Solving Quadratic Equations with XL
on Parallel Architectures

Cheng Chen-Mou®, Chou Tung?,
Ni Ru-Ben?, Yang Bo-Yin?

INational Taiwan University
2Academia Sinica
Taipei, Taiwan

Leuven, Sept. 11, 2012



Solving Quadratic Equations with XL
on Parallel Architectures

Chen-Mou Cheng!, Tung Chou?,
Ruben Niederhagen?, Bo-Yin Yang?

INational Taiwan University
2Academia Sinica
Taipei, Taiwan

Leuven, Sept. 11, 2012



The XL algorithm

Some cryptographic systems can be attacked by solving a system of
multivariate quadratic equations, e.g.:

» AES:

» 8000 quadratic equations with 1600 variables over I,
(Courtois and Pieprzyk, 2002)
» 840 sparse quadratic equations and 1408 linear equations over
3968 variables of Fas6 (Murphy and Robshaw, 2002)
» multivariate cryptographic systems, e.g. QUAD stream cipher
(cryptanalysis by Yang, Chen, Bernstein, and Chen, 2007)



The XL algorithm

» XL is an acronym for extended linearization:

» extend a quadratic system by multiplying with appropriate
monomials

» linearize by treating each monomial as an independent variable

» solve the linearized system

» special case of Grobner basis algorithms
» first suggested by Lazard (1983)
» reinvented by Courtois, Klimov, Patarin, and Shamir (2000)

» alternative to Grobner basis solvers like Faugére's F4 (1999,
e.g., Magma) and F5 (2002) algorithms



The XL algorithm

For b € N” denote by x? the monomial x{’lx2 CX

by bn

n

and by

|b| = by + by + - - - + by, the total degree of xP.

given:

choose:
extend:

linearize:

solve:

finite field K = F,

system A of m multivariate quadratic equations:
bh=ly=---=0p=0,/4 € K[Xl,Xg,...,X,,]
operational degree D € N

system A to the system

RPP) = {xPl; =0:|b| < D—-2,0; € A}
consider x?,d < D a new variable

to obtain a linear system M

linear system M
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The XL algorithm

For b € N” denote by xP the monomial xl1 xP2 .xP and by
|b| = by + by + - - - + by, the total degree of xP.

given: finite field K = F,
system A of m multivariate quadratic equations:

y/l y/l y/l n v/l LT n]
choose: We use the Wiedemann algorithm
extend: instead of a Gauss solver. Thus, we

do not compute a complete Grobner
linearize: | basis but distinguished solutions!

TTOTTT O T O Oy Oty

solve: linear system M How?

minimum degree Dy for reliable termination (Yang and Chen):

Do := min{D : (1 — A\)™""}(1+)\)™)[D] < 0}



The Wiedemann allgorithm — the basic idea
given: Ac KNxN
wanted: v € KN such that Av =0
solution:  compute minimal polynomial f of A of degree d: f(A) =0

d
> FAT=0

i=
d .

fiAlz=0 choose z e KN randomly
=0

d
ZﬂAIZ—i—sz:O
i=1
d
Zﬁ-A"z =0 sincefupb =0

i=1

d
A- (Z f,-A"_lz> =0
i=1

=v
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The Berlekamp—Massey algorithm

Given a linearly recurrent sequence
o0
S = {a,'}izo, aj € K,

compute an annihilating polynomial f of degree d such that

d

Z f,-aj+; =0, for aIIj € N.
i=0

The Berlekamp—Massey algorithm requires the first 2 - d elements
of S as input and computes f; € K, 0 < < d.
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Due to Coppersmith (1994), three steps:

Input: A€ KN*N parameters m,n € N, x € N of size
N/m+ N/n+ O(1).
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The block Wiedemann algorithm
Due to Coppersmith (1994), three steps:

Input: A€ KN*N parameters m,n € N, x € N of size
N/m+ N/n+ O(1).
BW1: Compute sequence {a;};_, of matrices a; € K" using
random matrices x € K™N and z € KNxn

ai=(Ay)", fory=Az. |O(N*(wa+ m))

BW2: Use block Berlekamp—Massey to compute polynomial f with
coefficients in K"
Coppersmith’s version: | O(N? - n)

Thomé's version: | O(N log? N - n)
BW3: Evaluate the reverse of f:

deg(f)
W = Z AJZ(fdeg(f)_j)T. 0 (N2(WA + n))

Jj=0




Parallelization of BW1
Input: A€ KN*N parameters m,n € N, k € N of size
N/m+ N/n+ O(1).

Compute sequence {a;}# , of matrices a; € K"*™ using random
matrices x € K™N and z ¢ KNxn

ai=(xA'y)T, fory=Az
using {ti}f g, ti € KNxn

. y=Az fori=0
a Ati_q for 0 < i <k,

aj = (Xt,')T.



Parallelization of BW1

INPUT: macaulay_matrix<N, N> A;
sparse_matrix<N, n> z;
matrix<N, n> t_new, t_old;
matrix<m, n> a[N/m + N/n + 0(1)];
sparse_matrix<m, N, weight> x;

x.rand () ;
t_old = z;
for (unsigned i = 0; i <= N/m + N/n + 0(1); i++)
{
t_new = A * t_old;
al[i] = x * t_new;
swap(t_old, t_new);

RETURN a



Parallelization of BW1 — multicore processor
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4 cores

OpenMP



Parallelization of BW1 — cluster system
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Parallelization of BW1 — cluster system
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S

MPI: ISend, IRecv, ...
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Parallelization of BW1 — cluster system
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Comparison to Magma Fy
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Conclusions

XL with block Wiedemann as system solver is an alternative for
Grobner basis solvers, because

» in about 80% of the cases it operates on the same degree,
> it scales well on multicore systems and moderate cluster sizes,
and

> it has a relatively small memory demand.



Thank youl!



