RUHR-UNIVERSITÄT BOCHUM

Towards One Cycle per Bit Asymmetric Encryption: Code-Based Cryptography on Reconfigurable Hardware Stefan Heyse, Tim Güneysu

Towards One Cycle per Bit Asymmetric Encryption: Code-Based Cryptography on Reconfigurable Hardware Stefan Heyse, Tim Güneysu

CHES 2012 - Leuven, Belgium

RUB

11.09.2012

Outline

Introduction

- Background in code based crypto
- McEliece vs. Niederreiter
- Our implementation
- Results and conclusion

Introduction

- We need alternatives to classical schemes for larger diversification and to resist (possible?) quantum computer attacks
- Nearly all alternative PKCS are hindered by large keys
- Already shown that they can be fast
- How fast can we get?
- Is McEliece or Niederreiter faster (in standard scenario)?

Outline

- Introduction
- Background in code based crypto
- McEliece vs. Niederreiter
- Our implementation
- Results and conclusion

Goppa Codes

- Subgroup of error correcting code
- Belongs to the huge family of alternant codes
- Can be described by Goppa polynomial g(z) of degree s and a list of field elements called support L.

$$g(z) = \sum_{i=0}^{t} g_i z^i \in \mathbb{F}_{2^m}[z] \qquad \mathcal{L} = \{\alpha_0, \cdots, \alpha_{n-1}\} \qquad \alpha_i \in \mathbb{F}_{2^m}$$

Parity check matrix of Goppa Codes

 By evaluation g(z) in the elements of the support L we can construct the parity check matrix H as

$$H = \begin{cases} \frac{g_s}{g(\alpha_0)} & \frac{g_s}{g(\alpha_{1-1})} & \cdots & \frac{g_s}{g(\alpha_{n-1})} \\ \frac{g_{s-1}+g_s \cdot \alpha_0}{g(\alpha_0)} & \frac{g_{s-1}+g_s \cdot \alpha_0}{g(\alpha_{1-1})} & \cdots & \frac{g_{s-1}+g_s \cdot \alpha_0}{g(\alpha_{n-1})} \\ \vdots & \ddots & \vdots \\ \frac{g_1+g_2 \cdot \alpha_0+\dots+g_s \cdot \alpha_0^{s-1}}{g(\alpha_0)} & \frac{g_1+g_2 \cdot \alpha_0+\dots+g_s \cdot \alpha_0^{s-1}}{g(\alpha_{1-1})} & \cdots & \frac{g_1+g_2 \cdot \alpha_0+\dots+g_s \cdot \alpha_0^{s-1}}{g(\alpha_{n-1})} \end{cases} \end{cases}$$

Ruhr-University Bochum | Embedded Security

Generator matrix of Goppa Codes

- Bringing H to systematic form H=(Q|ID) (by Gauss) we can derive the generator matrix G as G=(ID|-Q^T)
- G*H^T = 0
- m*G=c is code word of the goppa code
- m*G+e = c+e is code word with errors (up to t errors can be corrected)
- For binary Goppa codes t=s=degree of g(z), else t=floor(s/2)
- c*H^T=syn(z) called syndrome, because it only depends on the error e
- If syn(z) ≠ 0 decoding algorithm (Patterson,Berlekamp-Massey,...) gives you corrected codeword and the error.

Outline

- Introduction
- Background in code based crypto
- McEliece vs. Niederreiter
- Our implementation
- Results and conclusion

McEliece vs. Niederreiter I

- Classical McEliece
 - Public key G'=S*G*P
 - Secret key (corresponding parity check matrix H defined by Goppa polynomial g(z) and support I.)
- Modern McEliece
 - Public key G' in systematic form
 - Secret key (corresponding parity check matrix H defined by Goppa polynomial a(z) and

DO NOT USE MCELIECE THIS WAY. YOU NEED a CCA2 SECURE CONVERSION!

- Decryption
 - c'=c*P⁻¹
 - Decode c' to m'
 - m=m'*S⁻¹

- c=m[°]G +e
- Decryption
 - Decode directly c to m
 - · S can be omitted
 - P merged into decoding algorithm

McEliece vs. Niederreiter II

- Classical Niederreiter
 - Public key H'=M*H*P
 - Secret key (Goppa polynomial g(z) and support L)
 - Encryption

- Modern Niederreiter
 - Public key H'=M*H in systematic form
 - Secret key (Goppa polynomial g(z) and permuted support L)

YOU CAN USE NIEDERREITER LIKE THIS.

- Decryption
 - c'=M⁻¹*c
 - Decode c' to e'
 - e=P⁻¹*e'
 - Convert e to m

• c=H'*e

- Decryption
 - c'=M⁻¹*c
 - Decode c' directly to e
 - Convert e to m

Security parameters

Parameters (n, k, t) , errors added	Size K_{pub} in KBits	Size K_{sec} $(g(z) \mid \mathcal{L} \mid M^{-1})$ KBits
(1024, 644, 38), 38	239	(0.37 10 141)
(2048, 1751, 27), 27	507	$(0.29 \mid 22 \mid 86)$
(2690, 2280, 56), 57 (6624, 5129, 115), 117	913 7 488	(0.38 18 104) (1.45 84 2.183)
	Parameters (n, k, t), errors added (1024, 644, 38), 38 (2048, 1751, 27), 27 (2690, 2280, 56), 57 (6624, 5129, 115), 117	Parameters (n, k, t) , errors addedSize K_{pub} in KBits $(1024, 644, 38), 38$ 239 $(2048, 1751, 27), 27$ 507 $(2690, 2280, 56), 57$ 913 $(6624, 5129, 115), 117$ 7, 488

