LSB — shift and add standard residue classes [x]

Both MM and RbF ...
Immune against timing attacks, since
exactly $L / 3+\varepsilon_{\text {const }}$ cycles per mult/square
Susceptible (but fixable) to DPA ... later ...

Reduce-by-Feedback: No Overflow

$$
\left(M_{H}^{+} \mid M_{L}^{+}\right):=\left(M_{L} \ll 3\right)+\alpha \cdot B+\mu \cdot K
$$

with

$$
\begin{aligned}
0 & \leq M_{L}<8 \cdot 2^{L+4} \\
0 & \leq B, K<2^{L} \\
-8 & \leq \alpha, \mu \leq 8
\end{aligned}
$$

Total:

$$
\begin{gathered}
0+(-8) \cdot 2^{L}+(-8) \cdot 2^{L} \\
<M^{+}< \\
8 \cdot 2^{L+4}+8 \cdot 2^{L}+8 \cdot 2^{L} \\
\Leftrightarrow \\
-1 \cdot 2^{L+4}<M^{+}<9 \cdot 2^{L+4} \Rightarrow-1 \leq M_{H}^{+} \leq 8
\end{gathered}
$$

Including the " 1 -off trick", $-8,-6, \ldots, 6,8$ are the necessary multiples,

H/W Issues I: Re-use of MUX Tree and MUX Ctrl Vars

Compare $\alpha \cdot B$ and $\mu \cdot K$:
Same decision logic for $A \rightarrow \alpha$ and $M_{H} \rightarrow \mu$
Same 75% physical savings only $6 \cdot B, 8 \cdot B$ and only $6 \cdot K, 8 \cdot K$ phys.
Same MUX tree MUX Inputs
$-8 B,-6 B,-4 B, \ldots, 6 B, 8 B$ and $-8 K,-6 K,-4 K, \ldots, 6 K, 8 K$
Idea: Use H / W in both clock half cycles
$\mathrm{Clk}=\mathrm{L}:$ do $A \rightarrow \alpha, \quad \mathrm{Clk}=\mathrm{H}:$ do $\alpha \rightarrow \mathrm{MUX} \rightarrow \alpha B$
$\mathrm{Clk}=\mathrm{H}:$ do $\mathrm{M}_{H} \rightarrow \mu$, $\mathrm{Clk}=\mathrm{L}:$ do $\mu \rightarrow \mathrm{MUX} \rightarrow \mu \mathrm{K}$
Same Ctrl glue logic, same MUX tree, same shift wires used twice: 50% savings in both CTRL and BITSLICE (this beats Montgomery!)

Map 1987's 13 bit slices $/ \mathrm{mm}^{2}$ with 1.0μ design rules to current 65 nm rules, naïvely shrinking by $\frac{65}{1000}^{2}: 13 \cdot \frac{65}{1000}^{2} \approx 3000$ bits $/ \mathrm{mm}^{2}$
Full 4096 bit RSA with control unit on about $1.5 \mathrm{~mm}^{2}$
FPGA implementation [not yet] under way...

H/W Issues II: Delayed-Carry-Adder

Use Brickell's Delayed-Carry-Adder, a chain of halfadders instead of full adders with the property $c_{i+1} \wedge s_{i}=0$.

Standard Boolean function	
$d_{i}:=s_{i} \wedge b_{i}$,	$t_{i}:=s_{i} \oplus b_{i}$
$e_{i}:=t_{i} \wedge k_{i}$,	$u_{i}:=t_{i} \oplus k_{i}$
$f_{i}:=c_{i} \vee d_{i-1}$	(which are not both 1,
	due to $\left.c_{i+1} \wedge s_{i}=0\right)$
$g_{i+1}:=u_{i} \wedge f_{i}$,	$v_{i}:=u_{i} \oplus f_{i}$
$h_{i+1}:=e_{i} \vee g_{i}$	(not both 1: $\left.e_{i}=1 \Rightarrow u_{i}=0\right)$
$c_{i+1}^{+}:=v_{i} \wedge h_{i}$,	$s_{i}^{+}:=v_{i} \oplus h_{i}$

$$
\begin{aligned}
& \quad \text { Using NAND } \\
& \bar{d}_{i}:=\overline{s_{i} \wedge b_{i}}, \\
& \bar{e}_{i}:=\overline{t_{i} \wedge k_{i}}, \\
& f_{i}:=\overline{\bar{c}_{i} \wedge \bar{d}_{i-1}} \\
& \bar{g}_{i+1}:=\overline{u_{i} \wedge f_{i}}, \\
& h_{i+1}:={\overline{\bar{e}} \bar{i}_{i} \wedge \bar{g}_{i}}^{c_{i+1}}:=\overline{v_{i} \wedge h_{i}},
\end{aligned}
$$

