Solving Quadratic Equations with XL
on Parallel Architectures

Cheng Chen-Mou®, Chou Tung?,
Ni Ru-Ben?, Yang Bo-Yin?

INational Taiwan University
2Academia Sinica
Taipei, Taiwan

Leuven, Sept. 11, 2012

Solving Quadratic Equations with XL
on Parallel Architectures

Chen-Mou Cheng!, Tung Chou?,
Ruben Niederhagen?, Bo-Yin Yang?

INational Taiwan University
2Academia Sinica
Taipei, Taiwan

Leuven, Sept. 11, 2012

The XL algorithm

Some cryptographic systems can be attacked by solving a system of
multivariate quadratic equations, e.g.:

» AES:

» 8000 quadratic equations with 1600 variables over I,
(Courtois and Pieprzyk, 2002)
» 840 sparse quadratic equations and 1408 linear equations over
3968 variables of Fas6 (Murphy and Robshaw, 2002)
» multivariate cryptographic systems, e.g. QUAD stream cipher
(cryptanalysis by Yang, Chen, Bernstein, and Chen, 2007)

The XL algorithm

» XL is an acronym for extended linearization:

» extend a quadratic system by multiplying with appropriate
monomials

» linearize by treating each monomial as an independent variable

» solve the linearized system

» special case of Grobner basis algorithms
» first suggested by Lazard (1983)
» reinvented by Courtois, Klimov, Patarin, and Shamir (2000)

» alternative to Grobner basis solvers like Faugére's F4 (1999,
e.g., Magma) and F5 (2002) algorithms

The XL algorithm

For b € N” denote by x? the monomial x{’lx2 CX

by bn

n

and by

|b| = by + by + - - - + by, the total degree of xP.

given:

choose:
extend:

linearize:

solve:

finite field K = F,

system A of m multivariate quadratic equations:
bh=ly=---=0p=0,/4 € K[Xl,Xg,...,X,,]
operational degree D € N

system A to the system

RPP) = {xPl; =0:|b| < D—-2,0; € A}
consider x?,d < D a new variable

to obtain a linear system M

linear system M

The XL algorithm

For b € N” denote by x? the monomial x{’lx2 CX

by bn

n

and by

|b| = by + by + - - - + by, the total degree of xP.

given:

choose:
extend:

linearize:

solve:

finite field K = F,

system A of m multivariate quadratic equations:
bh=ly=---=0p=0,/4 € K[Xl,Xg,...,X,,]
operational degree D € N How?

system A to the system

RP) = {xPl; =0:|b| < D—-2,0; € A}
consider x?,d < D a new variable

to obtain a linear system M

linear system M

The XL algorithm

For b € N” denote by xP the monomial XX

by bz.. xPn and by

“'n

|b| = by + by + - - - + by, the total degree of xP.

given:

choose:
extend:

linearize:

solve:

finite field K = F,

system A of m multivariate quadratic equations:
bh=ly=---=0p=0,/4 € K[Xl,Xg,...,X,,]
operational degree D € N How?

system A to the system

RP) = {xPl; =0:|b| < D—-2,0; € A}
consider x?,d < D a new variable

to obtain a linear system M

linear system M

minimum degree Dy for reliable termination (Yang and Chen):

=min{D: ((1 - \)""""}1+\)™)[D] <0}

The XL algorithm

For b € N” denote by xP the monomial XX

by bz.. xPn and by

“'n

|b| = by + by + - - - + by, the total degree of xP.

given:

choose:
extend:

linearize:

solve:

finite field K = F,

system A of m multivariate quadratic equations:
bh=ly=---=0p=0,/4 € K[Xl,Xg,...,X,,]
operational degree D € N How?

system A to the system

RP) = {xPl; =0:|b| < D—-2,0; € A}
consider x?,d < D a new variable

to obtain a linear system M

linear system M How?

minimum degree Dy for reliable termination (Yang and Chen):

=min{D: ((1 - \)""""}1+\)™)[D] <0}

The XL algorithm

For b € N” denote by xP the monomial xl1 xP2 .xP and by
|b| = by + by + - - - + by, the total degree of xP.

given: finite field K = F,
system A of m multivariate quadratic equations:

y/l y/l y/l n v/l LT n]
choose: We use the Wiedemann algorithm
extend: instead of a Gauss solver. Thus, we

do not compute a complete Grobner
linearize: | basis but distinguished solutions!

