Reduce-by-Feedback: Timing resistant and DPA-aware Modular Multiplication plus: How to Break RSA by DPA

> M. Vielhaber vielhaber@gmail.com

Hochschule Bremerhaven und/y Universidad Austral de Chile

CHES 2012

CHES 2012 1 / 29

School Multiplication: Montgomery & Reduce-by-Feedback Reduce-by-Feedback: Details and Overflow Check Differential Power Attack against RSA How to fix it Conclusion

< ロト < 同ト < ヨト < ヨト

- \mapsto "Square-and-Multiply" \longrightarrow
- Modular Multiplication
- \mapsto "Shift-and-Add" \longrightarrow

Modular Addition $M^+ := (M << 3 + \alpha \cdot B) \mod N$ (here in octal base, 3 bits per cycle) or $M^+ := (M >> 3 + \alpha \cdot B) \mod N$ (Montgomery multiplication, $M = [A \cdot B \cdot 2^{-L}] \mod N$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameters: operand length L [e.g. = 1024] shift length per clock cycle z [e.g. = 3], with $Z := 2^{z}$ [e.g. = 8]	172	* 315 860 172
IN $A, B < 2^{l}$ // factors, where $A = \sum_{k=0}^{L-1} a_k 2^k = \sum_{k=0}^{\lceil L/z \rceil - 1} \alpha_k Z^{\lceil L/z \rceil - 1 - k}$ OUT M // product $M = A \cdot B$		516 54180
Algorithm: M := 0 FOR $k := 0$ TO $\lfloor L/z \rfloor - 1$ $M := (M << z) + \alpha_k \cdot B$ ENDFOR		

CHES 2012 4 / 29

<ロト < 回ト < 回ト < 回ト

Properties of Shift-and-Add

Four trivial, but remarkable properties of Shift-and-Add:

(*i*) $\alpha_k \in \{0, 1, \dots, Z-1\},$ thus *Z* possible multiples of *B*.

- (ii) Exactly $\lceil l/z \rceil$ cycles to go in the loop \rightarrow no timing attack.
- (*iii*) Cut number of multiples in half (I): It is sufficient to store the multiples for $\alpha \ge Z/2$, and $\alpha = 0$, by supplying shifted copies for the smaller cases.
- (*iv*) Cut number of multiples in half (II): The "1-off trick": Replace the odd multiples by the next higher even ones, subtract $Z \cdot B$ in the next clock cycle: $((\alpha_k \cdot B) << z) + \alpha_{k+1} \cdot B = (((\alpha_k + 1) \cdot B) << z) + (\alpha_{k+1} - Z) \cdot B$. Putting $C_{\alpha,k} := 1$, iff α_k is odd, 0 otherwise, we set $\overline{\alpha}_k := \alpha_k + C_{\alpha,k} - Z \cdot C_{\alpha,k-1}$ and $M := (M << z) + \overline{\alpha}_k \cdot B$.

Sac

(日本)(日本)(日本)(日本)

(*iii*) and (*iv*) combined require multiples $\pm (Z/2+2), \pm (Z/2+4), \dots, \pm Z, 0$, where we first applied (*iv*), then (*iii*).

Only the Z/4 multiples Z/2 + 2, Z/2 + 4, ..., Z have to be stored in hardware, a 75% savings.

< ロト < 同ト < ヨト < ヨト

170 015	
1/2 * 315	860
	>>
860	86 0
172	+ 172
516	= 258 0
	>>
54180	25 80
	+ 516
	= 541 80
	>>
	54 180

Problem I: Decimal Point is far to the right (green •), not

Solution I: "Live" in residue classes $[x \cdot 2^{L}]$, $(A \cdot 2^{L}) \cdot (B \cdot 2^{L}) \cdot 2^{-L} = A \cdot B \cdot 2^{L}$, all results include factor 2^{L} , only adjust in the first and last step

A (10) < A (10) < A (10) </p>

Problem II: Bits run off to the right ...

Montgomery Multiplication

Problem II: Bits run off to the right ...

