An Efficient Countermeasure against Correlation Power－Analysis Attacks with Randomized Montgomery Operations for DF－ECC Processor

图立交通大㟊

Jen－Wei Lee，Szu－Chi Chung，Hsie－Chia Chang，and Chen－Yi Lee

Department of Electronics Engineering and Institute of Electronics， National Chiao－Tung University（NCTU），Hsinchu，Taiwan Email：jenweilee＠gmail．com

Power-Analysis Attacks

Example of Power Traces for 160-bit ECC Chip with Different Private Key Values

Execution time depends on key value by direct implementation
\rightarrow secrete information leakage through simple power-analysis (SPA) attack

Power-Analysis Attacks

$>$ SPA attack can be counteracted by unified operations
> Correlation power-analysis (CPA) attack

- utilize statistical analysis to disclose private information of cryptographic devices
- work on EC integrated encryption, single pass EC Diffie-Hellman or Menezes-Qu-Vanstone key agreement
> CPA attack on SPA-resistant ECC device
- key-dependent EC scalar multiplication (ECSM)

Algorithm: Montgomery Ladder
Input: an integer K and a point P
Output: $K P$

1. $P_{1} \leftarrow P, P_{2} \leftarrow 2 P$;
2. For i from $m-2$ down to 0 do

If $K_{i}=1$ then

$$
P_{1} \leftarrow E C P A\left(P_{1}, P_{2}\right), P_{2} \leftarrow E C P D\left(P_{2}\right)
$$

else

$$
P_{2} \leftarrow E C P A\left(P_{2}, P_{1}\right), P_{1} \leftarrow \operatorname{ECPD}\left(P_{1}\right)
$$

End
3. Return P_{1}

$$
\begin{aligned}
& K_{m-2}=1\left[\begin{array}{c}
P_{1}=3 P \\
P_{2}=4 P \\
K_{m-3}=0
\end{array}\right\} \begin{array}{l}
\\
P_{1}=6 P \\
P_{2}=7 P
\end{array} \quad \ldots \\
& P_{1}=P \\
& P_{2}=2 P \\
& K_{m-2}=0\left[\begin{array} { c c }
{ K _ { m - 3 } = 1 } \\
{ P _ { 1 } = 2 P } \\
{ P _ { 2 } = 3 P } \\
{ K _ { m - 3 } = 0 }
\end{array} \left\{\begin{array}{rl}
P_{1}=5 P & \\
P_{2}=6 P & \cdots \\
\\
P_{1}=4 P & \ldots \\
P_{2}=5 P &
\end{array}\right.\right.
\end{aligned}
$$

Time complexity is $\mathrm{O}(2 \mathrm{~m})$

Previous Works

$>$ Circuit level

- wave dynamic differential logic [HWANG'06]
- random switching logic [SAEKl'09]
$>$ Register addressing
- random register renaming [ITOH'03]
> Algorithm level
- randomized EC point [CORON'99]
- randomized scalar key [CORON'99]
- randomized projective coordinates [CORON'99]
- elliptic curve isomorphisms over $G F(p)$ [JOYE'01]
$>$ Software implementation
- random delay generation [CORON'09]

Motivation

$>$ Provide a solution that is suitable and efficient for ECC hardware implementation

- support dual-field operations for high security level
- dual-field ECC (DF-ECC) function is approved in IEEE P1363
- compatible to current public-key cryptography
- use initial EC parameters
- hardware speed
- field inversion/division and multiplication dominate execution time
- hardware complexity
- arithmetic unit integration

Our Solution

$>$ Mask intermediate values by computing field arithmetic in a randomized domain

- Montgomery domain
- $A \equiv a \cdot 2^{m}(\bmod p), a$ is in integer domain and m is field length
- random domain (or random field automorphism)
- $A \equiv a \cdot 2^{\lambda}(\bmod p)$, domain value λ equals to hamming weight of an m-bit non-zero random value α