TTOTTT O T O Oy Oty

solve: linear system M How?

minimum degree Dy for reliable termination (Yang and Chen):

Do := min{D : (1 — A\)™""}(1+)\)™)[D] < 0}

The Wiedemann allgorithm — the basic idea
given: Ac KNxN
wanted: v € KN such that Av =0
solution: compute minimal polynomial f of A of degree d: f(A) =0

d
> FAT=0

i=
d .

fiAlz=0 choose z e KN randomly
=0

d
ZﬂAIZ—i—sz:O
i=1
d
Zﬁ-A"z =0 sincefupb =0

i=1

d
A- (Z f,-A"_lz> =0
i=1

=v

The Wiedemann allgorithm — the basic idea
given: Ac KNxN
wanted: v € KN such that Av =0 How?
solution: compute minimal polynomial f of A of degree d: f(A) =0

d
> AT =0

i=
d
=0

fiAiz=0 choose z € KN randomly

d
ZﬂAIZ—i—sz:O
i=1
d
Zﬁ-A"z =0 sincefupb =0

i=1

d
A- (Z f,-A"—lz> =0
i=1

=v

The Berlekamp—Massey algorithm

Given a linearly recurrent sequence
o0
S = {a,'}izo, aj € K,

compute an annihilating polynomial f of degree d such that

d

Z f,-aj+; =0, for aIIj € N.
i=0

The Berlekamp—Massey algorithm requires the first 2 - d elements
of S as input and computes f; € K, 0 < < d.

The Berlekamp—Massey algorithm

aj = xAlz, x € KIxN

Given a linearly recurrent sequence/J

S = {a,-}f-’io, a; € K,
compute an annihilating polynomial f of degree d such that

d

Z f,-aj+; =0, for aIIj € N.
i=0

The Berlekamp—Massey algorithm requires the first 2 - d elements
of S as input and computes f; € K, 0 < < d.

The block Wiedemann algorithm
Due to Coppersmith (1994), three steps:

Input: A€ KN*N parameters m,n € N, x € N of size
N/m+ N/n+ O(1).

The block Wiedemann algorithm
Due to Coppersmith (1994), three steps:

Input: A€ KN*N parameters m,n € N, x € N of size
N/m+ N/n+ O(1).
BW1: Compute sequence {a;}, of matrices a; € K"*"™ using
random matrices x € K™N and z € KNxn

ai=(Ay)", fory=Az. |O(N*(wa+ m))

The block Wiedemann algorithm
Due to Coppersmith (1994), three steps:

Input: A€ KN*N parameters m,n € N, x € N of size
N/m+ N/n+ O(1).
BW1: Compute sequence {a;};_, of matrices a; € K" using
random matrices x € K™N and z € KNxn

ai=(Ay)", fory=Az. |O(N*(wa+ m))

BW2: Use block Berlekamp—Massey to compute polynomial f with
coefficients in K"
Coppersmith’s version: | O(N? - n)

Thomé's version: | O(N log? N - n)

The block Wiedemann algorithm
Due to Coppersmith (1994), three steps:

Input: A€ KN*N parameters m,n € N, x € N of size
N/m+ N/n+ O(1).
BW1: Compute sequence {a;};_, of matrices a; € K" using
random matrices x € K™N and z € KNxn

ai=(Ay)", fory=Az. |O(N*(wa+ m))

BW2: Use block Berlekamp—Massey to compute polynomial f with
coefficients in K"
Coppersmith’s version: | O(N? - n)

Thomé's version: | O(N log? N - n)
BW3: Evaluate the reverse of f:

deg(f)
W = Z AJZ(fdeg(f)_j)T. 0 (N2(WA + n))

Jj=0

Parallelization of BW1
Input: A€ KN*N parameters m,n € N, k € N of size
N/m+ N/n+ O(1).