Solution II:

Add suitable multiple of modulus $N \rightarrow$ only zeroes run off to the right Decimal example, let N = 111

172 * 315	>>
860	48 00
+ 000	+ 516
= 860	+ 666
>>	=1 230 00
86 0	>>
+ 172	123 000
+ 222	

= |480|0

< ロト < 同ト < ヨト < ヨト

Let *N* end in (e.g.) ..101

When M	Adjust	which	which is	25% Physically stored:
ends in	by	is <i>N</i> ·	also $N \cdot$	01 Physically stored
000	000	0	8=1 << 3	75% for froot
001	111	3	-5	
010	110	6	(-1) << 1	20 complement for free
011	101	1	1	25 complement for free
100	100	4	1 << 2	for free (only wires, no EE)
101	011	7	-1	IOI II
110	010	2	1 << 1	
111	001	5	5	

イロト イ団ト イヨト イヨト

Once again, but in reverse order, shifting to the left ...

172 * 315	516	Drablam :
	<<	Digita rup off to the left
516	5 160	Digits run on to the left
172	+ 172	Solution:
860	= 5 332	Reduce-by-Feedback
	<<	(LFSR-style)
54180	53 320	
	+ 860	
	=54 180	

Reduce-by-Feedback

イロト イポト イヨト イヨト

Reduce-by-Feedback: Mix of LFSR and Shift-and-Add ideas

The original idea stems from the analogy with LFSR's

The *z* bits running off in front for each Shift-and-Add step are fed back into the accumulator:

Partition *M* into its lower L + z + 1 bits and the higher part,

$$M_H = \lfloor M/2^{L+z+1} \rfloor, M_L = M \mod 2^{L+z+1}, M = (M_H|M_L).$$

Also, let $K \equiv 2^{L+2z+1} \mod N, 0 \le K < N$. Then

$$(M_H|M_L) << z = M_H \cdot 2^{L+2z+1} + M_L \cdot 2^z \equiv M_H \cdot K + M_L \cdot 2^z \mod N$$

Algorithm Reduce-by-Feedback

Shift-and-Add-with-Reduce-by-Feedback

$$\begin{split} M &:= 0, C_{\alpha,-1} := 0, C_{\mu,-1} := 0 \\ \text{FOR } k &:= 0 \text{ TO } \lceil l/z \rceil - 1 \\ C_{\alpha,k} &:= \alpha_k \text{ AND } 1, \overline{\alpha}_k := \alpha_k + C_{\alpha,k} - Z \cdot C_{\alpha,k-1} \\ \mu_k &:= \lfloor M/2^{l+z+1} \rfloor \\ C_{\mu,k} &:= \mu_k \text{ AND } 1, \overline{\mu}_k := \mu_k + C_{\mu,k} - Z \cdot C_{\mu,k-1} // \text{ this is } M_H \\ M &:= ((M \mod 2^{l+z+1}) << z) + \overline{\alpha}_k \cdot B + \overline{\mu}_k \cdot K \end{split}$$

ENDFOR

イロト イヨト イヨト イヨト

Reduce-by-Feedback preserves the 4 properties of Shift-and-Add

- (*i*) The standard range for the multiples of *K* is $\mu_{k} \in \{-1, 0, 1, \dots, 2^{z}\}.$
- (*ii*) The FOR loop excutes exactly [*I*/*z*] times, each run comprising a shift and 2 additions.
 NO Timing Attack!
- (*iii*) Required multiples of *K*: $\mu_k \in \{0\} \cup \{Z/2 + 1, ..., Z\},$ the others by shifting.
- (*iv*) NO odd multiples of *K* by the "1-off trick" In total we need $\alpha_k, \mu_k \in \{0, \pm(Z/2+2), \pm(Z/2+4), \dots, \pm Z\}$, with 0 and \pm for free in hardware.

Reduce-by-Feedback is thus completely analogous to Shift-and-Add.

1985 Montgomery, "Modular multiplication without trial division"

Reduce-by-Feedback:

- 1987 V., Diploma thesis (TH Karlsruhe, Prof. Thomas Beth)
- 1989 V., E.I.S.S. Report 89/14
- 1989 Beth, Gollmann, "Algorithm Engineering ..."
- 1990 Patent DE 3924344 (V., "Multiplikations-/Reduktionseinricht.")