Table 1. Operations in Randomized Domain

Operation	Arithmetic
randomized Montgomery multiplication (RMM)	$R M M(X, Y) \equiv x \cdot y \cdot 2^{\lambda}(\bmod p)$
randomized Montgomery division (RMD)	$R M D(X, Y) \equiv x \cdot y^{-1} \cdot 2^{\lambda}(\bmod p)$
randomized addition (RA)	$R A(X, Y) \equiv(x+y) \cdot 2^{\lambda}(\bmod p)$
randomized subtraction (RS)	$R S(X, Y) \equiv(x-y) \cdot 2^{\lambda}(\bmod p)$

Our Solution

$>$ Random field automorphism for ECSM calculation

- field automorphic function φ

$$
\varphi: P=(e, f) \rightarrow Q=(E, F)
$$

- $e, f, E \equiv e \cdot 2^{\lambda}(\bmod p), F \equiv f \cdot 2^{\lambda}(\bmod p)$
- $e \neq E, f \neq F$ i.i.f. $2^{\lambda} \neq 1(\bmod p)$ with $0<\lambda \leq m$
- inverse field automorphic function φ^{-1}

randomized domain to integer domain

Proposed Randomized Montgomery Algorithm

> Radix-2 RMM

- if $\alpha_{i}=1$
- decrease domain value by 1 in step 4

$$
-R=R / 2
$$

Algorithm 2 Radix-2 randomized Montgomery multiplication Input: X, Y, p, and α
Output: $R=\operatorname{RMM}(X, Y)$

1. Let $V=X, R=0, S=Y$
2. For i from 0 to $m-1$ do

- if $\alpha_{i}=0$
- remain domain
value in step 5

3. $\quad R \equiv R+V_{0} \cdot S \quad(\bmod p), V=V / 2$
4. If $\alpha_{i}=1$ then $R \equiv R / 2 \quad(\bmod p)$
5. else $S \equiv 2 S \quad(\bmod p)$
6. Return R

- after m iterations
- domain value is $-\lambda$

Proposed Randomized Montgomery Algorithm

> Radix-2 RMD

- if $\alpha_{i}=1$
- increase domain
value by 1 in steps 4 ,
7, 10, 13
- $U=U / 2$
- $R=2 R$
- if $\alpha_{i}=0$
- remain domain value in steps 5,8 ,
11, 14
- after m iterations
- domain value is λ

Extend Radix-2 to Radix-4 Approach

> Based on extended Euclidean algorithm

$X^{-1} \cdot Y \cdot R \equiv U \cdot 2^{i}(\bmod p)$	initial values: $\quad(U, V, R, S) \Rightarrow(p, Y, 0, X)$
$X^{-1} \cdot Y \cdot S \equiv V \cdot 2^{i}(\bmod p)$	final iteration: $(U, V, R, S) \Rightarrow\left(1,0, X Y^{-1} 2^{m}(\bmod p), 0\right)$

1. U or $V(\bmod 4)=0$
2. $U(\bmod 4)=V(\bmod 4)$
3. $U / V(\bmod 4)$ is even and $V / U(\bmod 4)$ is odd 4. U and $V(\bmod 4)$ is odd

$\left\{\right.$| c | d | Properties |
| :---: | :---: | :---: |
| 0 | $0,1,2$, or 3 | $g c d(U, V)=g c d\left(\frac{U}{4}, V\right)$ |
| 1,2, or 3 | 0 | $g c d(U, V)=g c d\left(U, \frac{V}{4}\right)$ |
| $c=d$ | | $g c d(U, V)=g c d\left(\frac{U-V}{4}, V\right)=g c d\left(U, \frac{V-U}{4}\right)$ |
| 2 | 1 or 3 | $g c d(U, V)=g c d\left(\frac{\frac{U}{2}-V}{2}, V\right)=g c d\left(\frac{U}{2}, \frac{V-\frac{U}{2}}{2}\right)$ |
| 1 or 3 | 2 | $g c d(U, V)=\operatorname{gcd}\left(\frac{U-\frac{V}{2}}{2}, \frac{V}{2}\right)=\operatorname{gcd}\left(U, \frac{\frac{V}{2}-U}{2}\right)$ |
| other | | $g c d(U, V)=g c d\left(\frac{U-V}{2}, V\right)=\operatorname{gcd}\left(U, \frac{V-U}{2}\right)$ |

