RUHR-UNIVERSITÄT BOCHUM

RUHR-UNIVERSITÄT BOCHUM

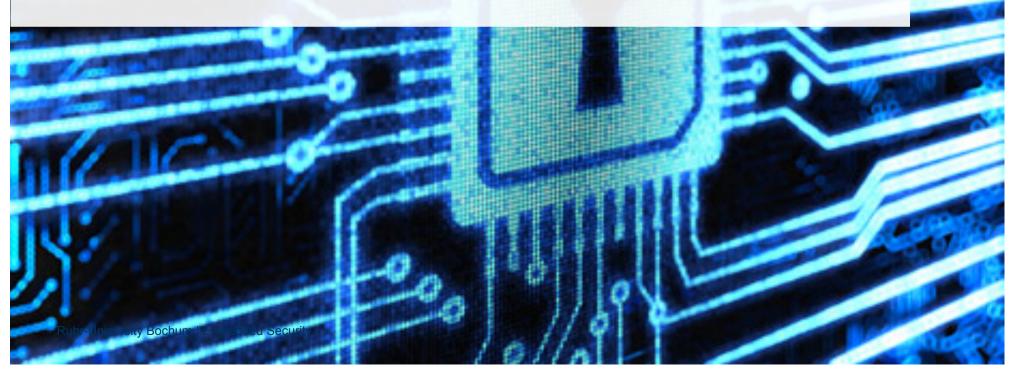
Efficient Implementations of MQPKS on Constrained Devices

Efficient Implementations of MQPKS on Constrained Devices

Peter Czypek, Stefan Heyse, Enrico Thomae

CHES2012

11.09.2012



Peter Czypek, Stefan Heyse, Enrico Thomae

Motivation

- Quantum computers can solve Discrete Logarithm problem and Factorization problem
- Alternatives must be found
- MQ based cryptography is one solution
- Many MQ schemes were partially or fully broken in the past
- Few implementations exist of the remaining schemes
- Fair comparison of schemes was only possible theoretically

Peter Czypek, Stefan Heyse, Enrico Thomae

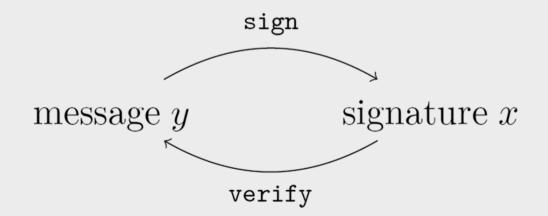
Goals

- Implement
 - all currently secure schemes
 - with the same security level
 - configurable code
 - including all currently known optimizations
- Show that MQ schemes are a good alternative to current schemes?

Peter Czypek, Stefan Heyse, Enrico Thomae

MQ Signature Schemes - Basics

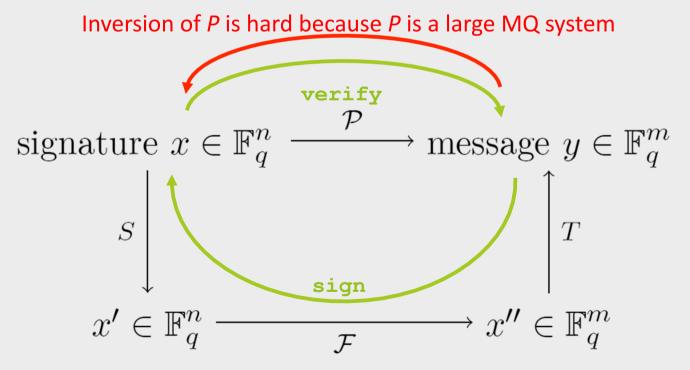
- sign() maps the message to signature with the secret key
- verify() maps the signature to message with the public key
- If the verification result is not the original message, the signature is invalid
- sign and verify are inverses of each other
- verify(sign(message)) = message



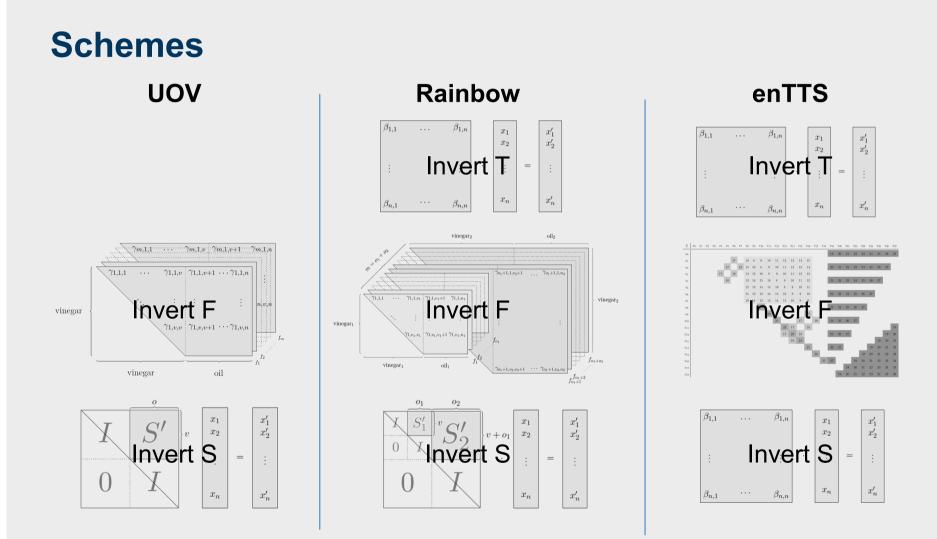
Peter Czypek, Stefan Heyse, Enrico Thomae

MQ Signature Schemes - Basics

- Four maps exist in a general MQ scheme: *P*, *S*, *F*, and *T*
- *P* is the composition of *S*, *F*, and *T* and is the public key, $P = T \circ F \circ S$
- *S*, *F*, and *T* are the secret key



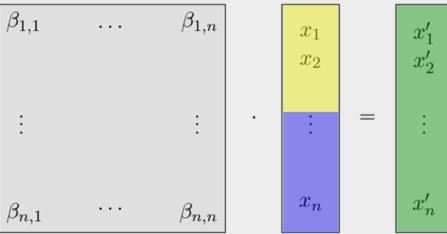
Peter Czypek, Stefan Heyse, Enrico Thomae



Peter Czypek, Stefan Heyse, Enrico Thomae

Linear Maps

- Maps or transformations can also be seen as functions
- There exist two types of maps in MQ schemes: linear and MQ maps
- Linear maps mix variables and therefore "hide" existing structure

