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The XL algorithm

Some cryptographic systems can be attacked by solving a system of
multivariate quadratic equations, e.g.:

I AES:
I 8000 quadratic equations with 1600 variables over F2

(Courtois and Pieprzyk, 2002)
I 840 sparse quadratic equations and 1408 linear equations over

3968 variables of F256 (Murphy and Robshaw, 2002)

I multivariate cryptographic systems, e.g. QUAD stream cipher
(cryptanalysis by Yang, Chen, Bernstein, and Chen, 2007)



The XL algorithm

I XL is an acronym for extended linearization:
I extend a quadratic system by multiplying with appropriate

monomials
I linearize by treating each monomial as an independent variable
I solve the linearized system

I special case of Gröbner basis algorithms
I first suggested by Lazard (1983)
I reinvented by Courtois, Klimov, Patarin, and Shamir (2000)
I alternative to Gröbner basis solvers like Faugère’s F4 (1999,

e.g., Magma) and F5 (2002) algorithms



The XL algorithm
For b ∈ Nn denote by xb the monomial xb1

1 xb2
2 . . . xbn

n and by
|b| = b1 + b2 + · · ·+ bn the total degree of xb.

given: finite field K = Fq
system A of m multivariate quadratic equations:
`1 = `2 = · · · = `m = 0, `i ∈ K [x1, x2, . . . , xn]

choose: operational degree D ∈ N
extend: system A to the system

R(D) = {xb`i = 0 : |b| ≤ D − 2, `i ∈ A}
linearize: consider xd , d ≤ D a new variable

to obtain a linear systemM
solve: linear systemM

minimum degree D0 for reliable termination (Yang and Chen):

D0 := min{D : ((1− λ)m−n−1(1+ λ)m)[D] ≤ 0}

We use the Wiedemann algorithm
instead of a Gauss solver. Thus, we
do not compute a complete Gröbner
basis but distinguished solutions!
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The Wiedemann algorithm – the basic idea
given: A ∈ KN×N

wanted: v ∈ KN such that Av = 0
solution: compute minimal polynomial f of A of degree d : f (A) = 0

d∑
i=0

fiAi = 0

d∑
i=0

fiAiz = 0 choose z ∈ KN randomly

d∑
i=1

fiAiz + f0z = 0

d∑
i=1

fiAiz = 0 since f0 = 0

A ·

(
d∑

i=1

fiAi−1z

)
︸ ︷︷ ︸

=v

= 0
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The Berlekamp–Massey algorithm

Given a linearly recurrent sequence

S = {ai}∞i=0, ai ∈ K ,

compute an annihilating polynomial f of degree d such that

d∑
i=0

fiaj+i = 0, for all j ∈ N.

The Berlekamp–Massey algorithm requires the first 2 · d elements
of S as input and computes fi ∈ K , 0 ≤ i ≤ d .

ai = xAiz , x ∈ K 1×N
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The block Wiedemann algorithm
Due to Coppersmith (1994), three steps:

Input: A ∈ KN×N , parameters m, n ∈ N, κ ∈ N of size
N/m + N/n + O(1).

BW1: Compute sequence {ai}κi=0 of matrices ai ∈ Kn×m using
random matrices x ∈ Km×N and z ∈ KN×n

ai = (xAiy)T , for y = Az . O
(
N2(wA + m)

)
BW2: Use block Berlekamp–Massey to compute polynomial f with

coefficients in Kn×n.
Coppersmith’s version: O(N2 · n)

Thomé’s version: O(N log2 N · n)
BW3: Evaluate the reverse of f :

W =

deg(f )∑
j=0

Ajz(fdeg(f )−j)
T . O

(
N2(wA + n)

)
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Parallelization of BW1

Input: A ∈ KN×N , parameters m, n ∈ N, κ ∈ N of size
N/m + N/n + O(1).

Compute sequence {ai}κi=0 of matrices ai ∈ Kn×m using random
matrices x ∈ Km×N and z ∈ KN×n

ai = (xAiy)T , for y = Az

using {ti}κi=0, ti ∈ KN×n,

ti =

{
y = Az for i = 0
Ati−1 for 0 < i ≤ κ,

ai = (xti )T .



Parallelization of BW1

INPUT: macaulay_matrix<N, N> A;
sparse_matrix<N, n> z;

matrix<N, n> t_new, t_old;
matrix<m, n> a[N/m + N/n + O(1)];
sparse_matrix<m, N, weight> x;

x.rand();
t_old = z;
for (unsigned i = 0; i <= N/m + N/n + O(1); i++)
{

t_new = A * t_old;
a[i] = x * t_new;
swap(t_old, t_new);

}

RETURN a



Parallelization of BW1 – multicore processor

ti A ti−1= ×
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Parallelization of BW1 – multicore processor
4 cores
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OpenMP



Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
4 computing nodes a(i) ∈ Kn×m

ti A ti−1= ×

n



Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
4 computing nodes

A ti ti−1ti ti = ×



Parallelization of BW1 – cluster system
4 computing nodes

A ti ti−1ti ti = ×

MPI: ISend, IRecv, . . .
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Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
4 computing nodes

A ti ti−1ti ti = ×

InfiniBand Verbs



Parallelization of BW1 – cluster system
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Parallelization of BW1 – cluster system
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Runtime n = 16, m = 18, F16
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Comparison to Magma F4
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Conclusions

XL with block Wiedemann as system solver is an alternative for
Gröbner basis solvers, because

I in about 80% of the cases it operates on the same degree,
I it scales well on multicore systems and moderate cluster sizes,

and
I it has a relatively small memory demand.



Thank you!