$c=U(\bmod 4), d=V(\bmod 4)$

Extend Radix-2 to Radix-4 Approach

$>$ Modify iterative calculation in radix-4 RMM/RMD to ensure domain value decreases/increases by 2 to 0

- if two-bit random value is (11)
- decrease/increase domain value by 2
- if two-bit random value is (10) or (01)
- decrease/increase domain value by 1
- if two-bit random value is (00)
- remain domain value

Proposed Randomized Montgomery Algorithm

$>$ Radix-4 RMM

- if $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(11)$
- decrease domain value by 2 in step 5

$$
-R=R / 4
$$

- if $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(10)$ or (01)
- decrease domain value by 1 in step 6

$$
-R=R / 2
$$

```
Algorithm 3. Radix-4 randomized Montgomery multiplication
```

Algorithm 3. Radix-4 randomized Montgomery multiplication
Input: X, Y, p, and α
Input: X, Y, p, and α
Output: $R=\operatorname{RMM}(X, Y)$
Output: $R=\operatorname{RMM}(X, Y)$

1. Let $V=X, R=0, S=Y$
2. Let $V=X, R=0, S=Y$
3. For i from 0 to $\left\lceil\frac{m}{2}\right\rceil-1$ do
4. For i from 0 to $\left\lceil\frac{m}{2}\right\rceil-1$ do
5. If $m(\bmod 2) \equiv 1$ and $i=\left\lceil\frac{m}{2}\right\rceil-1$ then
$R \equiv R+V_{0} \cdot S \quad(\bmod p), V=\frac{V}{2}$
6. If $m(\bmod 2) \equiv 1$ and $i=\left\lceil\frac{m}{2}\right\rceil-1$ then
$R \equiv R+V_{0} \cdot S \quad(\bmod p), V=\frac{V}{2}$
7. else
8. else
$R \equiv R+V_{0} \cdot S+V_{1} \cdot 2 S \quad(\bmod p), V=\frac{V}{4}$
$R \equiv R+V_{0} \cdot S+V_{1} \cdot 2 S \quad(\bmod p), V=\frac{V}{4}$
9. If $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(1,1)$ then
10. If $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(1,1)$ then
$R \equiv \frac{R}{4} \quad(\bmod p)$
$R \equiv \frac{R}{4} \quad(\bmod p)$
11. else if $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(1,0)$ or $(0,1)$ then
12. else if $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(1,0)$ or $(0,1)$ then
$R \equiv \frac{R}{2} \quad(\bmod p), S \equiv 2 S \quad(\bmod p)$
$R \equiv \frac{R}{2} \quad(\bmod p), S \equiv 2 S \quad(\bmod p)$
13. else
14. else
$S \equiv 4 S \quad(\bmod p)$
$S \equiv 4 S \quad(\bmod p)$
15. Return R
```
8. Return \(R\)
```

- if $\left(\alpha_{2 i+1}, \alpha_{2 i}\right)=(00)$
- remain domain value in step 7

$$
-R=R
$$

- after $m / 2$ iterations
- Domain value is $-\lambda$

Proposed Randomized Montgomery Algorithm

$>$ Radix-4 RMD

- if $\left(\alpha_{i+1}, \alpha_{i}\right)=(11)$
- increase domain value by 2 in step 24
$-R=4 R$
- if $\left(\alpha_{i+1}, \alpha_{i}\right)=(10)$ or (01)
- increase domain value by 1 in step 25
$-R=4 R / 2$
- if $\left(\alpha_{i+1}, \alpha_{i}\right)=(00)$
- remain domain value in step 26
- $R=4 R / 4$
- after $m / 2$ iterations
- domain value is λ