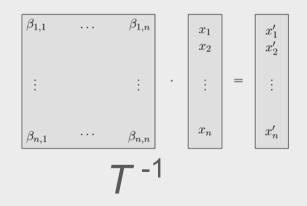


$$x'_{i} = \beta_{i,1}x_{1} + \beta_{i,2}x_{2} + \dots + \beta_{i,n}x_{n}$$

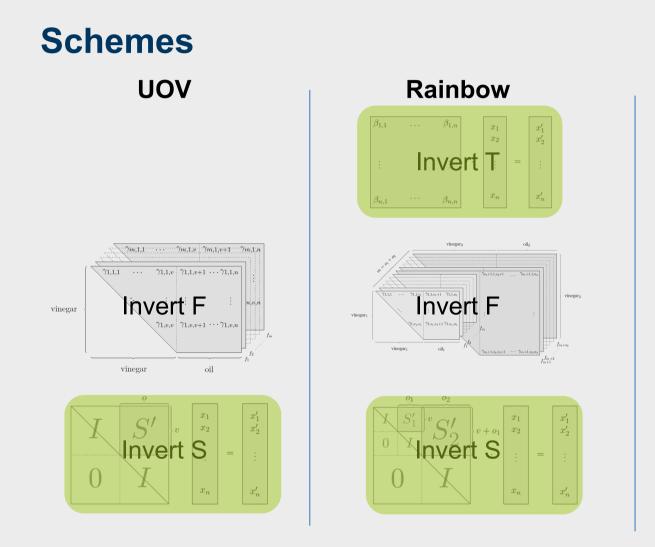
Peter Czypek, Stefan Heyse, Enrico Thomae

Inverting Linear Maps

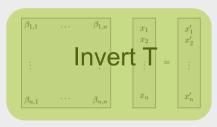
- S and T can be inverted by matrix inversion
- Matrix inversion can be done by Gaussian elimination algorithm for each column of identity matrix
- Inversion of a linear map is matrix vector multiplication with the inverse

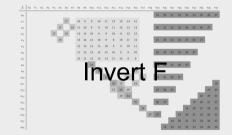


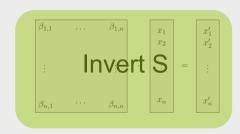
Peter Czypek, Stefan Heyse, Enrico Thomae



enTTS



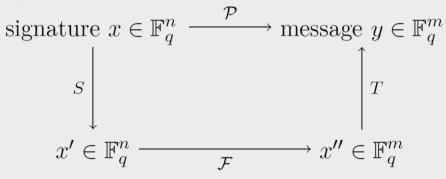




Peter Czypek, Stefan Heyse, Enrico Thomae

MQ Maps

• F and P are MQ maps



P has no special structure and is large, therefore hard to invert

 $3 x_1 x_1 + 8 x_1 x_2 + 5 x_1 x_3 + 8 x_2 x_2 + 6 x_2 x_3 + 2 x_3 x_3 = m_1$ $1 x_1 x_1 + 7 x_1 x_2 + 9 x_1 x_3 + 3 x_2 x_2 + 7 x_2 x_3 + 2 x_3 x_3 = m_2$

- A special structure in F is necessary to allow easy inversion
- This special structure is hidden by S and T

Peter Czypek, Stefan Heyse, Enrico Thomae

Inverting Central Maps - UOV

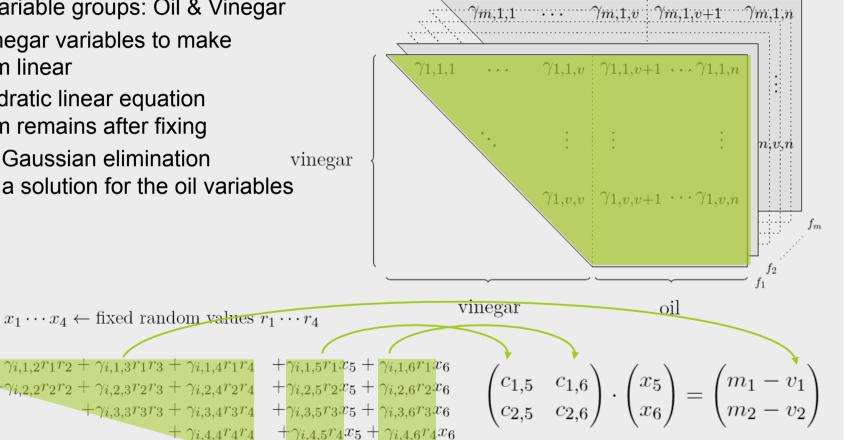
- Two variable groups: Oil & Vinegar
- Fix vinegar variables to make system linear
- A quadratic linear equation system remains after fixing
- Apply Gaussian elimination to get a solution for the oil variables

 $+\gamma_{i,2,2}r_2r_2+\gamma_{i,2,3}r_2r_3+\gamma_{i,2,4}r_2r_4$

 $+\gamma_{i,3,3}r_3r_3 + \gamma_{i,3,4}r_3r_4$

 $+\gamma_{i,4,4}r_4r_4r_4$

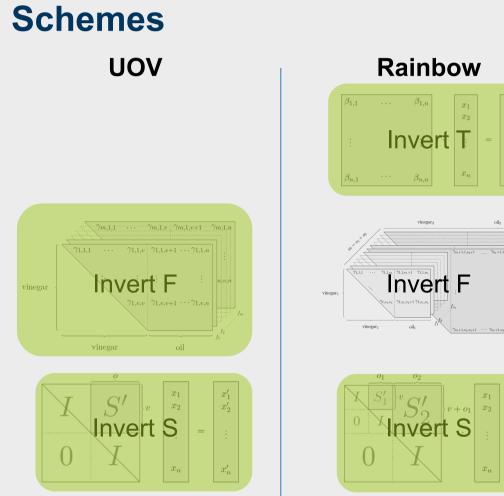
 \sum linear terms = $c_{i,5}x_5, c_{i,6}x_6$

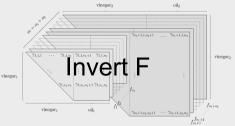


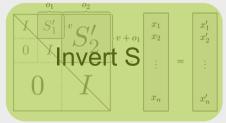
 $= \gamma_{i,1,1}r_1r_1 + \gamma_{i,1,2}r_1r_2 + \gamma_{i,1,3}r_1r_3 + \gamma_{i,1,4}r_1r_4$

 f_i

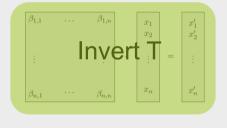
Peter Czypek, Stefan Heyse, Enrico Thomae

