Side Channel Attack to Actual Cryptanalysis: Breaking CRT-RSA with Low Weight Decryption Exponents

Santanu Sarkar and Subhamoy Maitra

Leuven, Belgium

12 September, 2012

《曰》 《聞》 《理》 《理》 三世

Outline of the Talk

RSA Cryptosystem

CRT-RSA

CRT-RSA having Low Hamming Weight Decryption Exponents

The RSA Public Key Cryptosystem

Invented by Rivest, Shamir and Adleman in 1977.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Most popular public key cryptosystem.
- Used in Electronic commerce protocols.

RSA in a Nutshell

Key Generation Algorithm

- Choose primes p, q (generally same bit size, q)
- Construct modulus N = pq, and $\phi(N) = (p-1)(q-1)$

- Set e, d such that $d = e^{-1} \mod \phi(N)$
- Public key: (N, e) and Private key: d

ENCRYPTION ALGORITHM: $C = M^e \mod N$

DECRYPTION ALGORITHM: $M = C^d \mod N$

RSA and Factorization

"The primes p, q guard the secret of RSA."

- Factoring N = pq implies 'attack' on RSA. [the reverse is not proved yet]
- ► However, as of today, factoring N is infeasible for log₂(N) > 768
- And practical RSA uses $\log_2(N) = 1024, 2048$ (recommended)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simple factoring of N = pq does not seem to be an efficient solution!

Square and Multiply

Input: x, y, NOutput: $x^y \mod N$ 1 z = y, u = 1, v = x;2 while z > 0 do 3 | if $z \equiv 1 \mod 2$ then 4 | $u = uv \mod N;$ end 5 | $v = v^2 \mod N; z = \lfloor \frac{z}{2} \rfloor;$ 6 return u.

Algorithm 1: The fast square and multiply algorithm for modular exponentiation.

• $\ell_y = \lceil \log_2 y \rceil$ many squares

► w_y = wt(bin(y)) many multiplications

Square and Multiply algorithm

Cost of calculating $x^y \mod N$

- Squares: l_y(bit length of y)
- Multiplications: $w_y \approx \frac{\ell_y}{2}$ (weight of y)
- Total Modular Multiplications: $\ell_y + w_y \approx \frac{3}{2}\ell_y$

• Total Bit Operations: $\frac{3}{2}\ell_y\ell_N^2$

The CRT-RSA Cryptosystem

- Improves the decryption efficiency of RSA, 4 folds!
- Invented by Quisquater and Couvreur in 1982.
- The most used variant of RSA in practice.
- ► PKCS #1 standard: store the RSA secret parameters as a tuple (p, q, d, d_p, d_q, q⁻¹ mod p).

Chinese Remainder Theorem(CRT)

Theorem

Let r, s be integers such that gcd(r, s) = 1. Given integers a, b, there exists unique x < rs such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. $x \equiv a \mod r$
- 2. $x \equiv b \mod s$

CRT-RSA: Faster approach for decryption

• Two decryption exponents (d_p, d_q) where

$$d_p \equiv d \mod (p-1)$$
 and $d_q \equiv d \mod (q-1)$.

► To decrypt the ciphertext *C*, one needs

$$C_p \equiv C^{d_p} \mod p$$
 and $C_q \equiv C^{d_q} \mod q$.

Calculating x^y :

- $\ell_y = \lceil \log_2 y \rceil$ many squares
- ► w_y = wt(bin(y)) many multiplications

Efficiency of CRT-RSA Decryption

- For $e = 2^{16} + 1$, we have $\ell_{d_p} \approx \ell_{d_q} \approx rac{\ell_N}{2}$
- C^{d_p} mod p requires $\frac{3}{2}\ell_{d_p}\ell_p^2 \approx \frac{3}{16}\ell_N^3$ many bit operation
- $C^{d_q} \mod q$ requires $\frac{3}{2} \ell_{d_q} \ell_q^2 \approx \frac{3}{16} \ell_N^3$ many bit operation

• Total bit operations for decryption is $\frac{3}{8}\ell_N^3$

CRT-RSA: Faster through low Hamming weight

- Lim and Lee (SAC 1996) and later Galbraith, Heneghan and McKee (ACISP 2005): d_p, d_q with low Hamming weight.
- ► Maitra and Sarkar (CT-RSA-2010): large low weight factors in d_p, d_q.
- The security analysis of all these schemes argue that the exhaustive search for the low Hamming weight factors in the decryption exponents is the most efficient approach to attack such a scheme.

