

An Efficient Countermeasure against Correlation Power-Analysis Attacks with Randomized Montgomery Operations for DF-ECC Processor

Jen-Wei Lee, Szu-Chi Chung, Hsie-Chia Chang, and Chen-Yi Lee

Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University (NCTU), Hsinchu, Taiwan Email: jenweilee@gmail.com

Power-Analysis Attacks

Execution time depends on key value by direct implementation

 \rightarrow secrete information leakage through simple power-analysis (SPA) attack

Power-Analysis Attacks

SPA attack can be counteracted by unified operations

Correlation power-analysis (CPA) attack

- utilize statistical analysis to disclose private information of cryptographic devices
- work on EC integrated encryption, single pass EC Diffie-Hellman or Menezes-Qu-Vanstone key agreement P = 7P

> CPA attack on SPA-resistant ECC device

- key-dependent EC scalar multiplication (ECSM

Algorithm: Montgomery Ladder Input: an integer *K* and a point *P*

Output: KP

1.
$$P_1 \leftarrow P, P_2 \leftarrow 2P;$$

2. For i from m - 2 down to 0 do

If $K_i = 1$ then $P_1 \leftarrow ECPA(P_1, P_2), P_2 \leftarrow ECPD(P_2)$ else

 $P_2 \leftarrow ECPA(P_2, P_1), P_1 \leftarrow ECPD(P_1)$

End

3. Return P_1

C device
$$K_{m-3}=1$$
 $P_1=71$...
(ECSM)
 $K_{m-2}=1$ $P_1=3P$ $P_2=4P$ $P_1=6P$...
 $P_1=P$ $P_2=2P$ $K_{m-3}=0$ $P_2=7P$...
 $K_{m-2}=0$ $K_{m-3}=1$ $P_1=5P$...
 $P_1=2P$ $P_2=3P$ $P_2=6P$...
 $P_2=3P$ $K_{m-3}=0$ $P_1=4P$...
 $P_2=5P$...

Time complexity is O(2m)

Previous Works

Circuit level

- wave dynamic differential logic [HWANG'06]
- random switching logic [SAEKI'09]

Register addressing

- random register renaming [ITOH'03]

Algorithm level

- randomized EC point [CORON'99]
- randomized scalar key [CORON'99]
- randomized projective coordinates [CORON'99]
- elliptic curve isomorphisms over GF(p) [JOYE'01]

Software implementation

- random delay generation [CORON'09]

Motivation

Provide a solution that is suitable and efficient for ECC hardware implementation

- support dual-field operations for high security level
 - dual-field ECC (DF-ECC) function is approved in IEEE P1363
- compatible to current public-key cryptography
 - use initial EC parameters
- hardware speed
 - field inversion/division and multiplication dominate execution time
- hardware complexity
 - arithmetic unit integration

Our Solution

Mask intermediate values by computing field arithmetic in a randomized domain

- Montgomery domain
 - $A \equiv a \cdot 2^m \pmod{p}$, *a* is in integer domain and *m* is field length
- random domain (or random field automorphism)
 - $A \equiv a \cdot 2^{\lambda} (mod \ p)$, domain value λ equals to hamming weight of an *m*-bit non-zero random value α

Table 1. Operations in Randomized Domain

Operation	Arithmetic
randomized Montgomery multiplication (RMM)	$RMM(X,Y) \equiv x \cdot y \cdot 2^{\lambda} (mod \ p)$
randomized Montgomery division (RMD)	$RMD(X,Y) \equiv x \cdot y^{-1} \cdot 2^{\lambda} (mod \ p)$
randomized addition (RA)	$RA(X,Y) \equiv (x+y) \cdot 2^{\lambda} (mod \ p)$
randomized subtraction (RS)	$RS(X,Y) \equiv (x-y) \cdot 2^{\lambda} (mod \ p)$

Our Solution

Random field automorphism for ECSM calculation

Proposed Randomized Montgomery Algorithm

> Radix-2 RMM

- if $\alpha_i = 1$ • decrease domain value by 1 in step 4 -R = R/2- if $\alpha_i = 0$ • remain domain value in step 5

-R=R

- after *m* iterations
 - domain value is −^λ

Algorithm 2 Radix-2 randomized Montgomery multiplicationInput: X, Y, p, and α Output: R = RMM(X, Y)1. Let V = X, R = 0, S = Y2. For i from 0 to m - 1 do3. $R \equiv R + V_0 \cdot S \pmod{p}, V = V/2$ 4. If $\alpha_i = 1$ then $R \equiv R/2 \pmod{p}$ 5. else $S \equiv 2S \pmod{p}$ 6. Return R