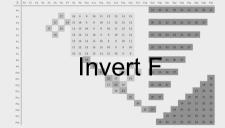


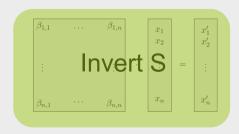




enTTS





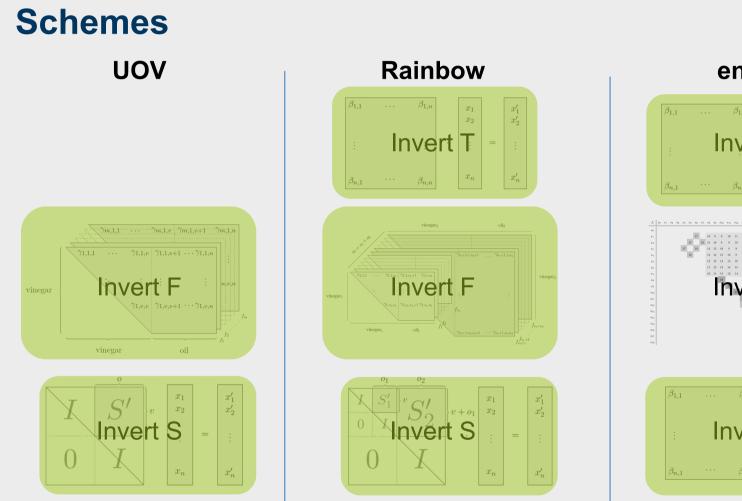


Peter Czypek, Stefan Heyse, Enrico Thomae

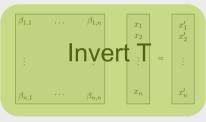
Inverting Central Maps - Rainbow

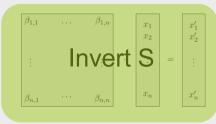
- Two or more layers (like a Rainbow)
- Solve first layer as normal UOV instance
- In next layer fix vinegar variables $vinegar_2$ oil_2 not randomly but with m=01×02 solution from previous $\gamma_{o_1+1,1,v_2+1}$ $\gamma_{o_1+1,1,n_2}$ layer Solve layer again with $\gamma_{1,1,v_1}$ $\gamma_{1,1,v_1+1}$ $\gamma_{1,1,n_1}$ $vinegar_2$ Gaussian elimination $vinegar_1$ $\gamma_{1,v_1,v_1+1} \gamma_{1,v_1,n_1}$ $f_{o_1+o_2}$ $vinegar_1$ oil_1 $\gamma_{o_1+1,v_2,v_2+1} \quad \cdots \quad \gamma_{o_1+1,v_2,n}$ $f_{o_1+1}^{f_{o_1+2}}$ Rainbow(3,2,4) : $X_1 X_2 X_3$ $X_4 X_5$ $X_6 X_7 X_8 X_9$

Peter Czypek, Stefan Heyse, Enrico Thomae



enTTS





Peter Czypek, Stefan Heyse, Enrico Thomae

Inverting Central Maps - enTTS

$$f_{i} = x_{i} + \sum_{j=1}^{2\ell-3} \gamma_{ij} x_{j} x_{2\ell-2+(i+j+1 \mod 2\ell-1)} \quad \text{for } 2\ell - 2 \leq i \leq 4\ell - 4,$$

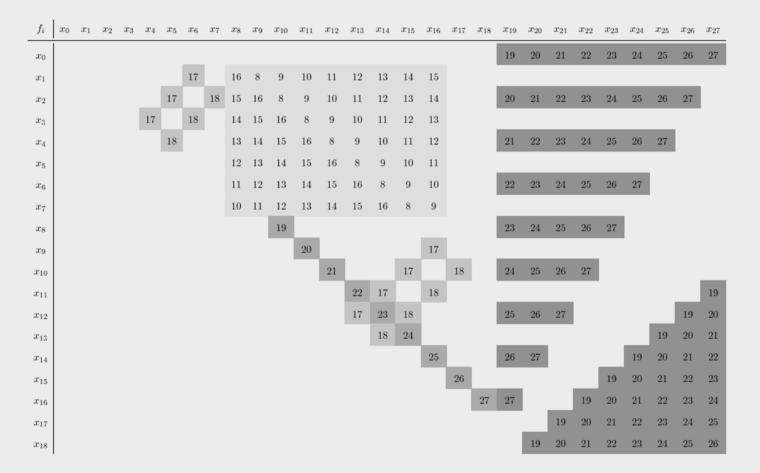
$$f_{i} = x_{i} + \sum_{j=1}^{\ell-2} \gamma_{ij} x_{i+j-(4\ell-3)} x_{i-j-2\ell} + \sum_{j=\ell-1}^{2\ell-3} \gamma_{ij} x_{i+j-3\ell+3} x_{i-j+\ell-2} \quad \text{for } i = 4\ell - 3 \text{ or } 4\ell - 2,$$

$$f_{i} = x_{i} + \gamma_{i0} x_{i-2\ell+1} x_{i-2\ell-1} + \sum_{j=4\ell-1}^{i} \gamma_{i,j-(4\ell-2)} x_{2(i-j)} x_{j} \quad + \sum_{j=i+1}^{6\ell-3} \gamma_{i,j-(4\ell-2)} x_{4\ell-1+i-j} x_{j} \quad \text{for } 4\ell - 1 \leq i \leq 6\ell - 3$$

15

Peter Czypek, Stefan Heyse, Enrico Thomae

Inverting Central Maps – enTTS



Ruhr-University Bochum | Embedded Security

Peter Czypek, Stefan Heyse, Enrico Thomae

Inverting Central Maps - enTTS

- enTTS Layer 1:
 - Fix x_1 to x_7 randomly
 - Multiply with coefficients to get a LES
 - Solve with Gaussian elimination