Rediscovery of Reduce-by-Feedback:

- 1995 Benaloh, Dai "Fast Modular Reduction (Crypto Rump S.) Re-Re-Discovery of Reduce-by-Feedback:
- 1997 Jeong, Burleson, "VLSI Array Algorithms ..."
- 1998 Patent US 5724279 (Josh Benaloh, Wei Dai, "Computer-implemented method ...")

イロト イポト イヨト イヨト

Comparison Montgomery Multiplication and Reduce-by-Feedback

Montgomery multiplication (1985): 1st factor: Bits from LSB to MSB — shift **down** and add residue classes $[x \cdot 2^{L}] \mod N$ instead of standard residue classes [x]

Reduce-by-Feedback (1987 etc.) 1st factor: Bits from MSB to LSB — shift and add standard residue classes [x]

Both MM and RbF ... Immune against timing attacks, since exactly $L/3 + \varepsilon_{const}$ cycles per mult/square

Susceptible (but fixable) to DPA ... later ...

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Reduce-by-Feedback: No Overflow

$$(M_{H}^{+}|M_{L}^{+}) := (M_{L} << 3) + \alpha \cdot B + \mu \cdot K$$

with

 $0 \leq M_L < 8 \cdot 2^{L+4}$ $0 \leq B, K < 2^L$ $-8 \leq \alpha, \mu \leq 8$

Total:

$$\begin{array}{l} 0 + (-8) \cdot 2^{L} + (-8) \cdot 2^{L} \\ < M^{+} < \\ 8 \cdot 2^{L+4} + 8 \cdot 2^{L} + 8 \cdot 2^{L} \\ \Leftrightarrow \\ -1 \cdot 2^{L+4} < M^{+} < 9 \cdot 2^{L+4} \Rightarrow -1 \le M_{H}^{+} \le 8 \end{array}$$
Including the "1-off trick", -8, -6, ..., 6, 8 are the necessary multiples

M. Vielhaber (Hochschule Bremerhaven) Reduce-by-Feedback and DPA on RSA

-1·

H/W Issues I: Re-use of MUX Tree and MUX Ctrl Vars

Compare $\alpha \cdot B$ and $\mu \cdot K$: Same decision logic for $A \rightarrow \alpha$ and $M_H \rightarrow \mu$ Same 75% physical savings only $6 \cdot B, 8 \cdot B$ and only $6 \cdot K, 8 \cdot K$ phys. Same MUX tree MUX Inputs -8B, -6B, -4B, ..., 6B, 8B and -8K, -6K, -4K, ..., 6K, 8K

Idea: Use H/W in both clock half cycles Clk = L: do $A \rightarrow \alpha$, Clk = H: do $\alpha \rightarrow MUX \rightarrow \alpha B$ Clk = H: do $M_H \rightarrow \mu$, Clk = L: do $\mu \rightarrow MUX \rightarrow \mu K$

Same Ctrl glue logic, same MUX tree, same shift wires used twice: 50% savings in both CTRL and BITSLICE (this beats Montgomery!)

Map 1987's 13 bit slices/mm² with 1.0 μ design rules to current 65 nm rules, naïvely shrinking by $\frac{65}{1000}^2$: 13 $\cdot \frac{65}{1000}^2 \approx 3000$ bits/mm²

Full 4096 bit RSA with control unit on about 1.5 mm² FPGA implementation [not yet] under way...

