Solving Quadratic Equations with XL on Parallel Architectures

Cheng Chen-Mou ${ }^{1}$, Chou Tung ${ }^{2}$,
Ni Ru-Ben ${ }^{2}$, Yang Bo-Yin ${ }^{2}$

${ }^{1}$ National Taiwan University
${ }^{2}$ Academia Sinica
Taipei, Taiwan

Leuven, Sept. 11, 2012

Solving Quadratic Equations with XL on Parallel Architectures

Chen-Mou Cheng ${ }^{1}$, Tung Chou ${ }^{2}$,
Ruben Niederhagen ${ }^{2}$, Bo-Yin Yang ${ }^{2}$

${ }^{1}$ National Taiwan University
${ }^{2}$ Academia Sinica
Taipei, Taiwan

Leuven, Sept. 11, 2012

The XL algorithm

Some cryptographic systems can be attacked by solving a system of multivariate quadratic equations, e.g.:

- AES:
- 8000 quadratic equations with 1600 variables over \mathbb{F}_{2} (Courtois and Pieprzyk, 2002)
- 840 sparse quadratic equations and 1408 linear equations over 3968 variables of \mathbb{F}_{256} (Murphy and Robshaw, 2002)
- multivariate cryptographic systems, e.g. QUAD stream cipher (cryptanalysis by Yang, Chen, Bernstein, and Chen, 2007)

The XL algorithm

- $X L$ is an acronym for extended linearization:
- extend a quadratic system by multiplying with appropriate monomials
- linearize by treating each monomial as an independent variable
- solve the linearized system
- special case of Gröbner basis algorithms
- first suggested by Lazard (1983)
- reinvented by Courtois, Klimov, Patarin, and Shamir (2000)
- alternative to Gröbner basis solvers like Faugère's F_{4} (1999, e.g., Magma) and F_{5} (2002) algorithms

The XL algorithm

For $b \in \mathbb{N}^{n}$ denote by x^{b} the monomial $x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}$ and by $|b|=b_{1}+b_{2}+\cdots+b_{n}$ the total degree of x^{b}.
given: \quad finite field $K=\mathbb{F}_{q}$ system \mathcal{A} of m multivariate quadratic equations:

$$
\ell_{1}=\ell_{2}=\cdots=\ell_{m}=0, \ell_{i} \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

choose: operational degree $D \in \mathbb{N}$
extend: system \mathcal{A} to the system
$\mathcal{R}^{(D)}=\left\{x^{b} \ell_{i}=0:|b| \leq D-2, \ell_{i} \in \mathcal{A}\right\}$
linearize: consider $x^{d}, d \leq D$ a new variable to obtain a linear system \mathcal{M}
solve: linear system \mathcal{M}

The XL algorithm

For $b \in \mathbb{N}^{n}$ denote by x^{b} the monomial $x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}$ and by $|b|=b_{1}+b_{2}+\cdots+b_{n}$ the total degree of x^{b}.
given: \quad finite field $K=\mathbb{F}_{q}$
system \mathcal{A} of m multivariate quadratic equations:

$$
\ell_{1}=\ell_{2}=\cdots=\ell_{m}=0, \ell_{i} \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

choose: operational degree $D \in \mathbb{N} \quad$ How?
extend: system \mathcal{A} to the system
$\mathcal{R}^{(D)}=\left\{x^{b} \ell_{i}=0:|b| \leq D-2, \ell_{i} \in \mathcal{A}\right\}$
linearize: consider $x^{d}, d \leq D$ a new variable to obtain a linear system \mathcal{M}
solve: linear system \mathcal{M}

The XL algorithm

For $b \in \mathbb{N}^{n}$ denote by x^{b} the monomial $x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}$ and by $|b|=b_{1}+b_{2}+\cdots+b_{n}$ the total degree of x^{b}.
given: \quad finite field $K=\mathbb{F}_{q}$ system \mathcal{A} of m multivariate quadratic equations:

$$
\ell_{1}=\ell_{2}=\cdots=\ell_{m}=0, \ell_{i} \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

choose: operational degree $D \in \mathbb{N} \quad$ How?
extend: system \mathcal{A} to the system
$\mathcal{R}^{(D)}=\left\{x^{b} \ell_{i}=0:|b| \leq D-2, \ell_{i} \in \mathcal{A}\right\}$
linearize: consider $x^{d}, d \leq D$ a new variable to obtain a linear system \mathcal{M}
solve: linear system \mathcal{M}
minimum degree D_{0} for reliable termination (Yang and Chen):

$$
D_{0}:=\min \left\{D:\left((1-\lambda)^{m-n-1}(1+\lambda)^{m}\right)[D] \leq 0\right\}
$$