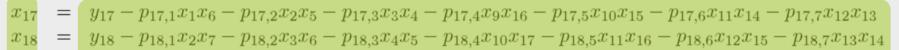
$\begin{pmatrix} 1 \end{pmatrix}$	$p_{8,1}x_1$	$p_{8,2}x_2$	$p_{8,3}x_3$	$p_{8,4}x_4$	$p_{8,5}x_5$	$p_{8,6}x_6$	$p_{8,7}x_7$	0		(x_8)		$\langle y_8 \rangle$	١
0	1	$p_{9,1}x_1$	$p_{9,2}x_2$	$p_{9,3}x_{3}$	$p_{9,4}x_4$	$p_{9,5}x_5$	$p_{9,6}x_{6}$	$p_{9,7}x_{7}$		x_9		y_9	
$p_{10,7}$	$v_7 = 0$	1	$p_{10,1}x_1$	$p_{10,2}x_2$	$p_{10,3}x_3$	$p_{10,4}x_4$	$p_{10,5}x_5$	$p_{10,6}x_6$		x_{10}		y_{10}	
$p_{11,6}$	$x_6 p_{11,7}x_7$	0	1	$p_{11,1}x_1$	$p_{11,2}x_2$	$p_{11,3}x_3$	$p_{11,4}x_4$	$p_{11,5}x_5$		x_{11}		y_{11}	
$p_{12,53}$	$x_5 p_{12,6}x_6$	$p_{12,7}x_7$	0	1	$p_{12,1}x_1$	$p_{12,2}x_2$	$p_{12,3}x_3$	$p_{12,4}x_4$	·	x_{12}	=	y_{12}	
$p_{13,43}$	$x_4 p_{13,5}x_5$	$p_{13,6}x_6$	$p_{13,7}x_7$	0	1	$p_{13,1}x_1$	$p_{13,2}x_2$	$p_{13,3}x_3$		x_{13}		y_{13}	
$p_{14,33}$	$x_3 p_{14,4}x_4$	$p_{14,5}x_5$	$p_{14,6}x_6$	$p_{14,7}x_7$	0	1	$p_{14,1}x_1$	$p_{14,2}x_2$		x_{14}		y_{14}	
$p_{15,23}$	$x_2 p_{15,3}x_3$	$p_{15,4}x_4$	$p_{15,5}x_5$	$p_{15,6}x_6$	$p_{15,7}x_7$	0	1	$p_{15,1}x_1$		x_{15}		y_{15}	
$p_{16,13}$	$x_1 p_{16,2}x_2$	$p_{16,3}x_3$	$p_{16,4}x_4$	$p_{16,5}x_5$	$p_{16,6}x_6$	$p_{16,7}x_7$	0	1 /	/	(x_{16})	/	y_{16}	/

enTTS(20,28): $x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21} x_{22} x_{23} x_{24} x_{25} x_{26} x_{27}$

Peter Czypek, Stefan Heyse, Enrico Thomae

Inverting Central Maps - enTTS

- enTTS Layer 2:
 - Can be solved directly



enTTS(20,28) : $x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21} x_{22} x_{23} x_{24} x_{25} x_{26} x_{27}$

Peter Czypek, Stefan Heyse, Enrico Thomae

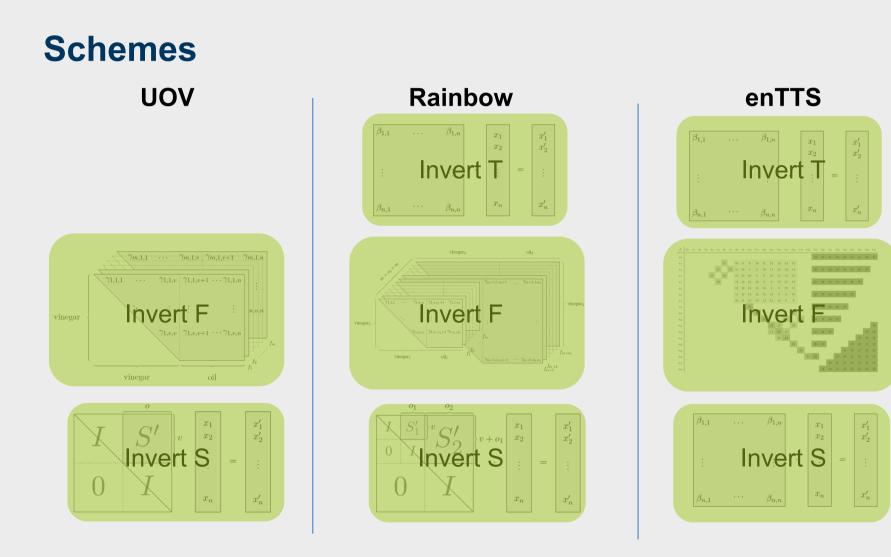
Inverting Central Maps - enTTS

- enTTS Layer 3:
 - Fix x₀ randomly
 - Multiply already known values with coefficients to get a LES
 - Solve LES

$(1 + p_{19,1}x_0)$	$p_{19,2}x_{18}$	$p_{19,3}x_{17}$	$p_{19,4}x_{16}$	$p_{19,5}x_{15}$	$p_{19,6}x_{14}$	$p_{19,7}x_{13}$	$p_{19,8}x_{12}$	$p_{19,9}x_{11}$	$(x_1$)	$(y_{19} - p_{19,0}x_8x_{10})$
$p_{20,1}x_2$	$1 + p_{20,2}x_0$	$p_{20,3}x_{18}$	$p_{20,4}x_{17}$	$p_{20,5}x_{16}$	$p_{20,6}x_{15}$	$p_{20,7}x_{14}$	$p_{20,8}x_{13}$	$p_{20,9}x_{12}$	x_2		$y_{20} - p_{20,0} x_9 x_{11}$
$p_{21,1}x_4$	$p_{21,2}x_2$	$1 + p_{21,3}x_0$	$p_{21,4}x_{18}$	$p_{21,5}x_{17}$	$p_{21,6}x_{16}$	$p_{21,7}x_{15}$	$p_{21,8}x_{14}$	$p_{21,9}x_{13}$	x_2		$y_{21} - p_{21,0}x_{10}x_{12}$
$p_{22,1}x_6$	$p_{22,2}x_4$	$p_{22,3}x_2$	$1 + p_{22,4}x_0$	$p_{22,5}x_{18}$	$p_{22,6}x_{17}$	$p_{22,7}x_{16}$	$p_{22,8}x_{15}$	$p_{22,9}x_{14}$	x_2		$y_{22} - p_{22,0}x_{11}x_{13}$
$p_{23,1}x_8$	$p_{23,2}x_6$	$p_{23,3}x_4$	$p_{23,4}x_2$	$1 + p_{23,5}x_0$	$p_{23,6}x_{18}$	$p_{23,7}x_{17}$	$p_{23,8}x_{16}$	$p_{23,9}x_{15}$	$\cdot x_2$	=	$y_{23} - p_{23,0}x_{12}x_{14}$
$p_{24,1}x_{10}$	$p_{24,2}x_8$	$p_{24,3}x_6$	$p_{24,4}x_4$	$p_{24,5}x_2$	$1 + p_{24,6}x_0$	$p_{24,7}x_{18}$	$p_{24,8}x_{17}$	$p_{24,9}x_{16}$	x_2		$y_{24} - p_{24,0}x_{13}x_{15}$
$p_{25,1}x_{12}$	$p_{25,2}x_{10}$	$p_{25,3}x_8$	$p_{25,4}x_6$	$p_{25,5}x_4$	$p_{25,6}x_2$	$1 + p_{25,7}x_0$	$p_{25,8}x_{18}$	$p_{25,9}x_{17}$	x_2	5	$y_{25} - p_{25,0} x_{14} x_{16}$
$p_{26,1}x_{14}$	$p_{26,2}x_{12}$	$p_{26,3}x_{10}$	$p_{26,4}x_8$	$p_{26,5}x_6$	$p_{26,6}x_4$	$p_{26,7}x_2$	$1 + p_{26,8}x_0$	$p_{26,9}x_{18}$	x_2	3	$y_{26} - p_{26,0} x_{15} x_{17}$
$p_{27,1}x_{16}$	$p_{27,2}x_{14}$	$p_{27,3}x_{12}$	$p_{27,4}x_{10}$	$p_{27,5}x_8$	$p_{27,6}x_6$	$p_{27,7}x_4$	$p_{27,8}x_2$	$1 + p_{27,9}x_0$	$\backslash x_2$	-]	$(y_{27} - p_{27,0}x_{16}x_{18})$