H/W Issues II: Delayed-Carry-Adder

Use Brickell's Delayed-Carry-Adder, a chain of halfadders instead of full adders with the property $c_{i+1} \wedge s_i = 0$. Standard Boolean function Using NANE $d_i := s_i \wedge b_i$, $d_i := s_i \wedge b_i, \qquad t_i := s_i \oplus b_i$ $e_i := t_i \wedge k_i, \qquad u_i := t_i \oplus k_i$ $\overline{e}_i := \overline{t_i \wedge k_i}.$ $f_i := \overline{c}_i \wedge \overline{d}_{i-1}$ $f_i := c_i \vee d_{i-1}$ (which are not both 1, due to $c_{i+1} \wedge s_i = 0$) $g_{i+1} := u_i \wedge f_i, \quad v_i := u_i \oplus f_i$ $\overline{g}_{i+1} := u_i \wedge f_i,$ $h_{i+1} := e_i \lor q_i$ (not both 1: $e_i = 1 \Rightarrow u_i = 0$) $h_{i+1} := \overline{\overline{e}_i \wedge \overline{q}_i}$ $\overline{C}_{i+1}^+ := \overline{v_i \wedge h_i},$ $c_{i+1}^+ := v_i \wedge h_i, \quad s_i^+ := v_i \oplus h_i$ 4 halfadders plus two OR's, matches carry-save in GE

4 hanadders plus two OR's, matches carry-save in G

But: Result has the Delayed-Carry Property

 $c_{i+1} \wedge s_i = 0$

which is crucial, when calculating μ_k fast

イロト イポト イヨト イヨト

H/W Issues III: No Overflow with DCA

z leading MSB bits have to be in the range -1, 0, ..., Z (assumption) DCA: $c_{i+1} \wedge s_i = 0$, hence the following patterns are the highest values possible (shown for the case z = 3, Z = 8), Table 1

1	$C_{2^{l+z+1}+2,1,0;-1,-2}$		0	0	0	0	1	sum is 8 with carry, OK
	$S_{2^{l+z+1}+2,1,0;-1,-2}$		1	1	1	1	1	avoids case 4
	$M_{H,2^{l+z+1}+3,2,1,0;-1,-2}$	1	0	0	0	0	0	
2	<i>C</i> _{2^{/+z+1}+2,1,0;-1,-2}		0	0	0	1	1	sum is 8 with carry, OK
	<i>S</i> _{2^{/+z+1}+2,1,0;-1,-2}		1	1	1	1	0	avoids case 5
	$M_{H,2^{l+z+1}+3,2,1,0;-1,-2}$	1	0	0	0	0	1	
3	<i>C</i> _{2^{/+z+1}+2,1,0;-1,-2}		0	0	1	1	1	sum is 8, OK
	<i>S</i> _{2^{<i>l</i>+<i>z</i>+1}+2,1,0;-1,-2}		1	1	1	0	0	
	$M_{H,2^{l+z+1}+3,2,1,0;-1,-2}$	1	0	0	0	1	1	
4	<i>C</i> _{2^{/+z+1}+2,1,0;-1,-2}		0	1	1	1	1	sum is 9, to be avoided
	<i>S</i> _{2^{/+z+1}+2,1,0;-1,-2}		1	1	0	0	0	by case 1
	$M_{H,2^{l+z+1}+3,2,1,0;-1,-2}$	1	0	0	1	1	1	
5	<i>C</i> _{2^{/+z+1}+2,1,0;-1,-2}		1	1	1	1	1	sum is 11, to be avoided
	<i>S</i> _{2^{/+z+1}+2,1,0;-1,-2}		1	0	0	0	0	by case 2
	$M_{H,2^{l+z+1}+3,2,1,0;-1,-2}$	1	0	1	1	1	1	<□> <同> < □> < □> < □> < □> < □> < □> <

M. Vielhaber (Hochschule Bremerhaven)

Reduce-by-Feedback and DPA on RSA

CHES 2012 19 / 29

H/W Issues IV: Fast computation of MUX Ctrl Vars

Per clock, add $\overline{\alpha} \cdot B$ and $\overline{\mu} \cdot K$ to DCA (*c*, *s*).

Previous 2 half cycles: Choose $\overline{\alpha} \cdot B$ and $\overline{\mu} \cdot K$ by the same H/W. time-critical only for $\overline{\mu}$: Depends on the addition just performed in the half cycle (k + 1, H).