Public key is a (n-k)*k bit matrix (only non-identity part)

McEliece vs. Niederreiter: existing work

- McEliece (using binary Goppa codes)

 - PC (HyMES '08) : 140 cycles/bit enc 2714 cycles/bit dec
 - μC (CHES'09) : 7200 cycles/bit enc 11300 cycles/bit dec
 - FPGA (ASAP'09) : 160 cycles/bit enc
- 446 cycles/bit dec

- Niederreiter
 - PC

- : (there is one-> seg fault)
- µC (PQCrypto'11) : 267 cycles/bit enc 30000 cycles/bit dec
- FPGA : (only for signature scheme: 0.86s/sig)

Outline

- Introduction
- Background in code based crypto
- McEliece vs. Niederreiter
- Our implementation
- Results and conclusion

RUB

Niederreiter encryption

- c=H'*e is just a XOR of t=27 out of 2048 rows of H'
- Hard part is "computational expensive" mapping of m to e
- Error e is so called constant weight word of length n=2048 and hamming weight t=27

Algorithm 3 Encode Binary String **Input:** n, t, binary stream B**Output:** $\Delta[0,\ldots,t-1]$ 1: $\delta = 0, index = 0$ 2: while $t \neq 0$ do 3: if n < t then 4: $\Delta[index++] = \delta$ 5: $n-=1, t-=1, \delta=0$ end if 6: $u \leftarrow uTable[n, t]$ 7: 8: $d \leftarrow (1 \ll u)$ if read(B,1) = 1 then 9: $n-=d, \delta+=d$ 10:11: else $i \leftarrow read(B, u)$ 12:13: $\Delta[index++] = \delta + i$ 14: $\delta = 0, t - = 1, n - = (i + 1)$ 15:end if 16: end while

Hardware architecture for encryption

Niederreiter decryption

- Far more complex than encryption
- Multiplication with M^{-1} also just binary XOR of $\sim(n-k)/2$ rows
- Uses Patterson algorithm for Goppa decoding
- Involved root searching is done with parallel Chien search in 3*2^m clock cycles

Hardware architecture for decryption

Ruhr-University Bochum | Embedded Security

Outline

- Introduction
- Background in code based crypto
- McEliece vs. Niederreiter
- Our implementation
- Results and conclusion

Results

Scheme	Platform	Freq	Time/Op	Cycles/byte
This work [enc]	Virtex6-LX240T	300 MHz	0.66 µs	8.3
This work [dec]	Virtex6-LX240T	250 MHz	58.78 µs	612
McEliece [enc] [14]	Spartan3-AN1400	150 MHz	1070 μs	768
McEliece [dec] [14]	Spartan3-AN1400	85 MHz	21,610 μ	8788
This work enc	Spartan3-2000	150 MHz	1.32 μs	8.3
This work dec	Spartan3-2000	95 MHz	154 μs	612
McEliece [enc] [38]	Virtex5-LX110T	163 MHz	500 μs	389
McEliece [dec] [38]	Virtex5-LX110T	163 MHz	1400 μs	1091
This work [enc]	Virtex5-LX50T	250 MHz	0.793 μs	8.2
This work [dec]	Virtex5-LX50T	180 MHz	81 μs	612
ECC-P160 [17]	Spartan-3 1000-4	40 MHz	5.1 ms	10,200
ECC-K163 [17]	Virtex-II	128 MHz	35.75 µs	224.6
RSA-1024 random [18]	Spartan-3A	133 MHz	48.54 ms	50,436
RSA-1024 random [18]	Spartan-6	187 MHz	34.48 ms	50,373
RSA-1024 random [18]	Virtex-6	339 MHz	19.01 ms	59,258
NTRU encryption [1]	Virtex 1000EFG860	$50 \mathrm{~MHz}$	$5 \ \mu s$	8.3

Results

- Encryption of 192 bits in ~200 clock cycles means ~1 cycle/bit
- 800 times faster than McEliece
- **4000** times faster than ECC
- Forget RSA
- Typical scenario would require a 774 GByte/sec interface for public keys

- Decryption in 14,500 clock cycles means ~75 cycles/bit
- 140 times faster than McEliece
- **30** times faster than ECC

Future work

- General alternant decoding (smaller and faster, despite we a working with twice as large polynomials?)
- Quasi dyadic (Goppa/Srivastava) codes in hardware
- Non typical scenario of encryption huge amounts of data with PKS (Niederreiter vs. McEliece)

RUHR-UNIVERSITÄT BOCHUM

Towards One Cycle per Bit Asymmetric Encryption: Code-Based Cryptography on Reconfigurable Hardware Stefan Heyse, Tim Güneysu

Towards One Cycle per Bit Asymmetric Encryption: Code-Based Cryptography on Reconfigurable Hardware Stefan Heyse, Tim Güneysu

CHES 2012 - Leuven, Belgium

11.09.2012

RUB

Thank you for your attention! Any Questions?