Proposed Randomized Montgomery Algorithm

Radix-2 RMD

- if $\alpha_i = 1$ increase domain value by 1 in steps 4, 7, 10, 13 - U = U/2-R = 2R- if $\alpha_i = 0$ remain domain value in steps 5, 8, 11, 14

- after *m* iterations
 - domain value is *λ*

Algorithm 4 Radix-2 randomized Montgomery division **Input:** X, Y, p, and α **Output:** R = RMD(X, Y)1. Let U = p, V = Y, R = 0, S = X2. While (V > 0) do If U is even then U = U/23. 4. If $\alpha_i = 1$ then $S \equiv 2S \pmod{p}$ else $R \equiv R/2 \pmod{p}$ 5.else if V is even then V = V/26. 7. If $\alpha_i \equiv 1$ then $R \equiv 2R \pmod{p}$ else $S \equiv S/2 \pmod{p}$ 8. 9. else if U > V then U = (U - V)/2If $\alpha_i = 1$ then $R \equiv R - S \pmod{p}$, $S \equiv 2S \pmod{p}$ 10. else $R \equiv (R - S)/2 \pmod{p}$ 11. 12. else V = (V - U)/2If $\alpha_i \equiv 1$ then $S \equiv S - R \pmod{p}$, $R \equiv 2R \pmod{p}$ 13. else $S \equiv (S - R)/2 \pmod{p}$ 14.15. If i < m then i = i + 116. Return R

Extend Radix-2 to Radix-4 Approach

Based on extended Euclidean algorithm

 $\begin{aligned} X^{-1} \cdot Y \cdot R &\equiv U \cdot 2^{i} \pmod{p} & \text{initial values:} \quad (U, V, R, S) \Rightarrow (p, Y, 0, X) \\ X^{-1} \cdot Y \cdot S &\equiv V \cdot 2^{i} \pmod{p} & \text{final iteration:} \quad (U, V, R, S) \Rightarrow (1, 0, XY^{-1}2^{m} \pmod{p}, 0) \end{aligned}$

	С	d	Properties		
1. U or $V \pmod{4} = 0$	0	0, 1, 2, or 3	$gcd(U,V) = gcd(\frac{U}{4},V)$		
2. $U \pmod{4} = V \pmod{4}$	1, 2, or 3	0	$gcd(U, V) = gcd(U, \frac{V}{4})$		
2 U/U/(a = 1.4) := a = a = 1.4	c	= d	$gcd(U,V) = gcd(\frac{U-V}{4},V) = gcd(U,\frac{V-U}{4})$		
3. $U/V \pmod{4}$ is even and $V/U \pmod{4}$ is odd 4. U and V (mod 4) is odd	2	1 or 3	$gcd(U,V) = gcd(\frac{\frac{U}{2} - V}{2}, V) = gcd(\frac{U}{2}, \frac{V - \frac{U}{2}}{2})$		
	1 or 3	2	$gcd(U,V) = gcd(\frac{U-\frac{V}{2}}{2},\frac{V}{2}) = gcd(U,\frac{\frac{V}{2}-U}{2})$		
	other		$gcd(U,V) = gcd(\frac{U-V}{2},V) = gcd(U,\frac{V-U}{2})$		

 $c = U \pmod{4}, d = V \pmod{4}$

Extend Radix-2 to Radix-4 Approach

- Modify iterative calculation in radix-4 RMM/RMD to ensure domain value decreases/increases by 2 to 0
 - if two-bit random value is (11)
 - decrease/increase domain value by 2
 - if two-bit random value is (10) or (01)
 - decrease/increase domain value by 1
 - if two-bit random value is (00)
 - remain domain value

Proposed Randomized Montgomery Algorithm

> Radix-4 RMM

- if $(\alpha_{2i+1}, \alpha_{2i}) = (11)$
 - decrease domain value by 2 in step 5