CycleHalf C.SelectionComputationkH $\overline{\alpha}_k \cdot B$ $(M_H|M_I)_k := \dots$

 $\begin{array}{c|cccc} k & \mathsf{L} & \overline{\mu}_k \cdot K \\ k+1 & \mathsf{H} & \overline{\alpha}_{k+1} \cdot B \\ k+1 & \mathsf{L} & \overline{\mu}_{k+1} \cdot K \end{array} & (M_H | M_L)_{k+1} := ((M_L)_k << z) + \overline{\alpha}_k \cdot B + \overline{\mu}_k$

Precompute M_H positions:

1. In (k, H), partial sum $(M_H)_k \cdot Z + \overline{\alpha}_k \cdot B$

2. In (k, L), add $\overline{\mu}_k \cdot K$, for M_H bit positions.

3. Also add 0,1,2,3: Possible final values for $\overline{\mu}_{k+1}$, precompute the MUX control vars (4 sets) for $\overline{\mu} \cdot K$.

4. In (k + 1, H), choose by MUX via carries from M_L part.

5. In (k + 1, L): Ready to fetch $\overline{\mu}_{k+1} \cdot K$ from one of the 4 sets.

(FPGA with 6:1 LUTs: Addition maybe (even) faster than CTRL)

CHES 2012 20 / 29

Final carry from DCA to standard representation: Either

- (i) we use carry-look-ahead logic, space-intensive, or
- (ii) we keep the result in delayed-carry-form, space-intensive, or
- (*iii*) we wait until the longest carry chain (L + z bits) will have passed, time-intensive, or
- (*iv*) we use interrupt techniques, efficient, but time-variant.

The variation due to carries in case (iv) is the only potential information leak for a timing attack. This is though independent of Reduce-by-Feedback (or Montgomery multiplication), but a consequence of using carry-save or delayed-carry techniques.

イロト イポト イヨト イヨト 二日

Before first cycle:

$$M = 0, M_H = 0, \mu = 0$$

At first cycle:

$$M^+ := (M \ll 3) + \alpha \cdot B + \mu \cdot K = 0 + \alpha B + 0$$

IF $\alpha = 0$ (*i.e.* A starts with 3 zeroes): $M^+ := 0 + 0 + 0 = M$, NO change of FF charges

IF $\alpha \neq 0$ (*i.e.*the other 7 cases): $M^+ := 0 + \alpha B + 0 \neq 0 = M, \approx 50\%$ of FF go $0 \rightarrow 1$ (same effect for Reduce-by-Feedback and Montgomery)

We observe (only) this "point-of-interest"

・ 同 ト ・ ヨ ト ・ ヨ ト

DPA on RSA II

Run *C* trials with different *m*, same (unblinded) exponent *d*: Observe $L \cdot 1.5$ mult./squarings per trial Information content / Entropy per trial:

 $H = -(1/8 \cdot \log_2(1/8) + 7/8 \cdot \log_2(7/8)) = 0.544$

We have 1.5 observations per bit of *d*, thus $1.5 \cdot 0.544 = 0.816$ bits, recovering 81% of *d*'s bits, or with C = 2, everything!! Or do we????

Crucial, difficult case is "always $\alpha \neq 0$ ", the "big bin" This bin has to contain only a single solution, no false positives:

$$2^{L} \cdot \left(\frac{7}{8}\right)^{1.5L \cdot C} = 1$$

or

$$\left(\frac{7}{8}\right)^{1.5 \cdot C} = \frac{1}{2} \Leftrightarrow C = 3.47$$

So we actually need 4 trials in this worst and quite typical case.

Run 4 decryptions with known m's (DUT)

Simulate for all possible prefixes for *d*, compare occurrence of $\alpha = 0$ vs. $\alpha \neq 0$ with actual DUT

Throw away non-fitting prefixes, enlarge the survivors (we usually should have about just one survivor)

And that breaks RSA!

イロト イポト イヨト イヨト

How to fix it

 $\alpha_0 = \mu_0 = 0$ is exploitable by DPA

1. (NEW!) Both Reduce-by-Feedback and Montgomery Start with M = N, not M = 0 (more H/W, additional MUX input, not just Reset)

2. (NEW!) Montgomery For M = ..000, add $8 \cdot N$, not $0 \cdot N$

3. Reduce-by-Feedback

 $M = 0 \mapsto M^+ = 0$ can be avoided, use "1-off" trick with

0 = 1 + (-1)

Instead of $0 \cdot B$, add *B* once, subtract $Z \cdot B$ in the next step. This brings us back to zero every second step.

