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Power-Analysis Attacks 
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Execution time depends on key value by direct implementation 

→ secrete information leakage through simple power-analysis (SPA) attack 

Ptotal = Pdyn + Pstat = f·CL·Vdd+Ileak·Vdd

Example of Power Traces for 160-bit ECC Chip with Different Private Key Values 

Side-Channel Information 

Hamming 

Weight 



 SPA attack can be counteracted by unified operations 

 Correlation power-analysis (CPA) attack 

– utilize statistical analysis to disclose private information of cryptographic devices 

– work on EC integrated encryption, single pass EC Diffie-Hellman or Menezes-

Qu-Vanstone key agreement  

 CPA attack on SPA-resistant ECC device 

– key-dependent EC scalar multiplication (ECSM) 
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Power-Analysis Attacks 
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Algorithm: Montgomery Ladder

Input: an integer  and a point 

Output: 
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Time complexity is O(2m) 



 Circuit level 

– wave dynamic differential logic [HWANG’06] 

– random switching logic [SAEKI’09] 

 Register addressing 

– random register renaming [ITOH’03] 

 Algorithm level 

– randomized EC point [CORON’99] 

– randomized scalar key [CORON’99] 

– randomized projective coordinates [CORON’99] 

– elliptic curve isomorphisms over 𝐺𝐹(𝑝) [JOYE’01] 

 Software implementation  

– random delay generation [CORON’09] 
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Previous Works 



Motivation 

 Provide a solution that is suitable and efficient for ECC 

hardware implementation 

– support dual-field operations for high security level 
• dual-field ECC (DF-ECC) function is approved in IEEE P1363 

– compatible to current public-key cryptography 
• use initial EC parameters 

– hardware speed 
• field inversion/division and multiplication dominate execution time 

– hardware complexity 
• arithmetic unit integration 
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Our Solution 

 Mask intermediate values by computing field 

arithmetic in a randomized domain 

– Montgomery domain 

• 𝐴 ≡ 𝑎 ∙ 2𝑚(𝑚𝑜𝑑 𝑝), 𝑎 is in integer domain and 𝑚 is field length 

 

– random domain (or random field automorphism) 

• 𝐴 ≡ 𝑎 ∙ 2𝜆(𝑚𝑜𝑑 𝑝), domain value 𝜆 equals to hamming weight of an 

𝑚-bit non-zero random value 𝛼 
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Table 1. Operations in Randomized Domain 

Operation Arithmetic 

randomized Montgomery multiplication (RMM) 𝑅𝑀𝑀(𝑋, 𝑌) ≡ 𝑥 ∙ 𝑦 ∙ 2𝜆(𝑚𝑜𝑑 𝑝) 

randomized Montgomery division (RMD) 𝑅𝑀𝐷(𝑋, 𝑌) ≡ 𝑥 ∙ 𝑦−1 ∙ 2𝜆(𝑚𝑜𝑑 𝑝) 

randomized addition (RA) 𝑅𝐴(𝑋, 𝑌) ≡ (𝑥 + 𝑦) ∙ 2𝜆(𝑚𝑜𝑑 𝑝) 

randomized subtraction (RS) 𝑅𝑆(𝑋, 𝑌) ≡ (𝑥 − 𝑦) ∙ 2𝜆(𝑚𝑜𝑑 𝑝) 



Our Solution 

 Random field automorphism for ECSM calculation 

– field automorphic function 𝜑 
𝜑: 𝑃 = 𝑒, 𝑓 → 𝑄 = (𝐸, 𝐹) 

• 𝑒, 𝑓, 𝐸 ≡ 𝑒 ∙ 2𝜆(𝑚𝑜𝑑 𝑝), 𝐹 ≡ 𝑓 ∙ 2𝜆(𝑚𝑜𝑑 𝑝) 