-R = R/4

- if
$$(\alpha_{2i+1}, \alpha_{2i}) = (10)$$
 or (01)

decrease domain value by 1

in step 6

$$-R = R/2$$

- if $(\alpha_{2i+1}, \alpha_{2i}) = (00)$

• remain domain value in step 7

-R = R

- after m/2 iterations
 - Domain value is −^λ

Algorithm 3. Radix-4 randomized Montgomery multiplication **Input:** X, Y, p, and α **Output:** R = RMM(X, Y)1. Let V = X, R = 0, S = Y2. For *i* from 0 to $\left\lceil \frac{m}{2} \right\rceil - 1$ do If $m \pmod{2} \equiv 1$ and $i = \left\lceil \frac{m}{2} \right\rceil - 1$ then 3. $R \equiv R + V_0 \cdot S \pmod{p}, V = \frac{V}{2}$ else 4. $R \equiv R + V_0 \cdot S + V_1 \cdot 2S \pmod{p}, \ V = \frac{V}{4}$ If $(\alpha_{2i+1}, \alpha_{2i}) = (1, 1)$ then 5. $R \equiv \frac{R}{4} \pmod{p}$ 6. else if $(\alpha_{2i+1}, \alpha_{2i}) = (1, 0)$ or (0, 1) then $R \equiv \frac{R}{2} \pmod{p}, S \equiv 2S \pmod{p}$ else 7. $S \equiv 4S \pmod{p}$ 8. Return R

Proposed Randomized Montgomery Algorithm

fixed

28.

29. Return R

randomized

Radix-4 RMD

- if $(\alpha_{i+1}, \alpha_i) = (11)$
 - increase domain value by 2 in step 24

-R = 4R

- if
$$(\alpha_{i+1}, \alpha_i) = (10)$$
 or (01)

increase domain value by 1 in step 25

-R = 4R/2

$$- \text{ if } (\alpha_{i+1}, \alpha_i) = (00)$$

remain domain value in step 26

-R = 4R/4

- after m/2 iterations
 - domain value is λ

Algorithm 5. Radix-4 randomized Montgomery division **Input:** X, Y, p, and α Output: R = RMD(X, Y)1. Let U = p, V = Y, R = 0, S = X, i = 02. While (V > 0) do $c \equiv U \pmod{4}, d \equiv V \pmod{4}, t = 2$ 3. 4. If i = m - 1 then $R \equiv 2R \pmod{p}, S \equiv 2S \pmod{p}, t = 1$ else if c = 0 then $U = \frac{U}{4}, S \equiv 4S \pmod{p}$ 5.else if d = 0 then $V = \frac{V}{4}, R \equiv 4R \pmod{p}$ 6. else if c = d then 7. If U > V then $U = \frac{U-V}{4}$ 8. $R \equiv R - S \pmod{p}, S \equiv 4S \pmod{p}$ else $V = \frac{V - U}{4},$ 9. $S \equiv S - R \pmod{p}, R \equiv 4R \pmod{p}$ else if c = 2 then 10.If $\frac{U}{2} > V$ then $U = \frac{\frac{U}{2} - V}{2}$, $R \equiv R - 2S \pmod{p}, S \equiv 4S \pmod{p}$ 11. else $V = \frac{V - \frac{U}{2}}{2}, U = \frac{U}{2}$, 12. $S \equiv 2S - \tilde{R} \pmod{\tilde{p}}, R \equiv 2R \pmod{p}$ else if d = 2 then 13.If $U > \frac{V}{2}$ then $U = \frac{U - \frac{V}{2}}{2}, V = \frac{V}{2}$, $R \equiv 2R - S \pmod{p}, S \equiv 2S \pmod{p}$ 14. else $V = \frac{V}{2} - U$ 15. $S \equiv S - 2\tilde{R} \pmod{p}, R \equiv 4R \pmod{p}$ 16.elseIf U > V then $U = \frac{U-V}{2}$, 17. $R \equiv R - S \pmod{p}, S \equiv 2S \pmod{p}, t = 1$ else $V = \frac{V-U}{2}$ 18. $S \equiv S - R$ (mod p), $R \equiv 2R$ (mod p), t = 119.If i < m then 20.If i = m - 1 or t = 1 then If $\alpha_i \equiv 1$ then $R \equiv R \pmod{p}$, $S \equiv S \pmod{p}$ 21.22.else $R \equiv \frac{R}{2} \pmod{p}, S \equiv \frac{S}{2} \pmod{p}$ 23.else 24.If $(\alpha_{i+1}, \alpha_i) = (1, 1)$ then $R \equiv R \pmod{p}, S \equiv S \pmod{p}$ 25.else if $(\alpha_{i+1}, \alpha_i) = (1, 0)$ or (0, 1) then $R \equiv \frac{R}{2} \pmod{p}, S \equiv \frac{S}{2} \pmod{p}$ 26.

