RUHR-UNIVERSITÄT BOCHUM # Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems CHES 2012, Leuven, Belgium #### Tim Güneysu¹, Vadim Lyubashevsky² and <u>Thomas Pöppelmann</u>¹ ¹ Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany ² INRIA / ENS, Paris #### **Outline** - Introduction - Proposed Scheme - FPGA Implementation - Results - Future Work #### **Outline** - Introduction - Proposed Scheme - FPGA Implementation - Results - Future Work ## **Motivation: Quantum Computers/Diversity** - Current asymmetric schemes rely on similar hard problems - RSA: Factoring - DSA/ECDSA: Discrete logarithm - Threats - Quantum computers (IBM: ~15 years?) - Mathematical/Cryptanalysis breakthrough - New post-quantum secure schemes - > Task of cryptographers - Efficient and secure implementations in hard- and software - > Task of security engineers #### Cryptographers' view: Lattice-Based Crypto - Worst-case to average-case reductions - Well-studied and (presumably) quantum secure problems - SVP, CVP, LWE ... - Allow security reductions - Classical (asymmetric) primitives: signature or encryption - More versatile constructions: hash functions, PRFs, identity-based encryption, homomorphic encryption #### **Engineers' view: Lattice-Based Crypto** - Lattice-based does not always mean there are lattices inside - Arithmetic on polynomials (ideal lattices) or matices - Parallelizable: multi-core/hardware - FFT/NTT for high-performance #### Current issues - Large key sizes or ciphertext expansion - Selection of secure parameters still a challenge - First results are promising (you should have seen one already) but few implementations are published #### **Outline** - Introduction - Proposed Scheme - FPGA Implementation - Results - Future Work #### **Proposed Scheme: Preliminaries** - Ring $\mathbf{R} = Z_p[x]/(x^n+1)$ - -p is a prime ($p=1 \mod 2n$) - n is a power of two - Coefficients in range [-(p-1)/2, (p-1)/2] - Subset R_k ={polynomial in R with coefficients in the range [-k, k] } We always pick uniformly random out of R or R_k #### **Proposed Scheme: Efficient Variant of [Lyu12]** - Signature scheme by Lyubashevsky proposed at EUROCRYPT [Lyu12] provable secure in random oracle model (ROM) - Efficiency improvement by a different hardness assumption: (Decisional) Ring-LWE with "aggressive" parameters - Decisional Compact Knapsack (DCK) problem requires to distinguish one sample (a,t) between - A. Uniform distribution over $R \times R$ - B. $(a,t=as_1+s_2)$, with uniformly random $a \in R$, $s_1,s_2 \in R_1$ - Values s_1, s_2 only have -1/0/1 coefficients instead of Gaussian distribution (like in [LPR10]) #### **Proposed Scheme: Key Generation** #### : GEN - Pick $\mathbf{s_1}$, $\mathbf{s_2}$ from subset R_1 - Pick a from $R = Z_p[x]/(x^n+1)$ - Compute $t = as_1 + s_2$ - Secret key: $sk = (s_1, s_2)$ - Public key: pk = (a, t) ## **Proposed Scheme: Signing** #### • **SIGN**(*m,sk*) - 1. Pick y_1, y_2 from R_k - 2. $c=H(Transform(r=ay_1+y_2),m)$ - 3. $z_1 = s_1 c + y_1, z_2 = s_2 c + y_2$ - 4. If z_1 , z_2 not in R_{k-32} goto 1. - 5. z_2 '=Compress($ay_1+y_2-z_2,z_2,p,k-32$) - 6. Return $\sigma=(z_1, z_2', c)$ #### **Proposed Scheme: Verification** - **VER**(σ =(z_1, z_2, c), pk=(a, t), m) - 1. If z_1, z_2 not in R_{k-32} reject - 2. If c=H(Transform(az₁+z₂'-tc), m)then <u>accept</u>else <u>reject</u> - Correctness: az_1+z_2 -tc= $a(s_1c+y_1)+s_2c+y_2$ -(as_1+s_2)c= ay_1+y_2 #### **Proposed Scheme: Efficiency** Transform/Compression cuts off parts of the signature that are neither needed for correctness nor for the proof ("higher-order bits") | Parameters for 100 bit security p=8383489, n=512, k=214 | | | | | | | |--|-------------|-------------|--|--|--|--| | Signature: | Secret key: | Public key: | | | | | | 8954 bit | 1624 bit | 11776 bit | | | | | - Rejection sampling step - Success probability of 13,5 % - On average 7 tries until a valid signature is produced - Tradeoff between signature size/runtime/security #### **Outline** - Introduction - Proposed Scheme - FPGA Implementation - Results - Future Work #### Implementation: Parallelization #### Implementation: FPGA Design - (1) Computation of ay_1+y_2 with multiple polynomial multipliers - (2) Further steps of the signing algorithm (Hash/Compression) ## **Next in Focus: Polynomial Multiplier** ## **Implementation: Precomputation Core** - Schoolbook multiplier with integrated adder to compute ay₁+y₂ - $n^2+n = 512^2+512 = 262656$ cycles - High-frequency (270 MHz) - 4 internal DSPs - 23 pipeline stages - Can do approx. 1000 multiplications/s ## **Next in Focus: Buffer Component** ## **Implementation: Buffer** Precomputation unit Takes 1 ms per entry (270 MHz) Hash/Compression Takes on average 0.1 ms (150 MHz) - Values generated by the precomputation core can be buffered - Reduces the (non-deterministic) delay when a signature is requested (rejection sampling step) - The final steps are 10x faster than the precomputation core ## **Next in Focus: Compression** ## Implementation: Compression - Sparse Multiplication in z_{1,2}=s_{1,2}c+y_{1,2} - $-s_1$ and s_2 have coefficients in the range [-1,1] - c has only 32 coefficients that are either -1 or 1 - − Comba-multiplication for early abort- test in place if $k \in R_{k-32}$ - Product scanning vs. operand scanning: Reject at the first occurrence of an out of bound coefficient ## **Agenda** - Introduction - Proposed Scheme - FPGA Implementation - Results - Future Work #### **Results: Performance** • Target hardware: Spartan 6/Virtex 6 | | Aspect | Spartan 6 LX16 | Spartan 6 LX100 | Virtex 6 LX130 | |--------------|--|---------------------------------------|---|--| | Signing | Engines/Multiplier Total Multipliers Max. freq. domain (1) Max. freq. domain (2) Throughput σ/s | 1/7
7
270 MHz
162 MHz
931 | 4/9
36
250 MHz
154 MHz
4284 | 9/8
72
416 MHz
204 MHz
12627 | | Verification | Independent engines Max. frequency domain (1) Max. frequency domain (2) Throughput σ/s | | 14
273 MHz
103 MHz
7015 | 20
402 MHz
156 MHz
14580 | ## **Results: Resource Consumption** | Operation | Algorithm | Device | Resources | Ops/s | |--------------------|---------------------------|-------------|--|---------| | Our work | - | XC6SLX16 | 7465 LUTs/ 28 DSPs/ 29.5 | 931 | | Our work | _ | XC6SLX100 | BRAMs
30854 LUTs/ 144 DSPs/ 138 | 4284 | | | | | BRAMs | | | Our work | - | XC6VLX130 | 67027 LUTs/ 216 DSPs/ 234
BRAMs | 12627 | | RSA Signature [39] | RSA-1024;
private key | XC4VFX12-10 | 3937 LS/ 17 DSPs | 548 | | ECDSA [15] | NIST-P224;
point mult. | XC4VFX12-12 | 1580 LS/ 26 DSPs | 2,739 | | ECDSA [1] | NIST-B163; | XC2V2000 | $8300~\mathrm{LUTs}/~7~\mathrm{BRAMs}$ | 24,390 | | UOV-Signature [5] | point mult.
UOV(60,20) | XC5VLX50-3 | $13437 \; \mathrm{LUTs}$ | 170,940 | #### **Outline** - Introduction - Proposed Scheme - Implementation - Results - Future Work #### **Future Work and Conclusion** #### **Conclusion** - Practical, fast, scalable and area efficient implementation of lattice-based signature scheme on FPGAs - Follow up work: Towards Efficient Arithmetic for Lattice-Based Cryptography on Reconfigurable Hardware, Thomas Pöppelmann and Tim Güneysu, Latincrypt 2012, to appear #### **Future Work** - Lightweight/low-cost resource sharing implementation - Consideration of different architectures (uC, PC, ARM) Side-channel evaluation ## Practical Lattice-Based Cryptography: A Signature Scheme for Embedded Systems CHES 2012, Leuven, Belgium #### Tim Güneysu¹, Vadim Lyubashevsky² and <u>Thomas Pöppelmann</u>¹ ¹ Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany ² INRIA / ENS, Paris