Compute sequence {a;}# , of matrices a; € K"*™ using random
matrices x € K™N and z ¢ KNxn

ai=(xA'y)T, fory=Az
using {ti}f g, ti € KNxn

. y=Az fori=0
a Ati_q for 0 < i <k,

aj = (Xt,')T.

Parallelization of BW1

INPUT: macaulay_matrix<N, N> A;
sparse_matrix<N, n> z;
matrix<N, n> t_new, t_old;
matrix<m, n> a[N/m + N/n + 0(1)];
sparse_matrix<m, N, weight> x;

x.rand () ;
t_old = z;
for (unsigned i = 0; i <= N/m + N/n + 0(1); i++)
{
t_new = A * t_old;
al[i] = x * t_new;
swap(t_old, t_new);

RETURN a

Parallelization of BW1 — multicore processor

Parallelization of BW1 — multicore processor

2 cores

Parallelization of BW1 — multicore processor

4 cores

Parallelization of BW1 — multicore processor

4 cores

Parallelization of BW1 — multicore processor

4 cores

OpenMP

Parallelization of BW1 — cluster system

Parallelization of BW1 — cluster system

2 computing nodes

tit1

Parallelization of BW1 — cluster system

4 computing nodes

tit1

Parallelization of BW1 — cluster system

4 computing nodes

~

Parallelization of BW1 — cluster system

4 computing nodes ali) g gnxm

tit1

Parallelization of BW1 — cluster system

10000

BW1 msm
BW2 Thomé mmmm
5000 L BW2 Coppersmith mmmm
BW3 mm

1500

Runtime [s]

1000

500

32 64 128 256 512 1024
Block Width: m = n

Parallelization of BW1 — cluster system

Memory [GB]

90
80
70
60
50
40
30
20
10

0

BW2 Thomé mmmmm
- BW2 Coppersmith s
36 GB ———

32 64 128 256 512 1024
Block Width: m = n

Parallelization of BW1 — cluster system

Parallelization of BW1 — cluster system

2 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

S

Parallelization of BW1 — cluster system

4 computing nodes

S

MPI: ISend, IRecv, ...

Parallelization of BW1 — cluster system

4 computing nodes

S
I

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

Parallelization of BW1 — cluster system

4 computing nodes

ti

Parallelization of BW1 — cluster system

4 computing nodes

ti

InfiniBand Verbs

Parallelization of BW1 — cluster system

Ratio

0.75

0.5

0.25

T Verbs API
MPI
16 32 64 128 256

Number of Nodes

Parallelization of BW1 — cluster system

Communication
Computation —+—
Sent per Node = |

Runtime

[R

2 4 8 16 32 64 128 256
Number of Cluster Nodes

(InfiniBand MT26428, 2 ports of 4xQDR, 32 Gbit/s)

Runtime n =16, m = 18, Fy4

2500 T T T T T
BW1 mosm |
BW2 Tho. mmm
2000 - BW2 Cop. mmmm
= BW3 s
E 1500
(0]
E
= 1000 |-
=]
x
500 |- : " |
0
8 16 32 64 6 12 24 48
Cluster NUMA

Number of Cores

Comparison to Magma Fy

1000 XL (64 cores) —] oL
XL (scaled) - S '_100 agma Fy —x- 3
- 100 Magma Fy %% m
s] U 10
=, 10 g —
Q /éei’/"% E’
g 1 B ,se‘”é’ g 1 o s *
— 0.1 - _— () A . .]
=01 x
0.01 o
0.001 E=—1 0.01 .
18 19 20 21 22 23 24 25 18 19 20 21 22 23 24 25

n, m=2n n, m=2n

Conclusions

XL with block Wiedemann as system solver is an alternative for
Grobner basis solvers, because

» in about 80% of the cases it operates on the same degree,
> it scales well on multicore systems and moderate cluster sizes,
and

> it has a relatively small memory demand.

Thank youl!