The XL algorithm

For $b \in \mathbb{N}^{n}$ denote by x^{b} the monomial $x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}$ and by $|b|=b_{1}+b_{2}+\cdots+b_{n}$ the total degree of x^{b}.
given: \quad finite field $K=\mathbb{F}_{q}$ system \mathcal{A} of m multivariate quadratic equations:

$$
\ell_{1}=\ell_{2}=\cdots=\ell_{m}=0, \ell_{i} \in K\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

choose: operational degree $D \in \mathbb{N} \quad$ How?
extend: system \mathcal{A} to the system
$\mathcal{R}^{(D)}=\left\{x^{b} \ell_{i}=0:|b| \leq D-2, \ell_{i} \in \mathcal{A}\right\}$
linearize: consider $x^{d}, d \leq D$ a new variable to obtain a linear system \mathcal{M}
solve: linear system \mathcal{M} How?
minimum degree D_{0} for reliable termination (Yang and Chen):

$$
D_{0}:=\min \left\{D:\left((1-\lambda)^{m-n-1}(1+\lambda)^{m}\right)[D] \leq 0\right\}
$$

The XL algorithm

For $b \in \mathbb{N}^{n}$ denote by x^{b} the monomial $x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{n}^{b_{n}}$ and by $|b|=b_{1}+b_{2}+\cdots+b_{n}$ the total degree of x^{b}.
given: \quad finite field $K=\mathbb{F}_{q}$ system \mathcal{A} of m multivariate quadratic equations:
choose: We use the Wiedemann algorithm extend: instead of a Gauss solver. Thus, we do not compute a complete Gröbner linearize: basis but distinguished solutions!
solve: linear system \mathcal{M} How?
minimum degree D_{0} for reliable termination (Yang and Chen):

$$
D_{0}:=\min \left\{D:\left((1-\lambda)^{m-n-1}(1+\lambda)^{m}\right)[D] \leq 0\right\}
$$

The Wiedemann algorithm - the basic idea

 given: $\quad A \in K^{N \times N}$wanted: $\quad v \in K^{N}$ such that $A v=0$
solution: compute minimal polynomial f of A of degree $d: f(A)=0$

$$
\begin{aligned}
\sum_{i=0}^{d} f_{i} A^{i} & =0 \\
\sum_{i=0}^{d} f_{i} A^{i} z & =0 \quad \text { choose } z \in K^{N} \text { randomly } \\
\sum_{i=1}^{d} f_{i} A^{i} z+f_{0} z & =0 \\
\sum_{i=1}^{d} f_{i} A^{i} z & =0 \quad \text { since } f_{0}=0 \\
A \cdot \underbrace{\left(\sum_{i=1}^{d} f_{i} A^{i-1} z\right)}_{=v} & =0
\end{aligned}
$$

The Wiedemann algorithm - the basic idea given: $\quad A \in K^{N \times N}$
wanted: $\quad v \in K^{N}$ such that $A v=0 \quad H o w ?$
solution: compute minimal polynomial f of A of degree $d: f(A)=0$

$$
\begin{aligned}
& \sum_{i=0}^{d} f_{i} A^{i}=0 \\
& \sum_{i=0}^{d} f_{i} A^{i} z=0 \quad \text { choose } z \in K^{N} \text { randomly } \\
& \sum_{i=1}^{d} f_{i} A^{i} z+f_{0} z=0 \\
& \sum_{i=1}^{d} f_{i} A^{i} z=0 \quad \text { since } f_{0}=0 \\
& A \cdot \underbrace{\left(\sum_{i=1}^{d} f_{i} A^{i-1} z\right)}_{=v}=0
\end{aligned}
$$

The Berlekamp-Massey algorithm

Given a linearly recurrent sequence

$$
S=\left\{a_{i}\right\}_{i=0}^{\infty}, a_{i} \in K
$$

compute an annihilating polynomial f of degree d such that

$$
\sum_{i=0}^{d} f_{i} a_{j+i}=0, \text { for all } j \in \mathbb{N}
$$

The Berlekamp-Massey algorithm requires the first $2 \cdot d$ elements of S as input and computes $f_{i} \in K, 0 \leq i \leq d$.

The Berlekamp-Massey algorithm

Given a linearly recurrent sequence

$$
a_{i}=x A^{i} z, x \in K^{1 \times N}
$$

$$
S=\left\{a_{i}\right\}_{i=0}^{\infty}, a_{i} \in K
$$

compute an annihilating polynomial f of degree d such that

$$
\sum_{i=0}^{d} f_{i} a_{j+i}=0, \text { for all } j \in \mathbb{N}
$$

The Berlekamp-Massey algorithm requires the first $2 \cdot d$ elements of S as input and computes $f_{i} \in K, 0 \leq i \leq d$.

The block Wiedemann algorithm

Due to Coppersmith (1994), three steps:
Input: $A \in K^{N \times N}$, parameters $m, n \in \mathbb{N}, \kappa \in \mathbb{N}$ of size $N / m+N / n+O(1)$.