 $enTTS(20,28): x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} x_{10} x_{11} x_{12} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} x_{19} x_{20} x_{21} x_{22} x_{23} x_{24} x_{25} x_{26} x_{27} x_{27} x_{28} x_{$

Peter Czypek, Stefan Heyse, Enrico Thomae



Peter Czypek, Stefan Heyse, Enrico Thomae

Optimizations - Reduced Polynomials

- Leaving out linear and constant terms in polynomials saves time and space
- Can be applied to UOV and Rainbow

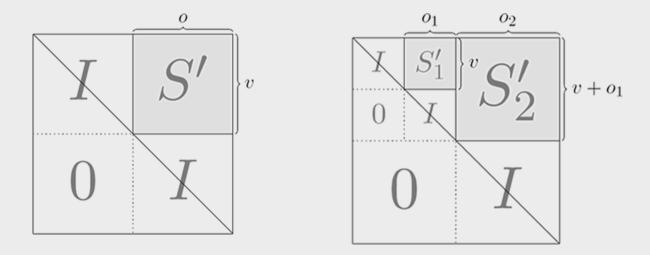
$$p^{(k)}(x_1, \dots, x_n) := \sum_{1 \le i \le j \le n} \gamma_{ij}^{(k)} x_i x_j + \sum_{1 \le i \le n} \beta_i^{(k)} x_i + \alpha^{(k)}$$

In the linear transformations the constant parts are also left out

Peter Czypek, Stefan Heyse, Enrico Thomae

Optimizations - Self Invertible Linear Maps

In case of UOV and Rainbow S can be chosen of the form:

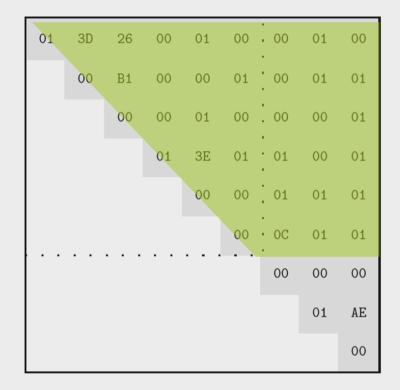


- S is self invertible $S^{-1} = S$, so no inversion is necessary.
- Multiplications in UOV signature generation are reduced from $n \cdot n$ to $o \cdot v$
- Private key is smaller

Peter Czypek, Stefan Heyse, Enrico Thomae

Optimizations - 0/1 UOV

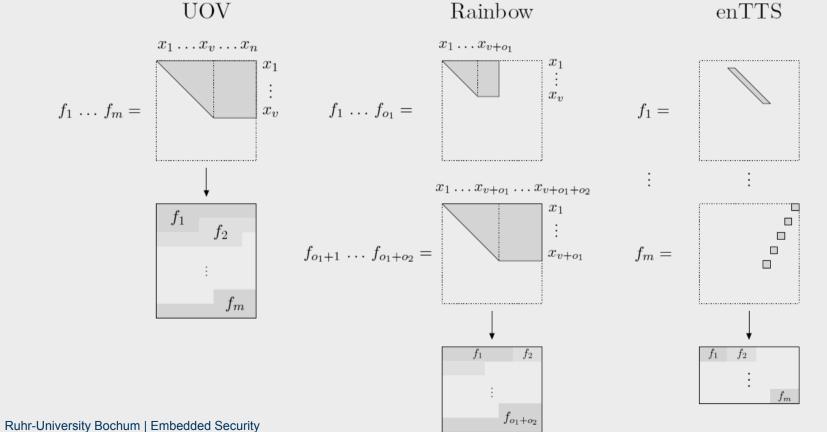
- 0/1 UOV is an optimization for UOV
- Petzold, Thomae, Wolf et. al showed that large parts of the public key can be chosen randomly fixed
- This part can be treated as a system parameter and is not part of the public key anymore
- Faster verification is possible because the arithmetic in GF(2) is easier:
 - $1 = \operatorname{copy} \operatorname{or} 0 = \operatorname{not}$
 - An additional check is necessary if an element is from GF(2) or GF(2⁸)
- Key generation: First choose P and then calculate F



Peter Czypek, Stefan Heyse, Enrico Thomae

Implementation - Central Map Memory Mapping

- Keys are saved without zeros
- Serial read out using pointer++



Peter Czypek, Stefan Heyse, Enrico Thomae

Implementation – Exponential Representation

- GF(2⁸) arithmetic with table look up
- Multiplication is addition in exponent mod (2^m-1)

 $mul(a,b) = exp(log(a)+log(b) mod(2^{m}-1))$ 3 pgm_read()

 Saving memory access by keeping temporary results in exponential representation when next operation is a multiplication

 $\begin{array}{ll} \mbox{mul}(\mbox{ mul}(a,b)\,,\,c\,) = \mbox{exp}(\mbox{ log}[\mbox{ exp}(\mbox{log}(a) + \mbox{log}(b)\mbox{ mod}\ (2^m - 1))\] + \mbox{log}[\mbox{c}]\mbox{ mod}\ (2^m - 1)) & 6\mbox{ pgm}\ \mbox{read}\ () \\ \mbox{mul}(\mbox{ mul}(a,b)\,,\,c\,) = \mbox{exp}(\ (\mbox{log}(a) + \mbox{log}(b)\mbox{ mod}\ (2^m - 1))\ + \mbox{log}[\mbox{c}]\mbox{ mod}\ (2^m - 1)) & 4\mbox{ pgm}\ \mbox{read}\ () \\ \end{array}$

Keys are saved in exponential representation, too.

