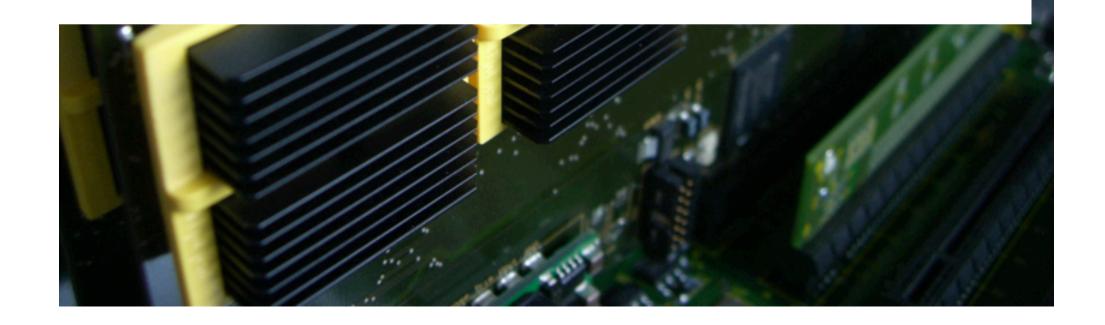
RUHR-UNIVERSITÄT BOCHUM



Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems CHES 2012, Leuven, Belgium

Tim Güneysu¹, Vadim Lyubashevsky² and <u>Thomas Pöppelmann</u>¹

¹ Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

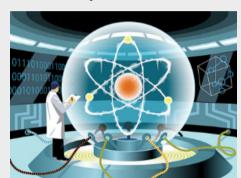
² INRIA / ENS, Paris

Outline

- Introduction
- Proposed Scheme
- FPGA Implementation
- Results
- Future Work

Outline

- Introduction
- Proposed Scheme
- FPGA Implementation
- Results
- Future Work



Motivation: Quantum Computers/Diversity

- Current asymmetric schemes rely on similar hard problems
 - RSA: Factoring
 - DSA/ECDSA: Discrete logarithm
- Threats
 - Quantum computers (IBM: ~15 years?)
 - Mathematical/Cryptanalysis breakthrough

- New post-quantum secure schemes
 - > Task of cryptographers
- Efficient and secure implementations in hard- and software
 - > Task of security engineers

Cryptographers' view: Lattice-Based Crypto

- Worst-case to average-case reductions
- Well-studied and (presumably) quantum secure problems
 - SVP, CVP, LWE ...
 - Allow security reductions
- Classical (asymmetric) primitives: signature or encryption
- More versatile constructions: hash functions, PRFs, identity-based encryption, homomorphic encryption

Engineers' view: Lattice-Based Crypto

- Lattice-based does not always mean there are lattices inside
 - Arithmetic on polynomials (ideal lattices) or matices
 - Parallelizable: multi-core/hardware
 - FFT/NTT for high-performance

Current issues

- Large key sizes or ciphertext expansion
- Selection of secure parameters still a challenge
- First results are promising (you should have seen one already) but few implementations are published

Outline

- Introduction
- Proposed Scheme
- FPGA Implementation
- Results
- Future Work

Proposed Scheme: Preliminaries

- Ring $\mathbf{R} = Z_p[x]/(x^n+1)$
 - -p is a prime ($p=1 \mod 2n$)
 - n is a power of two
 - Coefficients in range [-(p-1)/2, (p-1)/2]
- Subset R_k ={polynomial in R with coefficients in the range [-k, k] }

We always pick uniformly random out of R or R_k

Proposed Scheme: Efficient Variant of [Lyu12]

- Signature scheme by Lyubashevsky proposed at EUROCRYPT [Lyu12] provable secure in random oracle model (ROM)
- Efficiency improvement by a different hardness assumption: (Decisional) Ring-LWE with "aggressive" parameters
 - Decisional Compact Knapsack (DCK) problem requires to distinguish one sample (a,t) between
 - A. Uniform distribution over $R \times R$
 - B. $(a,t=as_1+s_2)$, with uniformly random $a \in R$, $s_1,s_2 \in R_1$
 - Values s_1, s_2 only have -1/0/1 coefficients instead of Gaussian distribution (like in [LPR10])