Algorithm 5. Radix-4 randomized Montgomery division
Input: X, Y, p, and α
Output: $R=\mathrm{RMD}(X, Y)$
Let $U=p, V=Y, R=0, S=X, i=0$
While $(V>0)$ do
$c \equiv U \quad(\bmod 4), d \equiv V \quad(\bmod 4), t=2$
If $i=m-1$ then
$R \equiv 2 R \quad(\bmod p), S \equiv 2 S \quad(\bmod p), t=1$ else if $c=0$ then $U=\frac{U}{4}, S \equiv 4 S \quad(\bmod p)$ else if $d=0$ then $V=\frac{V}{4}, R \equiv 4 R \quad(\bmod p)$ else if $c=d$ then

If $U>V$ then $U=\frac{U-V}{4}$,
$R \equiv R-S \quad(\bmod p), S \equiv 4 S \quad(\bmod p)$ else $V=\frac{V-U}{4}$,
$S \equiv S-R \quad(\bmod p), R \equiv 4 R \quad(\bmod p)$
else if $c=2$ then
If $\frac{U}{2}>V$ then $U=\frac{\frac{U}{2}-V}{2}$
$R \equiv R-2 S \quad(\bmod p), S \equiv 4 S \quad(\bmod p)$
else $V=\frac{V-\frac{U}{2}}{2}, U=\frac{U}{2}$,
$S \equiv 2 S-R \quad(\bmod p), R \equiv 2 R \quad(\bmod p)$ else if $d=2$ then

If $U>\frac{V}{2}$ then $U=\frac{U-\frac{V}{2}}{2}, V=\frac{V}{2}$ $R \equiv 2 R-S \quad(\bmod p), S \equiv 2 S \quad(\bmod p)$ else $V=\frac{\frac{V}{2}-U}{2}$, $S \equiv S-2 R \quad(\bmod p), R \equiv 4 R \quad(\bmod p)$ else

If $U>V$ then $U=\frac{U-V}{2}$,
$R \equiv R-S \quad(\bmod p), S \equiv 2 S \quad(\bmod p), t=1$
else $V=\frac{V-U}{2}$
$S \equiv S-R^{2} \quad(\bmod p), R \equiv 2 R \quad(\bmod p), t=1$

If $i=m-1$ or $t=1$ then
If $\alpha_{i}=1$ then $R \equiv R \quad(\bmod p), S \equiv S \quad(\bmod p)$
else $R \equiv \frac{R}{2} \quad(\bmod p), S \equiv \frac{S}{2} \quad(\bmod p)$
else
If $\left(\alpha_{i+1}, \alpha_{i}\right)=(1,1)$ then
$R \equiv R \quad(\bmod p), S \equiv S \quad(\bmod p)$
else if $\left(\alpha_{i+1}, \alpha_{i}\right)=(1,0)$ or $(0,1)$ then
$R \equiv \frac{R}{2} \quad(\bmod p), S \equiv \frac{S}{2} \quad(\bmod p)$
else
$R \equiv \frac{R}{4} \quad(\bmod p), S \equiv \frac{S}{4} \quad(\bmod p) 13$
else $R \equiv \frac{R}{2^{t}} \quad(\bmod p), S \equiv \frac{S}{2^{t}} \quad(\bmod p)$

Hardware Architecture of DF-ECC Processor

DF-ECC processor

1. Galois field arithmetic unit (GFAU)
2. instant domain conversion $(\operatorname{RMD}(\mathrm{a}, 1)=\mathrm{A}, \operatorname{RMM}(\mathrm{A}, 1)=\mathrm{a})$
3. CPA countermeasure circuit

Fig. 2. Overall diagram for the DF-ECC processor.

Ring-oscillator based RNG

1. portable applications
2. resolve reset problem

Fig. 3. The domain flag is to randomly assign operating domain for GFAU.

Hardware Architecture of DF-ECC Processor

> Radix-2 GFAU

1. fully-pipelining to remove path (1)
2. multiplier is shared in gray color

Verification and Measurement

$>$ FPGA device

Fig. 7. (a) Environment of power measurement. (b) Current running through the DF-ECC processor recorded by measuring the voltage drop via a resistor in series with the board power pin and FPGA power pin.