Peter Czypek, Stefan Heyse, Enrico Thomae

Implementation – Generic Code

- Heavy use of #define
- Code generator for enTTS
- Increasing parameters is very easy

/* ----- SIZES ----- */
#define __O __M
#define __N (uint16_t)(__V+__O)
#define __LENGTH_OV (uint16_t)((__O*__V)+((__V
#define __LENGTH_F (uint16_t)__LENGTH_OV*__M
#define __LENGTH_L (uint16_t)__N*__N
#define __LENGTH_P (uint16_t)(__M*(__N*(__N+1))
#define __D (uint16_t)((__V*(__V+1))/2)
#define __D2 (uint16_t)((__O*(__O+1))/2)

```
for (m=0; m<_M; m++) //all polynomials
{
    i=0;
    oil[m]=message[m]; //copy message to oil, because gauss awaits it in there later
    for (k=0; k<_V; k++)
    {
        for (j=k; j<_V; j++) // read in coeffitiens of F in exponential representation
        {
            oil[m] ^= mul_x_ee(vinegar_quadrat[i++], pgm_read_byte_far((pointer_f++)));
        }
        for (j=0; j<_0; j++) //vinegar x oil, both in exponential form
        {
            lgs[(m*_M)+j] ^= mul_x_ee(vinegar[k], pgm_read_byte_far((pointer_f++)));
        }
    }
}</pre>
```

Peter Czypek, Stefan Heyse, Enrico Thomae

Comparison – Parameter Choice

- Due to the 8bit micro controller GF(2⁸) was chosen as the field
- To be able to compare the schemes on equal conditions parameters for equal security levels are necessary
- For every scheme exist different attacks

Scheme	Security	Parameter	Direct attack	Band Separation	MinRank	$\operatorname{HighRank}$	Kipnis-Shamir	Reconciliation
	2^{64}	(21, 28)	$2^{67} \ (g=1)$	-	-	-	2^{66}	$2^{131} \ (k=2)$
UOV (o, v)	2^{80}	(28, 37)	$2^{85} (g = 1)$	-	-	-	2^{83}	$2^{166} \ (k=2)$
	2^{128}	(44, 59)	$2^{130}\ (g=1)$	-	-	-	2^{134}	$2^{256} \ (k=2)$
	2^{64}	(15, 10, 10)	$2^{67} (g = 1)$	2^{70}	2^{141}	2^{93}	2^{125}	$2^{242} \ (k=6)$
Rainbow (v, o_1, o_2)	2^{80}	(18, 13, 14)	$2^{85} (g = 1)$	2^{81}	2^{167}	2^{126}	2^{143}	$2^{254} \ (k=5)$
	2^{128}	(36, 21, 22)	$2^{131} \ (g=2)$	2^{131}	2^{313}	2^{192}	2^{290}	$2^{523}\ (k=7)$
	2^{64}	(7, 28, 40)	$2^{89} (g = 1)$	2^{68}	2^{126}	2^{117}	2^{127}	-
enTTS (ℓ,m,n)	2^{80}	(9, 36, 52)	$2^{110} (g=2)$	2^{85}	2^{159}	2^{151}	2^{160}	-
	2^{128}	(15, 60, 88)	$2^{176}\ (g=3)$	2^{131}	2^{258}	2^{249}	2^{259}	-

Peter Czypek, Stefan Heyse, Enrico Thomae

Comparison - Sign

	Scheme	n	m	private Key [Byte]	Parameter [Byte]	Clockcyles x 1000	Time[ms] @32MHz	Code Size [Byte]
	enTTS(5, 20, 28)	28	20	1351	*	153	4.79	12890
	enTTS(5, 20, 28)[YCCC06]	28	20	1417	*	568^{1}	17.75^2	-
	UOV(21, 28)	49	21	21462	*	$1,\!615$	50.49	2188
2^{64}	0/1 UOV(21, 28)	49	21	12936	8526	1,577	49.29	2258
2	$\operatorname{Rainbow}(15, 10, 10)$	35	20	9250	*	848	26.51	4162
	enTTS(7, 28, 40)	40	28	2731	*	332	10.37	24898
	UOV(28, 37)	65	28	49728	*	$3,\!637$	113.66	2188
2^{80}	0/1 UOV(28, 37)	65	28	30044	19684	$3,\!526$	110.20	2258
2	$\operatorname{Rainbow}(18, 13, 14)$	45	27	19682	*	1,740	54.38	4162
	enTTS(9, 36, 52)	52	36	4591	*	609	19.03	41232
	UOV(44, 59)	103	44	194700	*	$13,\!314$	416.07	2188
2^{128}	0/1 UOV(44, 59)	103	44	116820	77880	12,782	399.43	2258
2	$\operatorname{Rainbow}(36, 21, 22)$	79	43	97675	*	8,227	257.11	4162
	enTTS(15, 60, 88)	88	60	13051	*	2,142	66.94	116698

Peter Czypek, Stefan Heyse, Enrico Thomae

Comparison - Verify

	Scheme	n	m	public Key [Byte]	Parameter [Byte]	Clockcyles x 1000	Time[ms] @32MHz	Code Size [Byte]
	enTTS(5, 20, 28)	28	20	8120	*	$1,\!126$	35.22	827
	enTTS(5, 20, 28)[YCCC06]	28	20	8680	*	$5,808^{1}$	181.5^{2}	-
	UOV(21, 28)	49	21	25725	*	$1,\!690$	52.83	466
2^{64}	0/1 UOV(21, 28)	49	21	4851	20874	1,395	43.60	578
5	$\operatorname{Rainbow}(15, 10, 10)$	35	20	12600	*	1,010	31.58	466
	enTTS(7, 28, 40)	40	28	22960	*	2,558	79.95	827
	UOV(28, 37)	65	28	60060	*	3,911	122.23	466
2^{80}	0/1 UOV(28, 37)	65	28	11368	48692	3,211	100.37	578
5	Rainbow(18, 13, 14)	45	27	27945	*	2,214	69.19	466
	enTTS(9, 36, 52)	52	36	49608	*	$6,\!658$	208.07	827
	UOV(44, 59)	103	44	235664	*	$14,\!134$	441.70	466
2^{128}	0/1 UOV(44, 59)	103	44	43560	192104	$13,\!569$	424.04	578
2^1	Rainbow(36, 21, 22)	79	43	135880	*	9,216	288.01	466
	enTTS(15, 60, 88)	88	60	234960	*	3,0789	962.17	827

