
In How Many Ways Can You Write Rijndael?

Elad Barkan and Eli Biham

Computer Science Department
Technion – Israel Institute of Technology

Haifa 32000, Israel
Email: {barkan,biham}@cs.technion.ac.il

WWW: http://www.cs.technion.ac.il/∼biham/
WWW: http://tx.technion.ac.il/∼barkan/

Abstract. In this paper we ask the question what happens if we re-
place all the constants in Rijndael, including the replacement of the ir-
reducible polynomial, the coefficients of the MixColumn operation, the
affine transformation in the S box, etc. We show that such replacements
can create new dual ciphers, which are equivalent to the original in all
aspects. We present several such dual ciphers of Rijndael, such as the
square of Rijndael, and dual ciphers with the irreducible polynomial re-
placed by primitive polynomials. We also describe another family of dual
ciphers consisting of the logarithms of Rijndael. We then discuss self-dual
ciphers, and extend our results to other ciphers.

1 Introduction

Recently, the cipher Rijndael [8] was selected as the Advanced Encryption Stan-
dard (AES) [17]. This cipher operates over the algebraic Galois field GF (28). The
motivation for this is computational efficiency, as GF (28) elements can be rep-
resented by bytes, which can be very efficiently processed by modern computers,
unlike bit-level operations that are usually more expensive in computer power.
The drawback is that the algebraic structure inherited by the GF (28) operations
may be susceptible to algebraic relations, such as the relations in [9,19]. Alge-
braic structures may be used to develop cryptographic attacks that exploit the
algebraic weakness of the cipher. An example for such attacks are interpolation
attacks [11]. In attempt to avoid some of these difficulties, other mechanisms are
introduced to these ciphers, such as bit level affine transformations.

In this paper we ask the question what happens if we replace all the constants
in Rijndael, including the replacement of the irreducible polynomial, the coeffi-
cients of the MixColumn operation, the affine transformation in the S box, etc.
We show that such replacements can create new dual ciphers, which are equiv-

alent to the original in all aspects. Although their intermediate values during



160 E. Barkan and E. Biham

encryption are different than Rijndael’s, we can show that they are equivalent to
Rijndael. Examples of such ciphers include ciphers with a primitive polynomial
(replacing the irreducible polynomial of Rijndael), the cipher Square of Rijndael

that encrypts the square of the plaintext under the square of the key to the
square of the ciphertext, and a cipher with a triangular affine matrix in the S
box.

Definition 1 Two ciphers E and E ′ are called Dual Ciphers, if they are iso-
morphic, i.e., if there exist invertible transformations f(·), g(·) and h(·) such
that

∀P,K f(EK(P )) = E′g(K)(h(P )).

Trivial dual ciphers are very easy to find for all ciphers. For example, every
cipher is dual to itself with the identity transformations. Also, for any cipher, the
addition of non-cryptographic invertible initial and final transformations creates
a trivial dual cipher. We are not interested in these kinds of dual ciphers. The
interesting question is whether there exists non-trivial dual ciphers of widely
used ciphers.

An extension of dual ciphers, are semi-dual ciphers:

Definition 2 A cipher E′ is called a semi-dual cipher of E, if there exist trans-
formations f(·), g(·) and h(·) such that

∀P,K f(EK(P )) = E′g(K)(h(P )).

where f ,g and h are not necessarily invertible (and even not necessarily length-
preserving).

Semi-dual ciphers potentially reduce the plaintext, the ciphertext, and the
key spaces, and thus may allow to develop efficient attacks on their original
cipher.

In this context we would like to mention that interpolation attacks [11] exploit
the low order of interpolation polynomial of the cipher. However, they do not
exploit other algebraic properties of the interpolation polynomial, such as these
used in this paper.

Definition 3 In this paper we consider ciphers whose all operations are of the
following types:

– Operations in GF (28):
1. Addition (i.e., XOR: f(x, y) = x⊕ y).
2. XOR with a constant (e.g., f(x) = x⊕ 3Fx).
3. Multiplication (f(x, y) = x · y).
4. Multiply by a constant (e.g., f(x) = 03x · x).



In How Many Ways Can You Write Rijndael? 161

5. Raise to any power (i.e., f(x) = xc, for any integer c). This includes the
inverse of x: x−1.

6. Any replacement of the order of elements (e.g., taking a vector containing
the elements [a, b, c, d], and changing the order to [d, c, a, b]).

– Non-GF (28) operations:
7. Linear transformations L(x) = Ax, for any boolean matrix A.
8. Any unary operation over elements in GF (28). (i.e., a look-up table,

S(x) = LookUpTable[x] or F (x) : {0, 1}8 −→ {0, 1}8).

We call these operations EGF (28) operations.