Proposed Scheme: Key Generation

: GEN

- Pick $\mathbf{s_1}$, $\mathbf{s_2}$ from subset R_1
- Pick a from $R = Z_p[x]/(x^n+1)$
- Compute $t = as_1 + s_2$
- Secret key: $sk = (s_1, s_2)$
- Public key: pk = (a, t)

Proposed Scheme: Signing

• **SIGN**(*m,sk*)

- 1. Pick y_1, y_2 from R_k
- 2. $c=H(Transform(r=ay_1+y_2),m)$
- 3. $z_1 = s_1 c + y_1, z_2 = s_2 c + y_2$
- 4. If z_1 , z_2 not in R_{k-32} goto 1.
- 5. z_2 '=Compress($ay_1+y_2-z_2,z_2,p,k-32$)
- 6. Return $\sigma=(z_1, z_2', c)$

Proposed Scheme: Verification

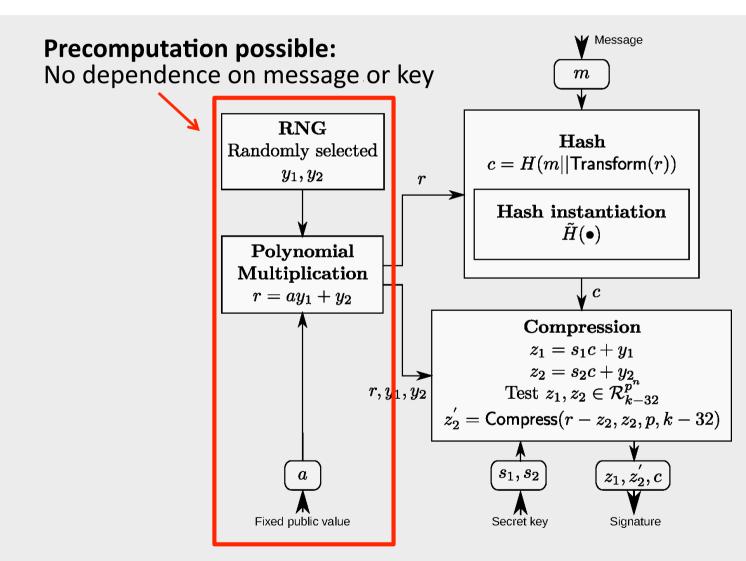
- **VER**(σ =(z_1, z_2, c), pk=(a, t), m)
 - 1. If z_1, z_2 not in R_{k-32} reject
 - 2. If c=H(Transform(az₁+z₂'-tc), m)then <u>accept</u>else <u>reject</u>
- Correctness: az_1+z_2 -tc= $a(s_1c+y_1)+s_2c+y_2$ -(as_1+s_2)c= ay_1+y_2

Proposed Scheme: Efficiency

 Transform/Compression cuts off parts of the signature that are neither needed for correctness nor for the proof ("higher-order bits")

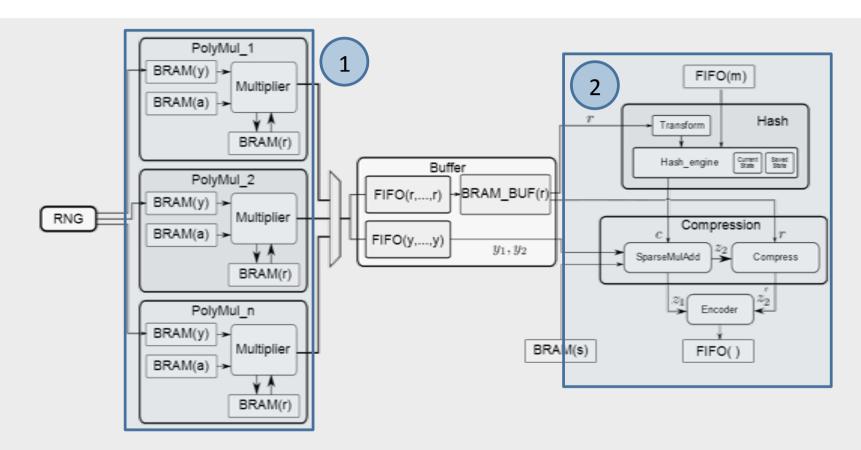
Parameters for 100 bit security p=8383489, n=512, k=214						
Signature:	Secret key:	Public key:				
8954 bit	1624 bit	11776 bit				