Peter Czypek, Stefan Heyse, Enrico Thomae

Comparison – Other Schemes

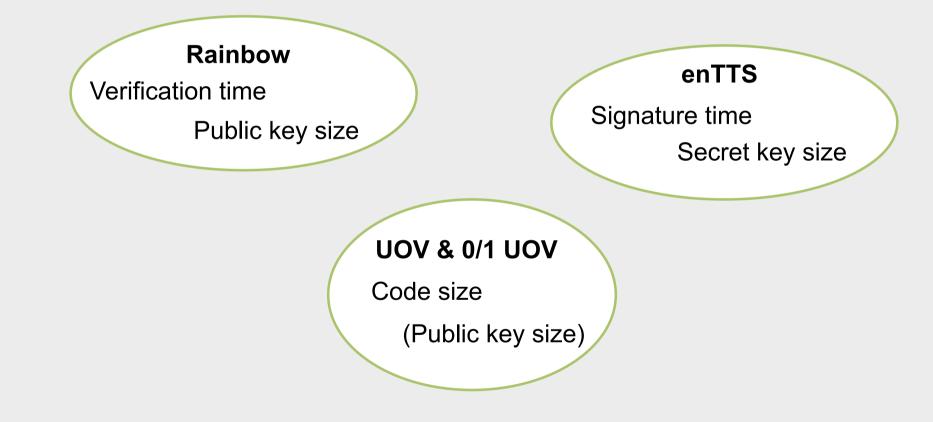
- Our implementations:
 - enTTS(5,20,28) [security < 2⁶⁴] sign in 4.79 ms / verify 35.22 ms
 - enTTS(9,36,52) [2⁸⁰] sign in 19.03 ms / verify in 208.07 ms
 - Rainbow(18,13,17) [2⁸⁰] sign in 54.38 ms / verify in 69.19 ms

Other schemes:	${\bf Method}$	Time[ms]@32MHz						
		sign	verify					
	enTTS(5, 20, 28)[YCCC06]	17.75^{1}	181.5^{1}					
	$\frac{\text{ECC-P160 (SECG) [GPW+04]}}{\text{ECC-P192 (SECG) [GPW+04]}}$	203^{1} 310^{1}	203^{1} 310^{1}					
	ECC-P224 (SECG) [GPW+04]	548^{1}	548^{1}					
	RSA-1024 [GPW $^+04$]	$2,748^{1}$	108^{1}					
	RSA-2048 [GPW $^+04$]	$20,815^{1}$	485^{1}					
	NTRU-251-127-31 sign [DPP08]	143^{1}	-					

30

Peter Czypek, Stefan Heyse, Enrico Thomae

Conclusion



Peter Czypek, Stefan Heyse, Enrico Thomae

Future aspects

- 0/1 UOV could be improved by using a generated or cyclic system parameter instead a fixed one
- 0/1 UOV could save 8 elements in one byte instead of saving 1 bit in a byte
- The focus of this work was on fast schemes, the code size / time trade-off could be investigated further
- Assembler implementations could speed up the schemes even more

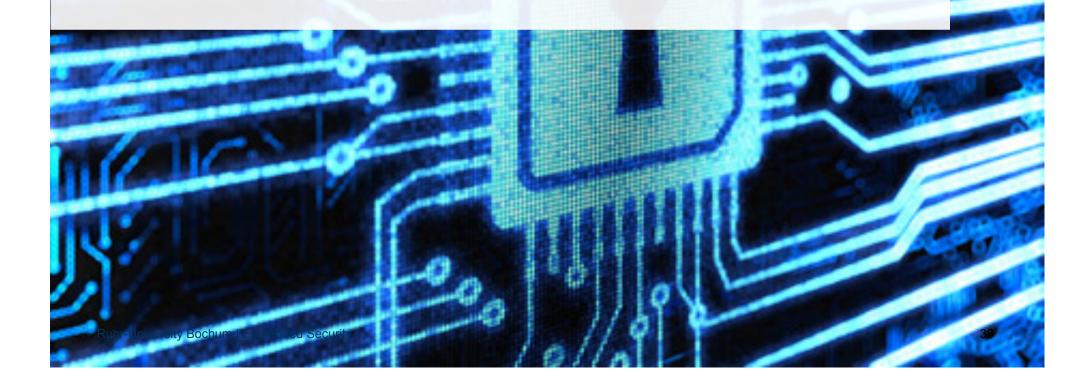
RUHR-UNIVERSITÄT BOCHUM

RUHR-UNIVERSITÄT BOCHUM

Efficient Implementations of MQPKS on Constrained Devices

Peter Czypek, Stefan Heyse, Enrico Thomae

Thank you for your attention. Any Questions?



Peter Czypek, Stefan Heyse, Enrico Thomae

Optimizations - 0/1 UOV

To prevent a reduction of the key to elements only from GF(2), a special monomial ordering is necessary

Elements must be combined in a way that even when many $GF(2^8)$ elements are fixed the key has still elements from $GF(2^8)$