• 𝑒 ≠ 𝐸, 𝑓 ≠ 𝐹 i.i.f. 2𝜆 ≠ 1(𝑚𝑜𝑑 𝑝) with 0 <  𝜆 ≤ 𝑚 

– inverse field automorphic function 𝜑−1 
𝜑−1: KQ = G, H → 𝐾𝑃 = (𝑔, ℎ) 
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Proposed Randomized Montgomery Algorithm 

8 

 Radix-2 RMM 

– if 𝛼𝑖 = 1 

• decrease domain 

value by 1 in step 4 

– 𝑅 = 𝑅/2 

– if 𝛼𝑖 = 0 

• remain domain 

value in step 5 

– 𝑅 = 𝑅 

– after 𝑚 iterations 

• domain value is −𝜆 



Proposed Randomized Montgomery Algorithm 
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 Radix-2 RMD 

– if 𝛼𝑖 = 1 

• increase domain 

value by 1 in steps 4,  

7, 10, 13 

– 𝑈 = 𝑈/2  

– 𝑅 = 2𝑅 

– if 𝛼𝑖 = 0 

• remain domain 

value in steps 5, 8, 

11, 14 

 

– after 𝑚 iterations 

• domain value is 𝜆 

 



Extend Radix-2 to Radix-4 Approach 

 Based on extended Euclidean algorithm 
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c = U (mod 4), d = V (mod 4) 

1. U or V (mod 4) = 0 

2. U (mod 4) = V (mod 4) 

3. U/V (mod 4) is even and 

V/U (mod 4) is odd 
4. U and V (mod 4) is odd 

1

initial values:   ( , , , ) ( , ,0, )

final iteration: ( , , , ) (1,0, 2 (mod ),0)m

U V R S p Y X

U V R S XY p







Extend Radix-2 to Radix-4 Approach 
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 Modify iterative calculation in radix-4 RMM/RMD to 

ensure domain value decreases/increases by 2 to 0 

– if two-bit random value is (11) 

• decrease/increase domain value by 2 

– if two-bit random value is (10) or (01) 

• decrease/increase domain value by 1 

– if two-bit random value is (00) 

• remain domain value 

 



Proposed Randomized Montgomery Algorithm 
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 Radix-4 RMM 

– if 𝛼2𝑖+1, 𝛼2𝑖 = (11) 

• decrease domain value by 2 

in step 5 

– 𝑅 = 𝑅/4 

– if 𝛼2𝑖+1, 𝛼2𝑖 = (10) or (01) 

• decrease domain value by 1 

in step 6 

– 𝑅 = 𝑅/2 

– if 𝛼2𝑖+1, 𝛼2𝑖 = (00) 

• remain domain value in step 7 

– 𝑅 = 𝑅 

– after 𝑚/2 iterations 

• Domain value is −𝜆 

 



Proposed Randomized Montgomery Algorithm 
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 Radix-4 RMD 

– if 𝛼𝑖+1, 𝛼𝑖 = (11) 

• increase domain value by 2 in step 24 

– 𝑅 = 4𝑅 

– if 𝛼𝑖+1, 𝛼𝑖 = (10) or (01) 

• increase domain value by 1 in step 25 

– 𝑅 = 4𝑅/2 

– if 𝛼𝑖+1, 𝛼𝑖 = (00) 

• remain domain value in step 26 

– 𝑅 = 4𝑅/4 

– after 𝑚/2 iterations 

• domain value is 𝜆 

 

fixed 

randomized 
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Hardware Architecture of DF-ECC Processor 

Ring-oscillator based RNG 

1. portable applications 

2. resolve reset problem 

DF-ECC processor 

1. Galois field arithmetic unit (GFAU) 

2. instant domain conversion 

(RMD(a,1) = A, RMM(A, 1) = a) 

3. CPA countermeasure circuit 

Fig. 2. Overall diagram for the DF-ECC processor. 

Fig. 3. The domain flag is to randomly assign operating domain for GFAU. 