else $R \equiv \frac{R}{4} \pmod{p}, S \equiv \frac{S}{4} \pmod{p} \stackrel{?}{1} \stackrel{?}{2}$ 27.i = i + telse $R \equiv \frac{R}{2^t} \pmod{p}, S \equiv \frac{S}{2^t} \pmod{p}$

Hardware Architecture of DF-ECC Processor

Fig. 2. Overall diagram for the DF-ECC processor.

Ring-oscillator based RNG

- 1. portable applications
- 2. resolve reset problem

Fig. 3. The domain flag is to randomly assign operating domain for GFAU.

DF-ECC processor

- 1. Galois field arithmetic unit (GFAU)
- 2. instant domain conversion
 - (RMD(a,1) = A, RMM(A, 1) = a)
- 3. CPA countermeasure circuit

Hardware Architecture of DF-ECC Processor

Radix-2 GFAU

fully-pipelining to remove path (1)
 multiplier is shared in gray color

Verification and Measurement

FPGA device

Fig. 7. (a) Environment of power measurement. (b) Current running through the DF-ECC processor recorded by measuring the voltage drop via a resistor in series with the board power pin and FPGA power pin.

Design	Area (Slices)	f_{\max} (MHz)	Field Arithmetic
Ι	7,573 (32%)	27.7	Radix-2 Montgomery
II	8,158 (34%)	27.7	Radix-2 Randomize Montgomery
II	9,828 (41%)	20.2	Radix-4 Montgomery
IV	10,460 (43%)	20.2	Radix-2 Randomized Montgomery

Table 3. FPGA Implementation Results

Power Analysis

Fig. 9. Correlation coefficients of the target traces and power model over power traces obtained from the (L) Design-II (R) Design-IV performing arithmetic in a randomized domain.

Performance and Comparison

Table 4. Implementation Results Compared with Related Works								
	CMOS Process	Length	Area (mm²)/ KGates	Finite Field	f _{max} (MHz)	Time(ms/ ECSM)	Energy (µJ/ECSM)	AT Product
Ours (Radix-2)	90-nm	160	0.21/61.3	$GF(p_{160})$	277	0.71	11.9	1
				$GF(2^{160})$	277	0.61	9.6	1
Ours (Radix-4)	90-nm	1.00	0.29/83.2	$GF(p_{160})$	238	0.43	11.2	0.82
		160		$GF(2^{160})$	238	0.39	8.97	0.87
TCAS-II'09 [5]	130-nm	160	1.44/169	$GF(p_{160})$	121	0.61	42.6	1.63*
				$GF(2^{160})$	146	0.37	30.5	1.16*
Ours (Radix-2)	90-nm 521	501	0.50/1.60	$GF(p_{521})$	250	8.08	452	1
		0.58/168	$GF(2^{409})$	263	4.65	246	1	
Ours (Radix-4)	90-nm 521	501	0.93/265	$GF(p_{521})$	232	4.57	435	0.89
		521		$GF(2^{409})$	238	2.77	238	0.94
ESSCIRC'10 [9]	90-nm 521	501	0.55/170	$GF(p_{521})$	132	19.2	1,123	2.40
		521		$GF(2^{409})$	166	8.2	480	1.78

* Technology scaled area-time product = gates \times (time $\times f$), where f = 90-nm/130-nm.

Performance and Comparison

	Ours (Radix-2)	Ours (Radix-4)	ESSCIRC'10 [9]	JSSC'06 [12]	JSSC'10 [13]		
Design	521 DF-ECC	521 DF-ECC	521 DF-ECC	128 AES	128AES		
Area	4.3%	3.6%	10%	210%	7.2%		
Time	0	0	14.0% a	288%	100%		
Energy	5.2%	3.8%	20.8% ^b	270%	33%		
$Overhead = \frac{\text{Result differences between protected and unprotected circuit}}{\text{Results of unprotected circuit}} \times 100\%$							

Table 5. Overhead for CPA Resistance

a. Estimated by cycle count \times clock period.

b. Estimated by operation time \times average power.