Galbraith, Heneghan and McKee (ACISP 2005)

Input: ℓ_e, ℓ_N, ℓ_k Output: p, d_p

- 1 Choose an ℓ_e bit odd integer e;
- 2 Choose random ℓ_k bit integer k_p coprime to e;
- 3 Find odd integer d_p such that $d_p \equiv e^{-1} \mod k_p$;

4
$$p = 1 + \frac{ed_p - 1}{k_p};$$

$$(\ell_e, \ell_N, \ell_d, \ell_k) = (176, 1024, 338, 2)$$
 with $w_{d_p} = w_{d_q} = 38$

Comparison in decryption: $\frac{2 \times \frac{3}{2} \times 338 \times 512^2}{2 \times (338+38) \times 512^2} \Rightarrow 26\%$ Faster

Security of the Algorithm

- Brute force search
- Lattice attack by May (Crypto 2002)
- Lattice attack by Bleichenbacher and May (PKC2006)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lattice attack by Jochemsz and May (Crypto 2007)

Security of the Algorithm

- Brute force search
- Lattice attack by May (Crypto 2002)
- Lattice attack by Bleichenbacher and May (PKC2006)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lattice attack by Jochemsz and May (Crypto 2007)

But ..

The Tool for Cryptanalysis

- Heninger and Shacham: Reconstructing RSA private keys from random key bits. Crypto 2009. Some bits are not available.
- Henecka, May and Meurer: Correcting Errors in RSA Private Keys (Crypto 2010).
- w_{d_p}, w_{d_q} are taken significantly smaller than the random case.
- ► Take the all zero bit string as error-incorporated (noisy) presentation of d_p, d_q.
- If the error rate is significantly small, one can apply the error correcting algorithm of Henecka et al to recover the secret key.
- Time complexity of the error-correction heuristic: τ .
- ► The strategy attacks the schemes of SAC 1996 and ACISP 2005 in \(\tau\)O(e) time. For our scheme in CT-RSA 2010, it is \(\tau\)O(e³).

Attack Algorithm

Input: N, e, k_p, k_q and a, C**Output**: Set A, containing possible guesses for p. Initialize $b = 0, A = \emptyset, A_{-1} = \emptyset$; 1 while $b < \frac{\ell_N}{2}$ do 2 3 $A = \{0, 1\}^{a} || A_{-1};$ For each possible options $p' \in A$, calculate $q' = (p')^{-1}N \mod 2^{b+a}$; 4 5 For each p', q', calculate $d'_{p} = (1 + k_{p}(p'-1)) e^{-1} \mod 2^{b+a}, d'_{a} = (1 + k_{q}(q'-1)) e^{-1} \mod 2^{b+a};$ If the number of 0's taking together the binary patterns of d'_p, d'_q in the positions 6 b to b + a - 1 from the least significant side is less than C, then delete p' from A; 7 If $b \neq 0$ and $A = \emptyset$, then terminate the algorithm and report failure; $A_{-1} = A; b = b + a;$ 8 end 9 Report A:

The Heuristic: Henecka et al

Theorem Let $a = \lceil \frac{\ln \ell_N}{4\epsilon^2} \rceil$, $\gamma_0 = \sqrt{\left(1 + \frac{1}{a}\right) \frac{\ln 2}{4}}$ and $C = a + 2a\gamma_0$. We also consider that the parameters k_p , k_q of CRT-RSA are known. Then one can obtain p in time $O(I_N^{2 + \frac{\ln 2}{2\epsilon^2}})$ with success probability greater than $1 - \frac{2\epsilon^2}{\ln \ell_N} - \frac{1}{\ell_N}$ if $\delta \leq \frac{1}{2} - \gamma_0 - \epsilon$.

- To maximize δ, ε should converge to zero and in such a case a tends to infinity.
- Then the value of γ_0 converges to 0.416.
- ► Thus, asymptotically Algorithm 3 works when δ is less than 0.5 0.416 = 0.084.
- Since in this case a becomes very large, the algorithm will not be efficient and may not be implemented in practice.
- This is the reason, experimental results could not reach the theoretical bounds as studied in the work of Henecka et al.