4 halfadders plus two OR's, matches carry-save in GE
But: Result has the Delayed-Carry Property

$$
c_{i+1} \wedge s_{i}=0
$$

which is crucial, when calculating μ_{k} fast

H/W Issues III: No Overflow with DCA

z leading MSB bits have to be in the range $-1,0, \ldots, Z$ (assumption) DCA: $c_{i+1} \wedge s_{i}=0$, hence the following patterns are the highest values possible (shown for the case $z=3, Z=8$), Table 1

H/W Issues IV: Fast computation of MUX Ctrl Vars

Per clock, add $\bar{\alpha} \cdot B$ and $\bar{\mu} \cdot K$ to DCA (c, s).
Previous 2 half cycles: Choose $\bar{\alpha} \cdot B$ and $\bar{\mu} \cdot K$ by the same H/W. time-critical only for $\bar{\mu}$: Depends on the addition just performed in the half cycle $(k+1, H)$.

Cycle	Half C.	Selection	Computation
k	H	$\bar{\alpha}_{k} \cdot B$	$\left(M_{H} \mid M_{L}\right)_{k}:=\ldots$
k	L	$\bar{\mu}_{k} \cdot K$	
$k+1$	H	$\bar{\alpha}_{k+1} \cdot B$	$\left(M_{H} \mid M_{L}\right)_{k+1}:=\left(\left(M_{L}\right)_{k} \ll z\right)+\bar{\alpha}_{k} \cdot B+\bar{\mu}_{k}$
$k+1$	L	$\bar{\mu}_{k+1} \cdot K$	

Precompute M_{H} positions:

1. In (k, H), partial sum $\left(M_{H}\right)_{k} \cdot Z+\bar{\alpha}_{k} \cdot B$
2. In (k, L), add $\bar{\mu}_{k} \cdot K$, for M_{H} bit positions.
3. Also add 0,1,2,3: Possible final values for $\bar{\mu}_{k+1}$, precompute the MUX control vars (4 sets) for $\bar{\mu} \cdot K$.
4. In $(k+1, H)$, choose by MUX via carries from M_{L} part.
5. In $(k+1, L)$: Ready to fetch $\bar{\mu}_{k+1} \cdot K$ from one of the 4 sets.
(FPGA with 6:1 LUTs: Addition maybe (even) faster than CTRL)

DCA and Timing Attacks

Final carry from DCA to standard representation:
Either
(i) we use carry-look-ahead logic, space-intensive, or
(ii) we keep the result in delayed-carry-form, space-intensive, or
(iii) we wait until the longest carry chain ($L+z$ bits) will have passed, time-intensive, or
(iv) we use interrupt techniques, efficient, but time-variant.

The variation due to carries in case (iv) is the only potential information leak for a timing attack. This is though independent of Reduce-by-Feedback (or Montgomery multiplication), but a consequence of using carry-save or delayed-carry techniques.

DPA attack on RSA with MM or Reduce-by-Feedback:

Before first cycle:

$$
M=0, M_{H}=0, \mu=0
$$

At first cycle:

$$
M^{+}:=(M \ll 3)+\alpha \cdot B+\mu \cdot K=0+\alpha B+0
$$

IF $\alpha=0$ (i.e. A starts with 3 zeroes):

$$
M^{+}:=0+0+0=M, N O \text { change of FF charges }
$$

IF $\alpha \neq 0$ (i.e.the other 7 cases):

$$
M^{+}:=0+\alpha B+0 \neq 0=M, \approx 50 \% \text { of FF go } 0 \rightarrow 1
$$

(same effect for Reduce-by-Feedback and Montgomery)
We observe (only) this "point-of-interest"

DPA on RSA

Run C trials with different m, same (unblinded) exponent d :
Observe L • 1.5 mult./squarings per trial Information content / Entropy per trial:

$$
H=-\left(1 / 8 \cdot \log _{2}(1 / 8)+7 / 8 \cdot \log _{2}(7 / 8)\right)=0.544
$$

We have 1.5 observations per bit of d, thus $1.5 \cdot 0.544=0.816$ bits, recovering 81% of d 's bits, or with $C=2$, everything!! Or do we????

Crucial, difficult case is "always $\alpha \neq 0$ ", the "big bin" This bin has to contain only a single solution, no false positives:

$$
2^{L} \cdot\left(\frac{7}{8}\right)^{1.5 L \cdot C}=1
$$

or

$$
\left(\frac{7}{8}\right)^{1.5 \cdot C}=\frac{1}{2} \Leftrightarrow C=3.47
$$

So we actually need 4 trials in this worst and quite typical case.

DPA on RSA III

Run 4 decryptions with known m's (DUT)
Simulate for all possible prefixes for d, compare occurrence of $\alpha=0$ vs. $\alpha \neq 0$ with actual DUT

Throw away non-fitting prefixes, enlarge the survivors (we usually should have about just one survivor)

And that breaks RSA!