The block Wiedemann algorithm

Due to Coppersmith (1994), three steps:
Input: $A \in K^{N \times N}$, parameters $m, n \in \mathbb{N}, \kappa \in \mathbb{N}$ of size $N / m+N / n+O(1)$.
BW1: Compute sequence $\left\{a_{i}\right\}_{i=0}^{\kappa}$ of matrices $a_{i} \in K^{n \times m}$ using random matrices $x \in K^{m \times N}$ and $z \in K^{N \times n}$

$$
a_{i}=\left(x A^{i} y\right)^{T}, \quad \text { for } y=A z . \quad O\left(N^{2}\left(w_{A}+m\right)\right)
$$

The block Wiedemann algorithm

Due to Coppersmith (1994), three steps:
Input: $A \in K^{N \times N}$, parameters $m, n \in \mathbb{N}, \kappa \in \mathbb{N}$ of size $N / m+N / n+O(1)$.
BW1: Compute sequence $\left\{a_{i}\right\}_{i=0}^{k}$ of matrices $a_{i} \in K^{n \times m}$ using random matrices $x \in K^{m \times N}$ and $z \in K^{N \times n}$

$$
a_{i}=\left(x A^{i} y\right)^{T}, \quad \text { for } y=A z . \quad O\left(N^{2}\left(w_{A}+m\right)\right)
$$

BW2: Use block Berlekamp-Massey to compute polynomial f with coefficients in $K^{n \times n}$.
Coppersmith's version: $O\left(N^{2} \cdot n\right)$
Thomé's version: $O\left(N \log ^{2} N \cdot n\right)$

The block Wiedemann algorithm

Due to Coppersmith (1994), three steps:
Input: $A \in K^{N \times N}$, parameters $m, n \in \mathbb{N}, \kappa \in \mathbb{N}$ of size $N / m+N / n+O(1)$.
BW1: Compute sequence $\left\{a_{i}\right\}_{i=0}^{k}$ of matrices $a_{i} \in K^{n \times m}$ using random matrices $x \in K^{m \times N}$ and $z \in K^{N \times n}$

$$
a_{i}=\left(x A^{i} y\right)^{T}, \quad \text { for } y=A z . \quad O\left(N^{2}\left(w_{A}+m\right)\right)
$$

BW2: Use block Berlekamp-Massey to compute polynomial f with coefficients in $K^{n \times n}$.
Coppersmith's version: $O\left(N^{2} \cdot n\right)$
Thomé's version: $O\left(N \log ^{2} N \cdot n\right)$
BW3: Evaluate the reverse of f :

$$
W=\sum_{j=0}^{\operatorname{deg}(f)} A^{j} z\left(f_{\operatorname{deg}(f)-j}\right)^{T} \cdot O\left(N^{2}\left(w_{A}+n\right)\right)
$$

Parallelization of BW1

Input: $A \in K^{N \times N}$, parameters $m, n \in \mathbb{N}, \kappa \in \mathbb{N}$ of size $N / m+N / n+O(1)$.

Compute sequence $\left\{a_{i}\right\}_{i=0}^{\kappa}$ of matrices $a_{i} \in K^{n \times m}$ using random matrices $x \in K^{m \times N}$ and $z \in K^{N \times n}$

$$
a_{i}=\left(x A^{i} y\right)^{T}, \quad \text { for } y=A z
$$

using $\left\{t_{i}\right\}_{i=0}^{\kappa}, t_{i} \in K^{N \times n}$,

$$
\begin{gathered}
t_{i}= \begin{cases}y=A z & \text { for } i=0 \\
A t_{i-1} & \text { for } 0<i \leq \kappa,\end{cases} \\
a_{i}=\left(x t_{i}\right)^{T}
\end{gathered}
$$

Parallelization of BW1

```
INPUT: macaulay_matrix<N, N> A;
    sparse_matrix<N, n> z;
matrix<N, n> t_new, t_old;
matrix<m, n> a[N/m + N/n + O(1)];
sparse_matrix<m, N, weight> x;
x.rand();
t_old = z;
for (unsigned i = 0; i <= N/m + N/n + O(1); i++)
{
    t_new = A * t_old;
    a[i] = x * t_new;
    swap(t_old, t_new);
}
```

RETURN a

Parallelization of BW1 - multicore processor

Parallelization of BW1 - multicore processor

2 cores

Parallelization of BW1 - multicore processor

4 cores

Parallelization of BW1 - multicore processor

4 cores

Parallelization of BW1 - multicore processor

4 cores

OpenMP

Parallelization of BW1 - cluster system

Parallelization of BW1 - cluster system

2 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

$$
a^{(i)} \in K^{n \times m}
$$

Parallelization of BW1 - cluster system

Parallelization of BW1 - cluster system

Parallelization of BW1 - cluster system

Parallelization of BW1 - cluster system

2 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

MPI: ISend, IRecv, ...

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

Parallelization of BW1 - cluster system

4 computing nodes

InfiniBand Verbs

Parallelization of BW1 - cluster system

Parallelization of BW1 - cluster system

(InfiniBand MT26428, 2 ports of $4 \times$ QDR, 32 Gbit/s)

Runtime $n=16, m=18, \mathbb{F}_{16}$

Comparison to Magma F_{4}

Conclusions

XL with block Wiedemann as system solver is an alternative for Gröbner basis solvers, because

- in about 80% of the cases it operates on the same degree,
- it scales well on multicore systems and moderate cluster sizes, and
- it has a relatively small memory demand.

Thank you!