CRT-RSA Cryptanalysis

- ▶ Following the idea of Henecka et al, one can cryptanalyze CRT-RSA having $w_{d_p}, w_{d_q} \leq 0.04 \ell_N$ in $O(e \cdot \text{poly}(\ell_N))$ time.
- For each possible option of k_p, k_q (this requires O(e) time), one needs to apply the Algorithm to obtain p.

▶ For small *e* the attack remains efficient.

Improving the Heuristic

While applying the heuristic of Henecka et al, we noted a few modifications that can improve the performance significantly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Different values of the threshold
- Multiple constraints on each round

	Input : $N, e, k, k_p, k_q, \tilde{p}, \tilde{q}, \tilde{d}, \tilde{d}_p, \tilde{d}_q, a, B$ and threshold parameters Output : Set A, containing possible guesses for p.						
1	Initialize $b = 0, A = \emptyset, A_{-1} = \emptyset;$						
2	while $b < \frac{\ell_N}{2}$ do						
3	$A = \{0, 1\}^a \ A_{-1};$						
4	For each possible options $p' \in A$, calculate $q' = (p')^{-1}N \mod 2^{b+a}$;						
5	Calculate $d' = (1 + k (N + 1 - p' - q')) e^{-1} \mod 2^{b+a}$, $d'_p = (1 + k_p(p' - 1)) e^{-1} \mod 2^{b+a}$, $d'_q = (1 + k_q(q' - 1)) e^{-1} \mod 2^{b+a}$;						
6	Calculate μ_i 's for $i = 1$ to 31 comparing least significant $b + a$ bits of the noisy strings and the corresponding possible partial solution strings of length $b + a$, i.e., through the positions 0 to $b + a - 1$;						
7	If $\mu_i < C_i^{a+b}$ for any $i \in [1,, 31]$, delete the solution from A;						
8	If $ A > B$, reduce C_{31}^{a+b} by 1 and go to Step 7;						
9 10	If $b \neq 0$ and $A = \emptyset$, then terminate the algorithm and report failure; $A_{-1} = A$; $b = b + a$;						
	end						
11	Report A;						

Algorithm 2: Improved Error Correction algorithm.

Improving the Heuristic (Experimental Results)

	Upper bound of δ [H]		Success probability (expt.)		δ
	th.	expt.	[[H]	our	our expt.
(p, q)	0.084	0.08	0.22	0.61	0.12
(p, q, d)	0.160	0.14	0.15	0.52	0.17
(p,q,d,d_p,d_q)	0.237	0.20	0.21	0.50	0.25

- We run the strategy till we obtain all the bits of *p*.
- It is known that if one obtains the least significant half of p, then it is possible to obtain the factorization of N efficiently

Experimental results: parameters d_p, d_q

δ	0.08	0.09	0.10	0.11	0.12	0.13
Suc. prob.	0.59	0.27	0.14	0.04	-	-
Time (sec.)	307.00	294.81	272.72	265.66	-	-
Suc. prob.	0.68	0.49	0.25	0.18	0.08	0.02
Time (sec.)	87.41	84.47	80.18	74.57	79.33	76.04

LIM ET AL (SAC 1996)
•
$$\ell_N = 768, \ell_{d_p} = 384, w_{d_p} = 30, e = 257; \Rightarrow \delta \approx \frac{30}{384} = 0.078$$

•
$$\ell_N = 768, \ell_{d_p} = 377, w_{d_p} = 45, e = 257; \Rightarrow \delta = \frac{w_{d_p}}{\ell_{d_p}} \approx 0.12$$

GALBRAITH ET AL (ACISP 2005) $(\ell_e, \ell_{d_p}, \ell_{k_p}) = (176, 338, 2), w_{d_p} = 38 \Rightarrow \delta \approx \frac{38}{338} \approx 0.11$

Maitra et al (CT-RSA 2010) $\delta \approx 0.08$

Conclusion

- Application of the recently proposed error correction strategy of secret keys for RSA by Henecka et al to actual cryptanalysis. We studied two kinds of schemes.
 - CRT-RSA decryption keys are of low weight as (SAC 1996, ACISP 2005). We demonstrate complete break in a few minutes for 1024 bit RSA moduli.
 - The decryption exponents are not of low weight, but they contain large low weight factors (CT-RSA 2010). Actual break is not possible, but clear cryptanalytic result.
- ► We had a detailed look at the actual error correction algorithm of Henecka et al.
 - We provide significant improvements as evident from experimental results.
 - We could demonstrate that the theoretical bound given by Henecka et al can also be crossed using our heuristic.

