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The RSA Public Key Cryptosystem

I Invented by Rivest, Shamir and Adleman in 1977.

I Most popular public key cryptosystem.

I Used in Electronic commerce protocols.



RSA in a Nutshell

Key Generation Algorithm

I Choose primes p, q (generally same bit size, q < p < 2q)

I Construct modulus N = pq, and φ(N) = (p − 1)(q − 1)

I Set e, d such that d = e−1 mod φ(N)

I Public key: (N, e) and Private key: d

Encryption Algorithm: C = Me mod N

Decryption Algorithm: M = Cd mod N



RSA and Factorization

“The primes p, q guard the secret of RSA.”

I Factoring N = pq implies ‘attack’ on RSA. [the reverse is not

proved yet]

I However, as of today, factoring N is infeasible for
log2(N) > 768

I And practical RSA uses log2(N) = 1024, 2048 (recommended)

Simple factoring of N = pq does not seem to be an efficient
solution!



Square and Multiply

Input: x , y ,N
Output: xy mod N
z = y , u = 1, v = x ;1

while z > 0 do2

if z ≡ 1 mod 2 then3

u = uv mod N;4

end
v = v2 mod N; z = b z2c ;5

end
return u.6

Algorithm 1: The fast square and multiply algorithm for modular
exponentiation.

I `y = dlog2 ye many squares

I wy = wt(bin(y)) many multiplications



Square and Multiply algorithm

Cost of calculating xy mod N

I Squares: `y (bit length of y)

I Multiplications: wy ≈ `y
2 (weight of y)

I Total Modular Multiplications: `y + wy ≈ 3
2`y

I Total Bit Operations: 3
2`y `

2
N



The CRT-RSA Cryptosystem

I Improves the decryption efficiency of RSA, 4 folds!

I Invented by Quisquater and Couvreur in 1982.

I The most used variant of RSA in practice.

I PKCS #1 standard: store the RSA secret parameters as a
tuple (p, q, d , dp, dq, q

−1 mod p).



Chinese Remainder Theorem(CRT)

Theorem
Let r , s be integers such that gcd(r , s) = 1. Given integers a, b,
there exists unique x < rs such that

1. x ≡ a mod r

2. x ≡ b mod s



CRT-RSA: Faster approach for decryption

I Two decryption exponents (dp, dq) where

dp ≡ d mod (p − 1) and dq ≡ d mod (q − 1).

I To decrypt the ciphertext C , one needs

Cp ≡ Cdp mod p and Cq ≡ Cdq mod q.

Calculating xy :

I `y = dlog2 ye many squares

I wy = wt(bin(y)) many multiplications



Efficiency of CRT-RSA Decryption

I For e = 216 + 1, we have `dp ≈ `dq ≈
`N
2

I Cdp mod p requires 3
2`dp`

2
p ≈ 3

16`
3
N many bit operation

I Cdq mod q requires 3
2`dq`

2
q ≈ 3

16`
3
N many bit operation

I Total bit operations for decryption is 3
8`

3
N



CRT-RSA: Faster through low Hamming weight

I Lim and Lee (SAC 1996) and later Galbraith, Heneghan and
McKee (ACISP 2005): dp, dq with low Hamming weight.

I Maitra and Sarkar (CT-RSA-2010): large low weight factors
in dp, dq.

I The security analysis of all these schemes argue that the
exhaustive search for the low Hamming weight factors in the
decryption exponents is the most efficient approach to attack
such a scheme.



Galbraith, Heneghan and McKee (ACISP 2005)

Input: `e , `N , `k
Output: p, dp

Choose an `e bit odd integer e;1

Choose random `k bit integer kp coprime to e;2

Find odd integer dp such that dp ≡ e−1 mod kp;3

p = 1 +
edp−1
kp

;4

(`e , `N , `d , `k) = (176, 1024, 338, 2) with wdp = wdq = 38

Comparison in decryption:
2× 3

2
×338×5122

2×(338+38)×5122 ⇒ 26% Faster



Security of the Algorithm

I Brute force search

I Lattice attack by May (Crypto 2002)

I Lattice attack by Bleichenbacher and May (PKC2006)

I Lattice attack by Jochemsz and May (Crypto 2007)

But ..



Security of the Algorithm

I Brute force search

I Lattice attack by May (Crypto 2002)

I Lattice attack by Bleichenbacher and May (PKC2006)

I Lattice attack by Jochemsz and May (Crypto 2007)

But ..



The Tool for Cryptanalysis

I Heninger and Shacham: Reconstructing RSA private keys
from random key bits. Crypto 2009. Some bits are not
available.

I Henecka, May and Meurer: Correcting Errors in RSA Private
Keys (Crypto 2010).

I wdp ,wdq are taken significantly smaller than the random case.

I Take the all zero bit string as error-incorporated (noisy)
presentation of dp, dq.

I If the error rate is significantly small, one can apply the error
correcting algorithm of Henecka et al to recover the secret
key.

I Time complexity of the error-correction heuristic: τ .

I The strategy attacks the schemes of SAC 1996 and ACISP
2005 in τO(e) time. For our scheme in CT-RSA 2010, it is
τO(e3).



Attack Algorithm

Input: N, e, kp , kq and a,C
Output: Set A, containing possible guesses for p.