- Rejection sampling step
 - Success probability of 13,5 %
 - On average 7 tries until a valid signature is produced
 - Tradeoff between signature size/runtime/security

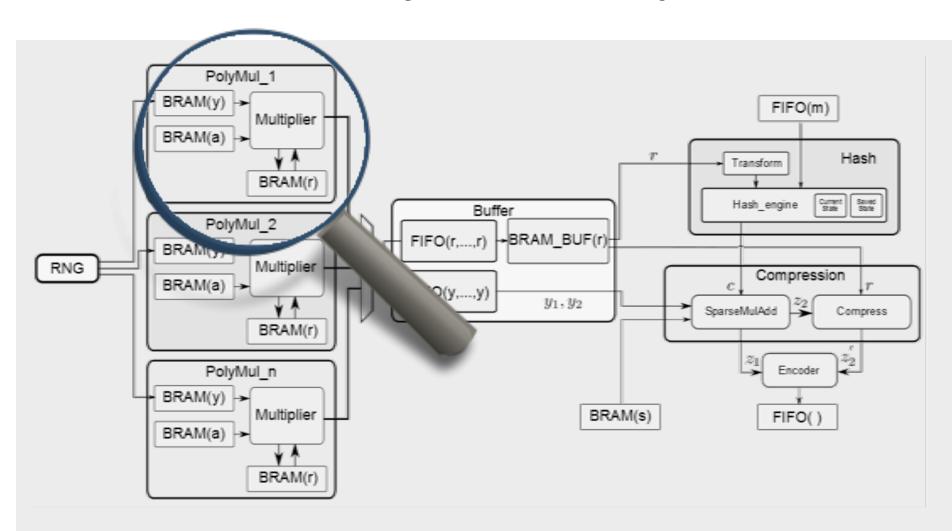


Outline

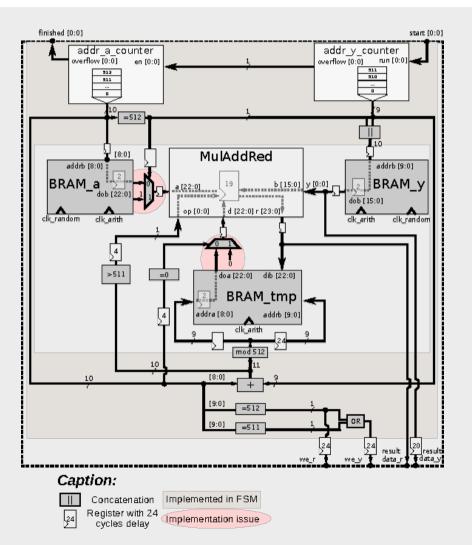
- Introduction
- Proposed Scheme
- FPGA Implementation
- Results
- Future Work



