PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions Cast in Silicon

Christian Wachsmann

christian.wachsmann@trust.cased.de TU Darmstadt / CASED, Germany

Joint work with:

Stefan Katzenbeisser, Ünal Kocabaş TU Darmstadt / CASED, Germany Ahmad-Reza Sadeghi

TU Darmstadt / CASED and Fraunhofer SIT Darmstadt, Germany

Vladimir Rožić, **Ingrid Verbauwhede**

KU Leuven, ESAT/COSIC, Leuven, Belgium

The Big Picture

Computing Device generates, stores and processes security-critical information **Computing Device**

Cryptography can be used to protect information

Cryptography relies on secrets that must be protected on the devices

G CASED

The Need for Secure Hardware

However: Cryptographic secrets can be leaked by physical attacks

Invasive Attacks (mechanical probing, FIB, etc.)

Side-Channel Analysis (SPA, DPA, timing, fault injection, etc.)

Requires physical protection mechanisms

Algorithmic countermeasures exist

Classic security hardware often too complex and too expensive

Promising:

Physically Unclonable Functions (PUFs)

GCASED

PUF Concept

PUFs exploit random variations of manufacturing process that make each individual sample of a device unique on the physical level

Example: SRAM PUF

Common Assumptions

Unclonability

PUF is unique due to unpredictable variations of manufacturing process

Robustness

PUF always returns similar PUF responses when queried with the same challenge

Unpredictability

PUF's challenge/response behavior is pseudo-random

Fundamental for PUF-based crypto/security primitives

Tamper-evidence

Physical analysis of PUF changes its challenge/response behavior

Typical Applications

- Device identification/authentication (e.g., anti-counterfeiting)
- Secure key-storage
- Binding hardware and software (e.g., IP protection)
- Building block in cryptographic and security solutions (e.g., encryption/attestation)

Benefits of using PUFs

No secure memory required

Cryptographic secret derived from the PUF response when needed

Intrinsic protection against invasive hardware attacks

Physical modifications of the (PUF) circuit assumed to change device fingerprint

However:

Security properties of PUF-based solutions unclear

Gap between PUF implementations and PUF models in the literature

- Often idealized / not all properties of PUF implementations reflected
- Include security parameters that cannot be determined in practice

Existing analysis results of PUF implementations difficult to compare

- Varying test conditions (different technologies, test cases)
- Different analysis methods (theoretical, empirical, different metrics)
- Unavailability of test data sets

🜌 Fraunhofer

CASED

LINIVERSITÄT

11 System

Security Lab

Our goal:

Meaningful evaluation and fair comparison of the most common PUF types in ASIC

G CASED

Our Contribution

- First large scale evaluation of real PUF implementations in ASIC 96 ASICs with multiple instantiations of most common PUF types
- PUF evaluation framework for the most important PUF properties Empirical assessment of the robustness and unpredictability property

More Details on PUFs

PUF ASIC and Test Setup

UNIQUE ASIC

- 96 ASICs manufactured in TSMC 65 nm CMOS multi-project wafer run
- Includes 5 most common intrinsic PUFs (see table) and noise generator
- PUFs designed by our partners Intrinsic ID and KU Leuven in UNIQUE project

PUF Class	PUF Type	No. of PUF instances per ASIC
Delay-based	Arbiter	256
	Ring Oscillator	16
Memory-based	SRAM	4 (8 kB each)
	Flip-flop	4 (1 kB each)
	Latch	4 (1 kB each)

Test setup

- ASIC test board of Sirrix AG
- Xilinx Virtex 5 FPGA
- PC / Matlab (not shown)

How big is the impact of noise?

SCASED

Myth:

PUFs are robust to varying operating conditions.

CHES 2012

Evaluation Strategy: Robustness

Common metric for robustness: bit error rate (BER)

Evaluation Results: Robustness

Test Cases

- Temperature: -40°C to +85°C
- Supply Voltage: ±10% VDD
- Noise core: On/Off

PUF-Type	Average Bit Error Rate (over all test cases)
SRAM	< 7%
Ring oscillator	< 6%
Arbiter	< 6%
Flip-Flop and Latch	< 15% BER (impractical in some applications)

Can be compensated by existing error correction schemes

Example: Voltage Variation

Arbiter PUF, Ring Oscillator (RO) and Latch PUF sensitive to supply voltage variations

Flip-Flop (DFF) and SRAM PUF not affected by supply voltage variations

See paper for graphs of other test cases.

How unpredictable are PUF responses?

G CASED

Myth:

PUFs responses can be predicted if other challenge/response pairs are known.

BUSTED

Depends on the PUF type.

G CASED

Evaluation Strategy: Unpredictability

We use Shannon entropy as metric for unpredictability

We are interested in the average uncertainty in a response Y(x) in case all other responses W_x are known.

That is, we are interested in the conditional entropy:

$$H(Y|W) = -\sum_{x \in X} Pr[Y(x), W_x] \cdot \log_2 Pr[Y(x)|W_x]$$

SRAM-PUF

Computationally infeasible to determine the underlying probability distributions

Our Approach to Entropy Estimation

Observation:

- Typical electronic PUF structure: Array of electronic components (memory cells, ring oscillators, switch blocks)
- Common assumption: Distant components do not significantly affect each other
 ⇒ Entropy estimation only considers responses from neighboring components

Hence, we estimate H(Y|W) with:

$$H(Y|W') = -\sum_{x \in X} Pr[Y(x), W_x'] \cdot \log_2 Pr[Y(x)|W_x']$$

Further, we estimate the corresponding conditional min-entropy:

 $H_{\infty}(Y|W') = -\log_2 \max_{x \in X} \{Pr[Y(x)|W_x']\}$

SRAM-PUF

Similar assumptions hold for Flip-Flop, Latch, Ring Oscillator and Arbiter PUFs

Evaluation Results: Unpredictability

Test Cases

- Temperature: -40°C to +85°C
- Supply Voltage: ±10% VDD
- Noise core: On/Off

PUF-Type	Unpredictability
SRAM	Entropy and min-entropy > 80% (almost ideal)
Ring oscillator	Entropy ≈75%; min-entropy < 2% (too low for some applications)
Arbiter	Entropy and min-entropy < 1% (far too low; model building possible)
Flip-Flop and Latch	Strongly dependent on temperature (may enable attacks)

PUF must be carefully chosen depending on the requirements of the underlying use case

Scale CASED

Conclusion and Future Work

We presented

- First large-scale evaluation of real PUF implementations in ASIC
- PUF evaluation framework for the robustness and unpredictability properties

Current and future work

- Extension of the evaluation framework
 - More test cases (e.g., aging tests)
 - Other PUF properties (e.g., tamper-evidence, unclonability)
- Analysis of other PUF types

Thank you!

Christian Wachsmann

christian.wachsmann@trust.cased.de