Table 3. FPGA Implementation Results

Design	Area (Slices)	$\boldsymbol{f}_{\max }(\mathbf{M H z})$	Field Arithmetic
I	$7,573(32 \%)$	27.7	Radix-2 Montgomery
II	$8,158(34 \%)$	27.7	Radix-2 Randomize Montgomery
II	$9,828(41 \%)$	20.2	Radix-4 Montgomery
IV	$10,460(43 \%)$	20.2	Radix-2 Randomized Montgomery

Power Analysis

Fig. 8. Correlation coefficients of the target traces and power model over power traces obtained from the (L) Design-I (R) Design-III performing arithmetic in a fixed domain.

Fig. 9. Correlation coefficients of the target traces and power model over power traces obtained from the (L) Design-II (R) Design-IV performing arithmetic in a randomized domain.

Performance and Comparison

Table 4. Implementation Results Compared with Related Works

	CMOS Process	Length	Area (mm^{2})/ KGates	Finite Field	$\begin{gathered} f_{\max } \\ (\mathrm{MHz}) \end{gathered}$	Time(ms/ ECSM)	$\begin{gathered} \text { Energy } \\ (\mu \mathrm{J} / \mathrm{ECSM}) \end{gathered}$	AT Product
Ours (Radix-2)	90-nm	160	0.21/61.3	$G F\left(p_{160}\right)$	277	0.71	11.9	1
				$G F\left(2^{160}\right)$	277	0.61	9.6	1
Ours (Radix-4)	$90-\mathrm{nm}$	160	0.29/83.2	$G F\left(p_{160}\right)$	238	0.43	11.2	0.82
				$G F\left(2^{160}\right)$	238	0.39	8.97	0.87
TCAS-II'09 [5]	130-nm	160	1.44/169	$G F\left(p_{160}\right)$	121	0.61	42.6	1.63*
				$G F\left(2^{160}\right)$	146	0.37	30.5	1.16*
Ours (Radix-2)	$90-\mathrm{nm}$	521	0.58/168	$G F\left(p_{521}\right)$	250	8.08	452	1
				$G F\left(2^{409}\right)$	263	4.65	246	1
Ours (Radix-4)	90-nm	521	0.93/265	$G F\left(p_{521}\right)$	232	4.57	435	0.89
				$G F\left(2^{409}\right)$	238	2.77	238	0.94
ESSCIRC'10 [9]	90-nm	521	0.55/170	$G F\left(p_{521}\right)$	132	19.2	1,123	2.40
				$G F\left(2^{409}\right)$	166	8.2	480	1.78

* Technology scaled area-time product $=$ gates $\times($ time $\times f)$, where $f=90-\mathrm{nm} / 130-\mathrm{nm}$.

Performance and Comparison

Table 5. Overhead for CPA Resistance

	Ours (Radix-2)	Ours (Radix-4)	ESSCIRC' 10 [9]	JSSC ${ }^{\text {06 [[12] }}$	JSSC' 10 [13]
Design	521 DF-ECC	521 DF-ECC	521 DF-ECC	128 AES	128AES
Area	4.3\%	3.6\%	10\%	210\%	7.2\%
Time	0	0	$14.0 \%^{\text {a }}$	288\%	100\%
Energy	5.2\%	3.8\%	20.8\% b	270\%	33\%

Overhead $=\frac{\text { Result differences between protected and unprotected circuit }}{\text { Results of unprotected circuit }} \times 100 \%$
a. Estimated by cycle count \times clock period.
b. Estimated by operation time \times average power.

Conclusion

> An efficient CPA-resistant DF-ECC processor supporting arbitrary modulus is presented

- no need to modify ASIC or FPGA design flow
- applicable to IEEE P1363
- low overhead (< 5\%) for hardware speed, area, power

Q and A

Thanks for Your Attention!