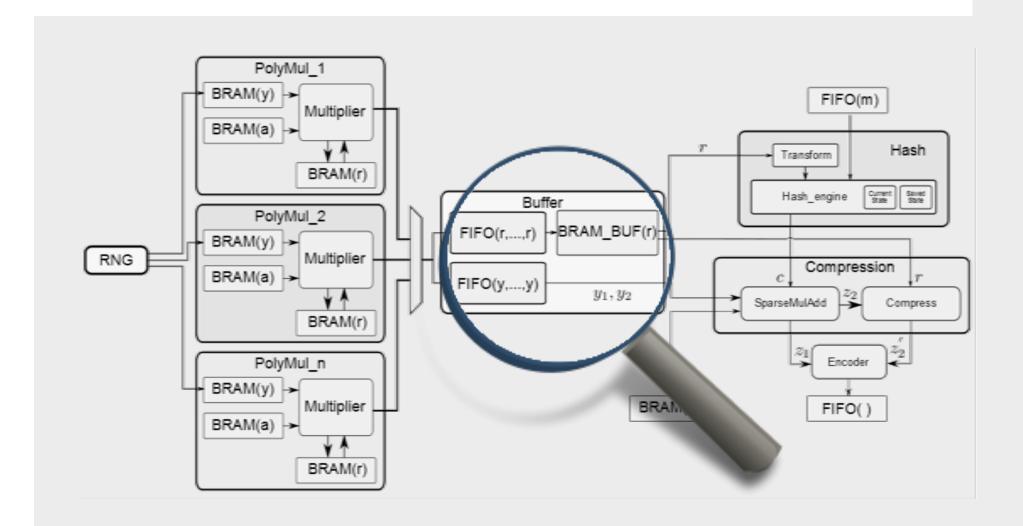
Implementation: Parallelization


Implementation: FPGA Design

- (1) Computation of ay_1+y_2 with multiple polynomial multipliers
- (2) Further steps of the signing algorithm (Hash/Compression)

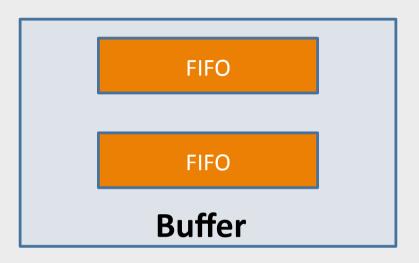


Next in Focus: Polynomial Multiplier


Implementation: Precomputation Core

- Schoolbook multiplier with integrated adder to compute ay₁+y₂
- $n^2+n = 512^2+512 = 262656$ cycles
- High-frequency (270 MHz)
- 4 internal DSPs
- 23 pipeline stages
- Can do approx. 1000 multiplications/s