Conclusion

- An efficient CPA-resistant DF-ECC processor supporting arbitrary modulus is presented
 - no need to modify ASIC or FPGA design flow
 - applicable to IEEE P1363
 - low overhead (< 5%) for hardware speed, area, power

Thanks for Your Attention!

References

- [1] Koblitz, N.: Elliptic Curve Cryptosystems. Math. Comp., 2001
- [2] Miller, V.: Uses of Elliptic Curves in Cryptography. CRYPTO'85, 1986
- [3] McIvor, C. J. et al: Hardware Elliptic Curve Cryptographic Processor over GF(p). IEEE Trans. Circuits Syst. I, 2006
- [4] Sakiyama, K. et al: Multicore Curve-Based Cryptoprocessor With Recon-figurable Modular Arithmetic Logic Units over GF(2ⁿ). IEEE Trans. Comput., 2007
- [5] Lai, J.-Y., Huang, C.-T.: A Highly Efficient Cipher Processor for Dual-Field Elliptic Curve Cryptography. IEEE Trans. Circuits Syst. II, 2009
- [6] Chen, J.-H. et al : A High-Performance Unified-Field Reconfigurable Cryptographic Processor. IEEE Trans. VLSI Syst., 2010
- [7] Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. CRYPTO'99, 1999
- [8] Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization. Math. Comp., 1987
- [9] Lee, J.-W. et al : A 521-bit Dual-Field Elliptic Curve Cryptographic Processor With Power Analysis Resistance. ESSCIRC'10, 2010
- [10] Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis With a Leakage Model. CHES'04, 2004
- [11] IEEE: Standard Specifications or Public-Key Cryptography. IEEE Std. 1363, 2000
- [12] Hwang, D. et al: AES-Based Security Coprocessor IC in 0.18-µm CMOS With Resistance to Differential Power Analysis Side-Channel Attacks. IEEE J. Solid-State Circuits, 2006
- [13] Tokunaga, C., Blaauw, D.: Securing Encryption Systems With a Switched Capacitor Current Equalizer. IEEE J. Solid-State Circuits, 2010[14] Liu, P.-C. et al: A True Random-Based Differential Power Analysis Countermeasure Circuit for an AES Engine. IEEE Trans. Circuits Syst. II, 2012
- [15] Coron, J.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. CHES'99, 1999
- [16] Joye, M., Tymen, C.: Protections against Differential Analysis for Elliptic Curve Cryptography An Algebraic Approach. CHES'01, 2001
- [17] Montgomery, P.: Modular Multiplication Without Trial Division. Math. Comp., 1985
- [18] Kaliski, B.: The Montgomery Inverse and Its Applications. IEEE Trans. Comput., 1995
- [19] Cohen, H., Miyaji, A., Ono, T.: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates. ASIACRYPT'98, 1998
- [20] Golic, J.D.: New Methods for Digital Generation and Postprocessing of Random Data. IEEE Trans. Comp., 2006
- [21] Chen, Y.-L. et al: A Dual-Field Elliptic Curve Cryptographic Processor With a Radix-4 Unified Division Unit. ISCAS'11, 2011

References

[HWANG'06] D. Hwang, et al., "AES-Based Security Coprocessor IC in 0.18-µm CMOS With Resistance to Differential Power Analysis Side-Channel Attacks," IEEE J. Solid-State Circuits, 2006

[SAEKI'09] M. Saeki, D. Suzuki, K. Shimizu, and A. Satoh, "A design methodology for a DPA-resistant cryptographic LSI with RSL techniques," in Cryptographic Hardware and Embedded Systems (CHES'09), vol. 5747, 2009, pp. 189–204.

[CORON'99] J. Coron, "Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems," in Cryptographic Hardware and Embedded Systems (CHES'99), 1999

[ITOH'03] K. Itoh, T. Izu, and M. Takenaka, "A practical countermeasure against address-Bit differential power analysis," in Cryptographic Hardware and Embedded Systems (CHES'03), vol. 2779, 2003, pp. 382–396.

[JOYE'01] M. Joye and C. Tymen, "Protections against differential analysis for elliptic curve cryptography – an algebraic approach," in Cryptographic Hardware and Embedded Systems (CHES'01), vol. 2162, 2001, pp. 377–390.

[CORON'09] J.-S. Coron and I. Kizhvatov, "An efficient method for random delay generation in embedded software," in Cryptographic Hardware and Embedded Systems (CHES'09), vol. 5747, 2009, pp. 156–170.