B has \approx 50% 1's: Flips back-and-forth half of the register bits

On the outside: typ. power consumption, no side channel and a second sec

Example with z = 3, Z = 8

Old: regular "1-off" case including a multiple 0. New: 0 = 1 + (-1), also $\Sigma = -1, 1, 2$, and 3 differently Minimize the information flow (bias) from $\overline{\alpha}, \overline{\mu}$ to *C*, *A*, *M*_{*H*} Irregular "1-off" + Shifts. Still only *Z*/4 values phys. stored, *e.g.* 6;8.

$C_{\alpha},$	$\alpha_{k},$	Σ	$\overline{\alpha}_{k},$	\mathcal{C}^+	$\overline{\alpha}_{k},$	\mathcal{C}^+	
\mathcal{C}_{μ}	M_H		$\overline{\mu}_{k}$ (c	old)	$\overline{\mu}_k$ (n	iew)	
0	-1	_1	0	1	1	0	
0	000	0	0	0	1	1	
0	001	1	2	1	1	0	
0	010	2	2	0	3	1	
0	011	3	4	1	3	0	
0	100	4	4	0	4	0	
0	101	5	6	1	6	1	
0	110	6	6	0	6	0	
0	111	7	8	1	8	1	
0	1000	8	8	0	8	0	

M. Vielhaber (Hochschule Bremerhaven)

CHES 2012 26 / 29

Sac

Bias: Nearer zero

Bias = pr(1) - pr(0)

Bias of *C* and Σ (internals, partly revealing *A* and *M*), conditional on certain value sets for $\overline{\alpha}, \overline{\mu}$, namely zero, positive, shifts of 8, and shifts of 6 (potentially observable by DPA):

Assumed probabilities:

C: pr =
$$1/2$$
 for *C* = 0 and *C* = 1

$$\alpha$$
: Pr = 1/8 each for $\alpha = 0, \dots, 7$.

 μ : Fold 3 equidistributions over the intervals [0,8] (from M_H),

$$[-1/2, 1/2[$$
 (from $\alpha \cdot B$), and

$$[-1/2, 1/2[$$
 (from $\mu \cdot K),$

giving
Pr = 1/8 each for
$$\mu = 1, \dots, 6$$
,
Pr = 5/48 for $\mu = 0$ and 7, and

イロト イポト イヨト イヨト 二日

Bias II

We now have probability zero for $\overline{\alpha} = 0$, which was 1/8 before.

Sets $\{1, 2, 4, 8\}$ and $\{3, 6\}$ for α, μ give zero bias (all bits of C, Σ).

For α, μ positive, the bias shrinks:

	C	Σ2	Σ_1	Σ0
$\overline{\alpha} > 0$ new	-1	0	0	0
$\overline{\alpha} > 0$ old	-1	1/7	1/7	1/7
$\overline{\mu} > 0$ new	-23/24	1/24	1/24	1/24
$\overline{\mu} > 0$ old	-1	-2/21	-2/21	-2/21

Table : Bias of C, Σ , conditional on $\overline{\alpha}, \overline{\mu}$

The remaining strong bias -1 is from $\overline{\alpha}, \overline{\mu}$ positive to C = 0 (or ... negative to C = 1), almost a tautology.

 $\overline{\alpha}, \overline{\mu} > 0$: mix of cases 1, 2, 3, 4, 6, 8, quite more difficult to analyze by DPA than the distinction $\alpha = 0$ vs. $\alpha \neq 0$, now ruled out.

Conclusion

- __ __ __ .

Reduce-by-Feedback has all the advantages of Montgomery Multiplication (for full-length register addition),

in particular, timing invariance, and 75% savings in physical storage.

Additionally Reduce-by-Feedback enjoys the analogy of Shift-and-Add with Reduce-by-Add, saves up to 50% logic/MUXes by re-use.

Avoid an empty accumulator, start with N, not zero, or ...

avoid the occurrence of $M^+ := (0 << 3) + 0 + 0 = M$ in the first cycle, otherwise ...

(unblinded) RSA can be broken with 4 (or less) observed decryptions for an implementation of 3 (or less) bits/cycle