3D

01

26

00

01

01

00

01

01

01

00

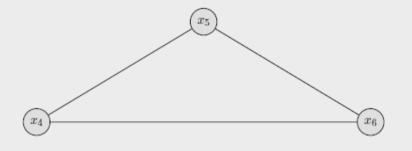
AE

00

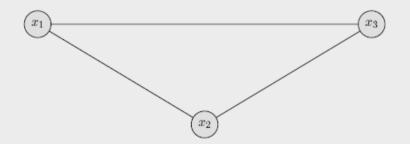
00.00

Peter Czypek, Stefan Heyse, Enrico Thomae

0/1 UOV Key Gen – Complementary Turań Graph



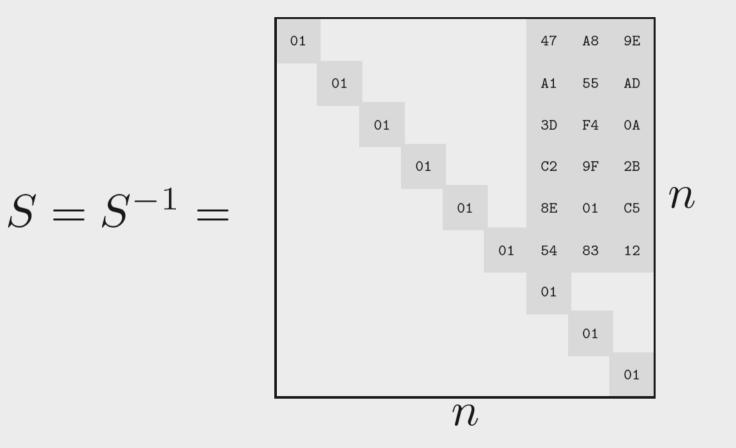




 $\ldots + x_1x_2 + x_1x_3 + x_2x_3 + x_4x_5 + x_4x_6 + x_5x_8 + x_7x_8$

Peter Czypek, Stefan Heyse, Enrico Thomae

0/1 UOV Key Gen – Choosing S



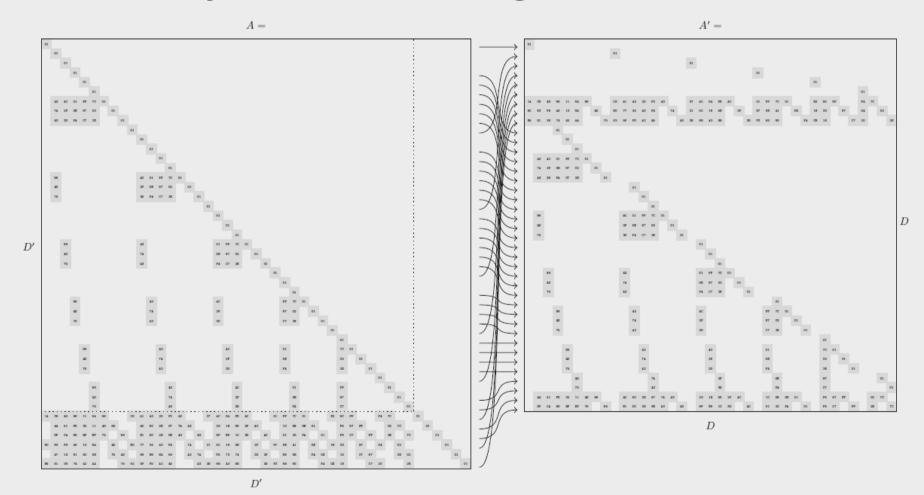
Peter Czypek, Stefan Heyse, Enrico Thomae

0/1 UOV Key Gen – Choosing B from GF2

D

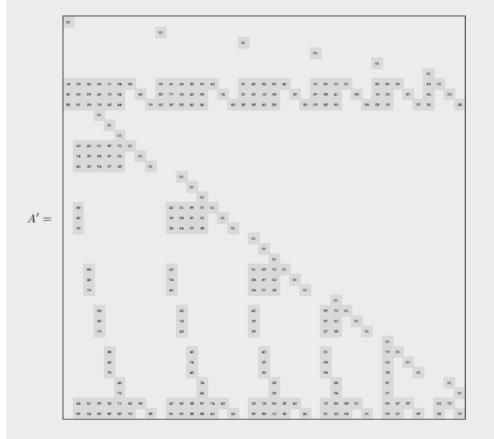
Peter Czypek, Stefan Heyse, Enrico Thomae

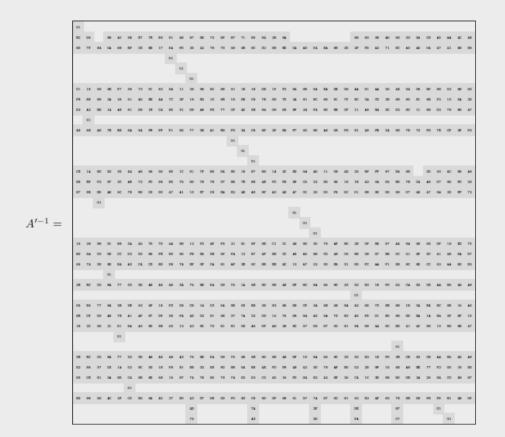
0/1 UOV Key Gen – Calculating A



Peter Czypek, Stefan Heyse, Enrico Thomae

0/1 UOV Key Gen – Inverting A





Peter Czypek, Stefan Heyse, Enrico Thomae

0/1 UOV Key Gen – Calculating F and P

 $\mathcal{F} = B \cdot A'^{-1}$

$f_1, f_2, f_3 =$	01	2D	26	00	01	00	AR	80	12]	00	27	57	00	01	01 87	ĩD	Ci	00	TE	Шř	00	01	00 47	76	66
		00	Bi	00	00	01	106	36	œ			01	55	00	01	00 ; 30	51	DD		00	94	00	00	00 53	12	4D
f_{-} f_{-} f_{-} -			00	00	01	00	012	cs	38				00	00	00	01,70	66	04			01	01	01	00 ; CE	90	
$J_1, J_2, J_3 -$				01	31	01	223	09	DE					00	92	01 FD	60	957				00	#4	01 FE	00	œ
					00	00	05	90	C1						01	01 28	a.	C 11					00	01 12	12	47
						00	42	85	58							00 · 61	28	75						01 60	40	30

$$\mathcal{P} = \mathcal{F} \cdot A$$

	01	30	26	00	01	00	00	01	00	a	0	27	57	00	01	01	01	00	00	00	78.	Шř	00	01	00	00	01	00
		00	Bi	00	00	01	00	01	01			01	57	00	01	00	00	00	00		00	94	00	00	00	00	00	00
			00	00	01	00	. 00	00	01				00	00	00	01	00	00	01			01	01	01	00	00	00	01
				01	3K	01	01	00	01					00	82	01	00	01	01				00	м	01	01	00	01
$p_1, p_2, p_3 =$					00	00	01	01	01						01	01	01	01	01					00	01	00	00	00
1 - / 1 - / 1 0		. .					00	01	01		_						A.8.	01	00							SE	00	00
	[00	00	00								00	00	01	[.						01	01	01
								01	AI.									00	47								00	45
	00																01									00		