Please note that this notation implies that in item 7, the variable x, which
is an element in GF (28), is converted to a vector of 8 bits (in GF (2)8) before
being multiplied by the matrix A. The result is converted back to be an element
of GF (28). A common representation of the vector is as the vector of coefficients
of the polynomial x. It should be noted that since XOR with a constant is also
allowed in item 2, any affine transformation is included in the operations we
consider (i.e., F (x) = Ax⊕ b).

An example of such a cipher is Rijndael (AES) [8]. Many other ciphers are also
built from these operations. Some examples of them are: Shark [6], Square [7],
Scream [10], Crypton [13], E2 [16] (without the initial and final permutations),
Anubis [2], Khazad [3], and Camellia [1] (with different key scheduling and dif-
ferent FL). Our results can also be extended to Safer++ [14].

In this paper we also deal with the special case of self-duality. That is the
case where a cipher is a dual of itself. We study this case and show that such
ciphers can be attacked faster than exhaustive search. It is interesting to mention
that RSA [18] is an example of a self-dual public key cipher. Let e and n be the
RSA public key, and let c = pe (mod n) where p is the plaintext and c is the
ciphertext. Then it follows that RSA is a dual of itself: c2 = (p2)e (mod n).

We also discuss the family of Log Dual Ciphers. In a log dual cipher, the log-
arithm of the plaintext is encrypted by the logarithm of the key to the logarithm
of the ciphertext. We show that Rijndael has a family of log dual ciphers.

We indicate a variety of possible applications for dual ciphers, ranging from
gaining insight for differential [4] and linear [15] cryptanalysis, to speeding up
encryption, and to protect against power analysis [12] and fault analysis [5].

This paper is organized as follows: In section 2 we give a short description of
Rijndael. Section 3 shows how to define square dual ciphers. Section 4 deals with
changing the irreducible polynomial. Section 5 shows how to define logarithmic
dual ciphers. In section 6 we discuss the special case of self-duality and show
how to mount an attack on self-dual ciphers. Section 7 deals with application to
other ciphers. Section 8 deals with other applications of dual ciphers. The paper
is summarized in Section 9.



162 E. Barkan and E. Biham

2 Description of Rijndael

In this section we give a short description of Rijndael. For a full description of
Rijndael the reader may consult [8,17]. Rijndael is a block cipher with 128-bit
blocks, and three key sizes of 128, 192 and 256 bits. The 128-bit blocks are
viewed as either 16 bytes or as four 32-bit words. The bytes are organized in a
square form:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

where bi notes the i’th byte of the block.

Each column in this representation can be viewed as a 4-byte word. Rijn-
dael has operations that work on columns, operations that work on rows, and
operations that work on each byte separately.

The plaintexts are encrypted through successive operation of a round function
10 times (or 12 or 14 times for 192-bit and 256-bit keys, respectively).

A round is composed of 4 consecutive operations:

1. ByteSub: An S box is applied to each byte of the data (16 times in parallel).
2. ShiftRow: Changing the order of bytes in the data.
3. MixColumn: Every 4 consecutive bytes (column) are mixed by a linear op-
eration.

4. AddRoundKey: The data is XORed with a 128-bit subkey.

The S box of Rijndael is taking the multiplicative inverse of the input in
GF (28) (modulo the irreducible polynomial of Rijndael x8 + x4 + x3 + x + 1,
which is denoted in binary notation by 11Bx; for the purpose of inversion the
inverse of 00x is defined to be 00x), the output of which is transformed by the
affine transformation:

























y0

y1

y2

y3

y4

y5

y6

y7

























=

























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

















































x0

x1

x2

x3

x4

x5

x6

x7

























+

























1
1
0
0
0
1
1
0



























In How Many Ways Can You Write Rijndael? 163

where the xi’s and the yi’s are coefficients of x and y (i.e., the bits of the bytes),
and x0 and y0 are the least significant bits.

The ShiftRow operation is defined as changing the order of bytes in the data.
When viewing the data in its square form, ShiftRow is:

– Leaving the first first row unchanged.

– Shifting the second row by one byte to the left (cyclically).

– Shifting the third row by two bytes to the left (cyclically).

– Shifting the fourth row by three bytes to the left (cyclically).

Taking the square form as the input of the ShiftRow operation, the ShiftRow
operation has the following effect:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

−−−−−−→
ShiftRow

b0 b4 b8 b12

b5 b9 b13 b1

b10 b14 b2 b6

b15 b3 b7 b11

The MixColumn operation mixes every 4 consecutive bytes (every column)
of the data. Therefore, there are 4 mix operations in each round. Let bi, bi+1,
bi+2, bi+3 be consecutive bytes of a column. The new state is defined by

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

−−−−−−−−→
MixColumn

b′0 b′4 b′8 b′12
b′1 b′5 b′9 b′13
b′2 b′6 b′10 b′14
b′3 b′7 b′11 b′15

where i ∈ {0, 4, 8, 12}, and all the operations are in GF (28):









b′i
b′i+1

b′i+2

b′i+3









=









02x 03x 01x 01x
01x 02x 03x 01x
01x 01x 02x 03x
03x 01x 01x 02x

















bi
bi+1

bi+2

bi+3









This operation is actually a multiplication of the column by the polynomial
c(x) = 03xx

3 + 01xx
2 + 01xx+ 02x in GF (28)4 modulo the polynomial x4 + 1.