How to fix it

$\alpha_{0}=\mu_{0}=0$ is exploitable by DPA

1. (NEW!) Both Reduce-by-Feedback and Montgomery

Start with $M=N$, not $M=0$
(more H/W, additional MUX input, not just Reset)
2. (NEW!) Montgomery

For $M=. .000$, add $8 \cdot N$, not $0 \cdot N$
3. Reduce-by-Feedback
$M=0 \mapsto M^{+}=0$ can be avoided, use "1-off" trick with

$$
0=1+(-1)
$$

Instead of $0 \cdot B$, add B once, subtract $Z \cdot B$ in the next step.
This brings us back to zero every second step.
B has $\approx 50 \%$ 1's: Flips back-and-forth half of the register bits
On the outside: typ. power consumption, no side_channel

Example with $z=3, z=8$

Old: regular " 1 -off" case including a multiple 0 . New: $0=1+(-1)$, also $\Sigma=-1,1,2$, and 3 differently Minimize the information flow (bias) from $\bar{\alpha}, \bar{\mu}$ to C, A, M_{H} Irregular "1-off" + Shifts. Still only $Z / 4$ values phys. stored, e.g. 6;8.

$\begin{aligned} & C_{\alpha}, \\ & C_{\mu} \end{aligned}$	$\begin{aligned} & \alpha_{k}, \\ & M_{H} \end{aligned}$	Σ	$\begin{aligned} & \bar{\alpha}_{k}, \quad C^{+} \\ & \bar{\mu}_{k}(\text { old }) \\ & \hline \end{aligned}$		$\left\lvert\, \begin{array}{ll} \bar{\alpha}_{k}, & C^{+} \\ \bar{\mu}_{k}(\text { new }) \end{array}\right.$	
0	-1	-1	0	1	1	0
0	000	0	0	0	1	1
0	001	1	2	1	1	0
0	010	2	2	0	3	1
0	011	3	4	1	3	0
0	100	4	4	0	4	0
0	101	5	6	1	6	1
0	110	6	6	0	6	0
0	111	7	8	1	8	1
0	1000	8	8	0	8	0

Bias: Nearer zero

Bias $=\operatorname{pr}(1)-\operatorname{pr}(0)$
Bias of C and Σ (internals, partly revealing A and M), conditional on certain value sets for $\bar{\alpha}, \bar{\mu}$, namely zero, positive, shifts of 8 , and shifts of 6 (potentially observable by DPA):

Assumed probabilities:
C : $\mathrm{pr}=1 / 2$ for $C=0$ and $C=1$
$\alpha: \operatorname{Pr}=1 / 8$ each for $\alpha=0, \ldots, 7$.
μ : Fold 3 equidistributions over the intervals
[0,8 [(from M_{H}),
[-1/2, 1/2[(from $\alpha \cdot B$), and
[-1/2, 1/2[(from $\mu \cdot K)$,
giving
$\operatorname{Pr}=1 / 8$ each for $\mu=1, \ldots, 6$,
$\operatorname{Pr}=5 / 48$ for $\mu=0$ and 7 , and

Bias II

We now have probability zero for $\bar{\alpha}=0$, which was $1 / 8$ before.
Sets $\{1,2,4,8\}$ and $\{3,6\}$ for α, μ give zero bias (all bits of C, Σ).
For α, μ positive, the bias shrinks:

	C	Σ_{2}	Σ_{1}	Σ_{0}
$\bar{\alpha}>0$ new	-1	0	0	0
$\bar{\alpha}>0$ old	-1	$1 / 7$	$1 / 7$	$1 / 7$
$\bar{\mu}>0$ new	$-23 / 24$	$1 / 24$	$1 / 24$	$1 / 24$
$\bar{\mu}>0$ old	-1	$-2 / 21$	$-2 / 21$	$-2 / 21$

Table : Bias of C, Σ, conditional on $\bar{\alpha}, \bar{\mu}$
The remaining strong bias -1 is from $\bar{\alpha}, \bar{\mu}$ positive to $C=0$ (or ... negative to $C=1$), almost a tautology.
$\bar{\alpha}, \bar{\mu}>0$: mix of cases $1,2,3,4,6,8$, quite more difficult to analyze by DPA than the distinction $\alpha=0$ vs. $\alpha \neq 0$, now ruled out.

Conclusion

Reduce-by-Feedback has all the advantages of Montgomery Multiplication (for full-length register addition),
in particular, timing invariance, and 75% savings in physical storage.
Additionally Reduce-by-Feedback enjoys the analogy of Shift-and-Add with Reduce-by-Add, saves up to 50\% logic/MUXes by re-use.

Avoid an empty accumulator, start with N, not zero, or ... avoid the occurrence of $M^{+}:=(0 \ll 3)+0+0=M$ in the first cycle, otherwise ...
(unblinded) RSA can be broken with 4 (or less) observed decryptions for an implementation of 3 (or less) bits/cycle