 Radix-2 GFAU 
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Hardware Architecture of DF-ECC Processor 

1. fully-pipelining to remove path (1) 

2. multiplier is shared in gray color 



Verification and Measurement 

 FPGA device 
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Fig. 7. (a) Environment of power measurement. (b) Current running through the DF-ECC processor 

recorded by measuring the voltage drop via a resistor in series with the board power pin and FPGA 

power pin. 

Design Area (Slices) fmax (MHz) Field Arithmetic 

I 7,573 (32%) 27.7 Radix-2 Montgomery 

II 8,158 (34%) 27.7 Radix-2 Randomize Montgomery 

II 9,828 (41%) 20.2 Radix-4 Montgomery 

IV 10,460 (43%) 20.2 Radix-2 Randomized Montgomery 

Table 3. FPGA Implementation Results 

(a) (b) 



Power Analysis 
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(a) (b) 
Fig. 8. Correlation coefficients of the target traces and power model over power traces 

obtained from the (L) Design-I (R) Design-III performing arithmetic in a fixed domain. 

Fig. 9. Correlation coefficients of the target traces and power model over power traces 

obtained from the (L) Design-II (R) Design-IV performing arithmetic in a randomized domain. 



Performance and Comparison 

CMOS 

Process 
Length 

Area (mm2)/ 

KGates 

Finite 

Field 

fmax 

(MHz) 

Time(ms/ 

ECSM) 

Energy 

(μJ/ECSM) 

AT 

Product 

Ours (Radix-2) 90-nm 160 0.21/61.3 
GF(p160) 277 0.71 11.9 1 

GF(2160) 277 0.61 9.6 1 

Ours (Radix-4) 90-nm 160 0.29/83.2 
GF(p160) 238 0.43 11.2 0.82 

GF(2160) 238 0.39 8.97 0.87 

TCAS-II’09 [5] 130-nm 160 1.44/169 
GF(p160) 121 0.61 42.6 1.63* 

GF(2160) 146 0.37 30.5 1.16* 

Ours (Radix-2) 90-nm 521 0.58/168 
GF(p521) 250 8.08 452 1 

GF(2409) 263 4.65 246 1 

Ours (Radix-4) 90-nm 521 0.93/265 
GF(p521) 232 4.57 435 0.89 

GF(2409) 238 2.77 238 0.94 

ESSCIRC’10 [9] 90-nm 521 0.55/170 
GF(p521) 132 19.2 1,123 2.40 

GF(2409) 166 8.2 480 1.78 
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* Technology scaled area-time product = gates × (time × f), where f = 90-nm/130-nm. 

Table 4. Implementation Results Compared with Related Works 



Performance and Comparison 

Ours (Radix-2) Ours (Radix-4) ESSCIRC’10 [9] JSSC’06 [12] JSSC’10 [13] 

Design 521 DF-ECC 521 DF-ECC 521 DF-ECC 128 AES 128AES 

Area 4.3% 3.6% 10% 210% 7.2% 

Time 0 0 14.0% a 288% 100% 

Energy 5.2% 3.8% 20.8% b 270% 33% 
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Table 5. Overhead for CPA Resistance 

Overhead = 
Result differences between protected and unprotected circuit

Results of unprotected circuit
× 100% 

a. Estimated by cycle count × clock period. 

b. Estimated by operation time × average power. 



Conclusion 

 An efficient CPA-resistant DF-ECC processor supporting 

arbitrary modulus is presented 
 

– no need to modify ASIC or FPGA design flow 

 

– applicable to IEEE P1363 

 

– low overhead (< 5%) for hardware speed, area, power 
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Q and A 

Thanks for Your Attention! 