Initialize b = 0,A = ∅,A−1 = ∅;1

while b < `N
2

do2

A = {0, 1}a||A−1;3

For each possible options p′ ∈ A, calculate q′ = (p′)−1N mod 2b+a;4

For each p′, q′, calculate5

d ′p = (1 + kp(p′ − 1)) e−1 mod 2b+a, d ′q = (1 + kq(q′ − 1)) e−1 mod 2b+a;

If the number of 0’s taking together the binary patterns of d ′p , d
′
q in the positions6

b to b + a− 1 from the least significant side is less than C , then delete p′ from A;

If b 6= 0 and A = ∅, then terminate the algorithm and report failure;7

A−1 = A; b = b + a;8

end

Report A;9



The Heuristic: Henecka et al

Theorem
Let a = d ln `N

4ε2 e, γ0 =
√

(1 + 1
a ) ln 2

4 and C = a + 2aγ0. We also

consider that the parameters kp, kq of CRT-RSA are known. Then

one can obtain p in time O(l
2+ ln 2

2ε2

N ) with success probability greater

than 1− 2ε2

ln `N
− 1

`N
if δ ≤ 1

2 − γ0 − ε.

I To maximize δ, ε should converge to zero and in such a case a
tends to infinity.

I Then the value of γ0 converges to 0.416.

I Thus, asymptotically Algorithm 3 works when δ is less than
0.5− 0.416 = 0.084.

I Since in this case a becomes very large, the algorithm will not
be efficient and may not be implemented in practice.

I This is the reason, experimental results could not reach the
theoretical bounds as studied in the work of Henecka et al.



CRT-RSA Cryptanalysis

I Following the idea of Henecka et al, one can cryptanalyze
CRT-RSA having wdp ,wdq ≤ 0.04`N in O(e · poly(`N)) time.

I For each possible option of kp, kq (this requires O(e) time),
one needs to apply the Algorithm to obtain p.

I For small e the attack remains efficient.



Improving the Heuristic

I While applying the heuristic of Henecka et al, we noted a few
modifications that can improve the performance significantly.

I Different values of the threshold

I Multiple constraints on each round



Input: N, e, k, kp , kq , p̃, q̃, d̃ , d̃p , d̃q , a,B and threshold parameters
Output: Set A, containing possible guesses for p.

Initialize b = 0,A = ∅,A−1 = ∅;1

while b < `N
2

do2

A = {0, 1}a‖A−1;3

For each possible options p′ ∈ A, calculate q′ = (p′)−1N mod 2b+a;4

Calculate d ′ = (1 + k (N + 1− p′ − q′)) e−1) mod 2b+a,5

d ′p = (1 + kp(p′ − 1)) e−1 mod 2b+a, d ′q = (1 + kq(q′ − 1)) e−1 mod 2b+a;

Calculate µi ’s for i = 1 to 31 comparing least significant b + a bits of the noisy6
strings and the corresponding possible partial solution strings of length b + a, i.e.,
through the positions 0 to b + a− 1;

If µi < C a+b
i for any i ∈ [1, . . . , 31], delete the solution from A;7

If |A| > B, reduce C a+b
31 by 1 and go to Step 7;8

If b 6= 0 and A = ∅, then terminate the algorithm and report failure;9
A−1 = A; b = b + a;10

end

Report A;11

Algorithm 2: Improved Error Correction algorithm.



Improving the Heuristic (Experimental Results)

Upper bound of δ [H] Success probability (expt.) δ
th. expt. [H] our our expt.

(p, q) 0.084 0.08 0.22 0.61 0.12
(p, q, d) 0.160 0.14 0.15 0.52 0.17

(p, q, d, dp , dq) 0.237 0.20 0.21 0.50 0.25

I We run the strategy till we obtain all the bits of p.

I It is known that if one obtains the least significant half of p,
then it is possible to obtain the factorization of N efficiently



Experimental results: parameters dp, dq

δ 0.08 0.09 0.10 0.11 0.12 0.13
Suc. prob. 0.59 0.27 0.14 0.04 - -
Time (sec.) 307.00 294.81 272.72 265.66 - -

Suc. prob. 0.68 0.49 0.25 0.18 0.08 0.02
Time (sec.) 87.41 84.47 80.18 74.57 79.33 76.04

Lim et al (SAC 1996)
I `N = 768, `dp = 384,wdp = 30, e = 257;⇒ δ ≈ 30

384 = 0.078

I `N = 768, `dp = 377,wdp = 45, e = 257;⇒ δ =
wdp

`dp
≈ 0.12

Galbraith et al (ACISP 2005)
(`e , `dp , `kp) = (176, 338, 2),wdp = 38⇒ δ ≈ 38

338 ≈ 0.11

Maitra et al (CT-RSA 2010) δ ≈ 0.08



Conclusion

I Application of the recently proposed error correction strategy
of secret keys for RSA by Henecka et al to actual
cryptanalysis. We studied two kinds of schemes.

I CRT-RSA decryption keys are of low weight as (SAC 1996,
ACISP 2005). We demonstrate complete break in a few
minutes for 1024 bit RSA moduli.

I The decryption exponents are not of low weight, but they
contain large low weight factors (CT-RSA 2010). Actual break
is not possible, but clear cryptanalytic result.

I We had a detailed look at the actual error correction
algorithm of Henecka et al.

I We provide significant improvements as evident from
experimental results.

I We could demonstrate that the theoretical bound given by
Henecka et al can also be crossed using our heuristic.
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