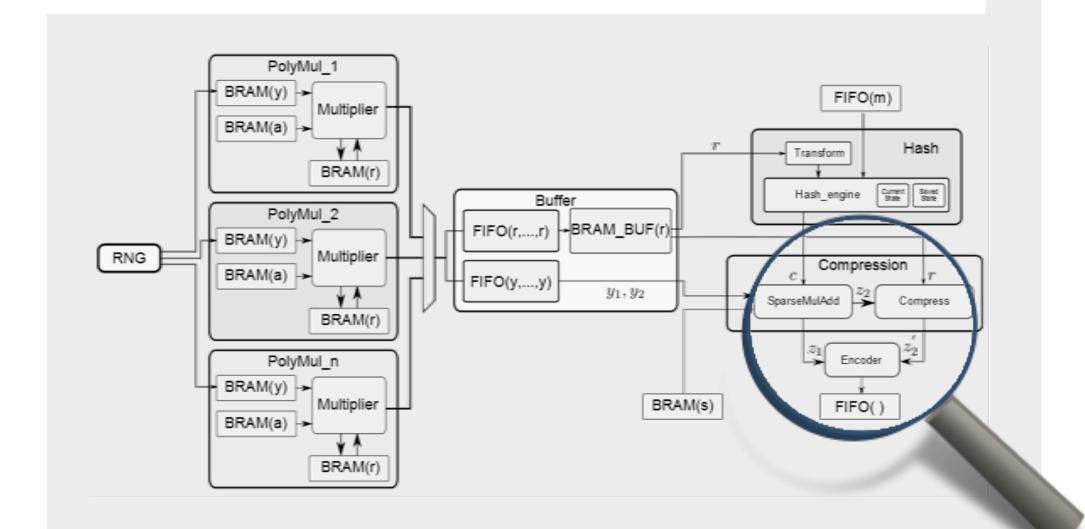
Next in Focus: Buffer Component



Implementation: Buffer

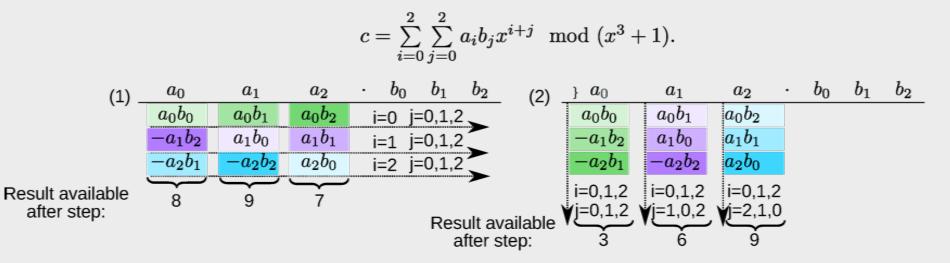
Precomputation unit

Takes 1 ms per entry (270 MHz)


Hash/Compression

Takes on average 0.1 ms (150 MHz)

- Values generated by the precomputation core can be buffered
 - Reduces the (non-deterministic) delay when a signature is requested (rejection sampling step)
- The final steps are 10x faster than the precomputation core


Next in Focus: Compression

Implementation: Compression

- Sparse Multiplication in z_{1,2}=s_{1,2}c+y_{1,2}
 - $-s_1$ and s_2 have coefficients in the range [-1,1]
 - c has only 32 coefficients that are either -1 or 1
 - − Comba-multiplication for early abort- test in place if $k \in R_{k-32}$
 - Product scanning vs. operand scanning: Reject at the first occurrence of an out of bound coefficient

Agenda

- Introduction
- Proposed Scheme
- FPGA Implementation
- Results
- Future Work

Results: Performance

• Target hardware: Spartan 6/Virtex 6

	Aspect	Spartan 6 LX16	Spartan 6 LX100	Virtex 6 LX130
Signing	Engines/Multiplier Total Multipliers Max. freq. domain (1) Max. freq. domain (2) Throughput σ/s	1/7 7 270 MHz 162 MHz 931	4/9 36 250 MHz 154 MHz 4284	9/8 72 416 MHz 204 MHz 12627
Verification	Independent engines Max. frequency domain (1) Max. frequency domain (2) Throughput σ/s		14 273 MHz 103 MHz 7015	20 402 MHz 156 MHz 14580

Results: Resource Consumption

Operation	Algorithm	Device	Resources	Ops/s
Our work	-	XC6SLX16	7465 LUTs/ 28 DSPs/ 29.5	931
Our work	_	XC6SLX100	BRAMs 30854 LUTs/ 144 DSPs/ 138	4284
			BRAMs	
Our work	-	XC6VLX130	67027 LUTs/ 216 DSPs/ 234 BRAMs	12627
RSA Signature [39]	RSA-1024; private key	XC4VFX12-10	3937 LS/ 17 DSPs	548
ECDSA [15]	NIST-P224; point mult.	XC4VFX12-12	1580 LS/ 26 DSPs	2,739
ECDSA [1]	NIST-B163;	XC2V2000	$8300~\mathrm{LUTs}/~7~\mathrm{BRAMs}$	24,390
UOV-Signature [5]	point mult. UOV(60,20)	XC5VLX50-3	$13437 \; \mathrm{LUTs}$	170,940

Outline

- Introduction
- Proposed Scheme
- Implementation
- Results
- Future Work

Future Work and Conclusion

Conclusion

- Practical, fast, scalable and area efficient implementation of lattice-based signature scheme on FPGAs
- Follow up work: Towards Efficient Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware, Thomas Pöppelmann and Tim Güneysu, Latincrypt 2012, to appear

Future Work

- Lightweight/low-cost resource sharing implementation
- Consideration of different architectures (uC, PC, ARM)

Side-channel evaluation

Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems

CHES 2012, Leuven, Belgium

Tim Güneysu¹, Vadim Lyubashevsky² and <u>Thomas Pöppelmann</u>¹

¹ Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany

² INRIA / ENS, Paris