21 



References 

[1] Koblitz, N.: Elliptic Curve Cryptosystems. Math. Comp., 2001 

[2] Miller, V.: Uses of Elliptic Curves in Cryptography. CRYPTO’85, 1986 

[3] McIvor, C. J. et al: Hardware Elliptic Curve Cryptographic Processor over GF(p). IEEE Trans. Circuits Syst. I, 2006 

[4] Sakiyama, K. et al: Multicore Curve-Based Cryptoprocessor With Recon-figurable Modular Arithmetic Logic Units over GF(2n). IEEE Trans. 

Comput., 2007 

[5] Lai, J.-Y., Huang, C.-T.: A Highly Efficient Cipher Processor for Dual-Field Elliptic Curve Cryptography. IEEE Trans. Circuits Syst. II, 2009 

[6] Chen, J.-H. et al : A High-Performance Unified-Field Reconfigurable Cryptographic Processor. IEEE Trans. VLSI Syst., 2010 

[7] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. CRYPTO’99, 1999 

[8] Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Math. Comp., 1987 

[9] Lee, J.-W. et al : A 521-bit Dual-Field Elliptic Curve Cryptographic Processor With Power Analysis Resistance. ESSCIRC’10, 2010 

[10] Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis With a Leakage Model. CHES’04, 2004 

[11] IEEE: Standard Specifications or Public-Key Cryptography. IEEE Std. 1363, 2000 

[12] Hwang, D. et al: AES-Based Security Coprocessor IC in 0.18-µm CMOS With Resistance to Differential Power Analysis Side-Channel 

Attacks. IEEE J. Solid-State Circuits, 2006 

[13] Tokunaga, C., Blaauw, D.: Securing Encryption Systems With a Switched Capacitor Current Equalizer. IEEE J. Solid-State Circuits, 2010 

[14] Liu, P.-C. et al: A True Random-Based Differential Power Analysis Countermeasure Circuit for an AES Engine. IEEE Trans. Circuits Syst. 

II, 2012 

[15] Coron, J.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. CHES’99, 1999 

[16] Joye, M., Tymen, C.: Protections against Differential Analysis for Elliptic Curve Cryptography – An Algebraic Approach. CHES’01, 2001 

[17] Montgomery, P.: Modular Multiplication Without Trial Division. Math. Comp., 1985 

[18] Kaliski, B.: The Montgomery Inverse and Its Applications. IEEE Trans. Comput., 1995 

[19] Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. ASIACRYPT’98, 1998 

[20] Golic, J.D.: New Methods for Digital Generation and Postprocessing of Random Data. IEEE Trans. Comp., 2006 

[21] Chen, Y.-L. et al: A Dual-Field Elliptic Curve Cryptographic Processor With a Radix-4 Unified Division Unit. ISCAS’11, 2011 

22 



References 

[HWANG’06] D. Hwang, et al., “AES-Based Security Coprocessor IC in 0.18-µm CMOS With Resistance to Differential 

Power Analysis Side-Channel Attacks,” IEEE J. Solid-State Circuits, 2006 

[SAEKI’09] M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh, “A design methodology for a DPA-resistant cryptographic LSI 

with RSL techniques,” in Cryptographic Hardware and Embedded Systems (CHES’09), vol. 5747, 2009, pp. 189–204. 

[CORON’99] J. Coron, “Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems,” in Cryptographic 

Hardware and Embedded Systems (CHES’99), 1999 

[ITOH’03] K. Itoh, T. Izu, and M. Takenaka, “A practical countermeasure against address-Bit differential power analysis,” in 

Cryptographic Hardware and Embedded Systems (CHES’03), vol. 2779, 2003, pp. 382–396. 

[JOYE’01] M. Joye and C. Tymen, “Protections against differential analysis for elliptic curve cryptography – an algebraic 

approach,” in Cryptographic Hardware and Embedded Systems (CHES’01), vol. 2162, 2001, pp. 377–390. 

[CORON’09] J.-S. Coron and I. Kizhvatov, “An efficient method for random delay generation in embedded software,” in 

Cryptographic Hardware and Embedded Systems (CHES’09), vol. 5747, 2009, pp. 156–170. 

23 