References

[1] Koblitz, N.: Elliptic Curve Cryptosystems. Math. Comp., 2001
[2] Miller, V.: Uses of Elliptic Curves in Cryptography. CRYPTO’85, 1986
[3] McIvor, C. J. et al: Hardware Elliptic Curve Cryptographic Processor over GF(p). IEEE Trans. Circuits Syst. I, 2006
[4] Sakiyama, K. et al: Multicore Curve-Based Cryptoprocessor With Recon-figurable Modular Arithmetic Logic Units over GF(2n). IEEE Trans. Comput., 2007
[5] Lai, J.-Y., Huang, C.-T.: A Highly Efficient Cipher Processor for Dual-Field Elliptic Curve Cryptography. IEEE Trans. Circuits Syst. II, 2009
[6] Chen, J.-H. et al : A High-Performance Unified-Field Reconfigurable Cryptographic Processor. IEEE Trans. VLSI Syst., 2010
[7] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. CRYPTO’99, 1999
[8] Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Math. Comp., 1987
[9] Lee, J.-W. et al : A 521-bit Dual-Field Elliptic Curve Cryptographic Processor With Power Analysis Resistance. ESSCIRC'10, 2010
[10] Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis With a Leakage Model. CHES'04, 2004
[11] IEEE: Standard Specifications or Public-Key Cryptography. IEEE Std. 1363, 2000
[12] Hwang, D. et al: AES-Based Security Coprocessor IC in 0.18- $\mu \mathrm{m}$ CMOS With Resistance to Differential Power Analysis Side-Channel Attacks. IEEE J. Solid-State Circuits, 2006
[13] Tokunaga, C., Blaauw, D.: Securing Encryption Systems With a Switched Capacitor Current Equalizer. IEEE J. Solid-State Circuits, 2010 [14] Liu, P.-C. et al: A True Random-Based Differential Power Analysis Countermeasure Circuit for an AES Engine. IEEE Trans. Circuits Syst. II, 2012
[15] Coron, J.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. CHES'99, 1999
[16] Joye, M., Tymen, C.: Protections against Differential Analysis for Elliptic Curve Cryptography - An Algebraic Approach. CHES’01, 2001
[17] Montgomery, P.: Modular Multiplication Without Trial Division. Math. Comp., 1985
[18] Kaliski, B.: The Montgomery Inverse and Its Applications. IEEE Trans. Comput., 1995
[19] Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. ASIACRYPT'98, 1998
[20] Golic, J.D.: New Methods for Digital Generation and Postprocessing of Random Data. IEEE Trans. Comp., 2006
[21] Chen, Y.-L. et al: A Dual-Field Elliptic Curve Cryptographic Processor With a Radix-4 Unified Division Unit. ISCAS'11, 2011

References

[HWANG’06] D. Hwang, et al., "AES-Based Security Coprocessor IC in $0.18-\mu \mathrm{m}$ CMOS With Resistance to Differential Power Analysis Side-Channel Attacks," IEEE J. Solid-State Circuits, 2006
[SAEKI'09] M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh, "A design methodology for a DPA-resistant cryptographic LSI with RSL techniques," in Cryptographic Hardware and Embedded Systems (CHES'09), vol. 5747, 2009, pp. 189-204.
[CORON'99] J. Coron, "Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems," in Cryptographic Hardware and Embedded Systems (CHES'99), 1999
[ITOH'03] K. Itoh, T. Izu, and M. Takenaka, "A practical countermeasure against address-Bit differential power analysis," in Cryptographic Hardware and Embedded Systems (CHES’03), vol. 2779, 2003, pp. 382-396.
[JOYE'01] M. Joye and C. Tymen, "Protections against differential analysis for elliptic curve cryptography - an algebraic approach," in Cryptographic Hardware and Embedded Systems (CHES’01), vol. 2162, 2001, pp. 377-390.
[CORON'09] J.-S. Coron and I. Kizhvatov, "An efficient method for random delay generation in embedded software," in Cryptographic Hardware and Embedded Systems (CHES’09), vol. 5747, 2009, pp. 156-170.