The AddRoundKey simply XORs the 128-bit subkey to the data. The subkey
is generated by the key expansion.

The key expansion of Rijndael generates the subkeys from the key using a
blend of the same operations used in the rest of Rijndael, and using the round
constants Rcon[i] = (02x)

i−1 (i starts at 1).



164 E. Barkan and E. Biham

The round-function of the first and the last rounds are slightly different than
in other rounds: In the first round there is an additional AddRoundKey opera-
tion before the round starts, and in the last round the MixColumn operation is
eliminated.

When the key size is 128 bits the round-function is repeated 10 times. The
number of rounds is higher when longer keys are used: there are 12 rounds when
the key size is 192 bits, and 14 rounds when the key size is 256 bits.

3 Square Dual Ciphers

Given a cipher E that uses only operations of EGF (28), we define the cipher E2

by modifying the constants of E. All the operations that do not involve constants
remain unchanged. There are only four operations that involve constants:

1. f(x) = c · x.
2. f(x) = c⊕ x.
3. L(x) = Ax, where A is a constant matrix.
4. S(x) = LookUpTable[x], where the look-up table is constant.

In the first two operations we change the constant c in E to be c2 in E2,
where c2 is the result of squaring c in GF (28). In the affine transformation A is
replaced by QAQ−1, where in the case of Rijndael Q and Q−1 are:

Q =

























1 0 0 0 1 0 1 0
0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1
0 0 1 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1

























Q−1 =

























1 0 0 1 0 1 0 1
0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0
0 1 0 1 0 0 1 0
0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 0
0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1

























(1)

From now on we denote QAQ−1 by A2, as we will show later that for any x,
QAQ−1x2 = QAx = (Ax)2. A2 of Rijndael is given in Appendix A. The matrices
Q and Q−1 depend on the irreducible polynomial of GF (28). The matrices above
suit Rijndael’s irreducible polynomial x8 + x4 + x3 + x+ 1.

Finally, we replace look-up tables of the form S(x) with S2(x), where S2(x)
is defined as S2(x) = QS(Q−1x).

Remark: To make it clear, in our notation, E2 is not E(E(·)) nor (E(·))2, A2

is not the matrix A multiplied with itself, and S2(x) is not (S(x))2, nor S(S(x)).



In How Many Ways Can You Write Rijndael? 165

In general terms, to specify E2, we take the specifications of the cipher, raise
all the constants in the cipher to their second power, replace matrices A by
A2 = QAQ−1 and replace look-up tables S(x) by S2(x) = QS(Q−1x). If we take
Rijndael as an example of E, the polynomial 03xx

3 +01xx
2 +01xx+02x of the

mix column operation is replaced by 05xx
3 + 01xx

2 + 01xx + 04x.
1 As a result

of the above replacements, the affine transformation Ax + b is replaced by the
affine transformation A2x+ b2 = QAQ−1x+ b2.

The key expansion consists of S boxes, XORs, and XORs with constants in
GF (28) (called Rcon) which are powers of 02x. These operations are replaced by
the replacement operations as mentioned above, with the Rcon constants being
replaced by their squares.

We will now show that E and E2 are dual ciphers:

Theorem 1 For any K and P , E2
K2(P 2) = (EK(P ))

2.

In the context of this paper, the notationK2, and P 2 denote the square operation
of each byte of K and P (and similarly for any data block).

This theorem states that if P is the plaintext, K is the key and the result of
encryption with cipher E is C, then the result of encrypting P 2 under the key
K2 with the cipher E2 is necessarily C2.

Proof Any Galois field is congruent to a Galois field of the form of GF (qm),
where q is a prime. The number q is called the characteristic of the field. It is well
known that for any a, b ∈ GF (qm) it follows that: (a+ b)q = aq+ bq. In GF (28):
(a+ b)2 = a2+ b2. That actually means that squaring an element in GF (28) is a
linear operation, which can be applied by a multiplication by a binary matrix Q
of size 8×8. We computed the matrix Q of Rijndael, and described it in Eq. (1).
It follows that Q−1 is the matrix that takes out the square root of an element
in GF (28).
To complete the proof, it suffices to show that for each operation f(x) in E,

and the corresponding operation in E2, which we denote in this proof by f 2(x),
it follows that f2(x2) = (f(x))2:

1. f(x, y) = x⊕ y. In this case f 2(x2, y2) = x2 ⊕ y2 = (x⊕ y)2 = (f(x, y))2.

2. f(x) = x⊕ c. By definition f 2(x2) = x2 ⊕ c2 = (x⊕ c)2 = (f(x))2.
3. f(x, y) = x · y. In this case f 2(x2, y2) = x2 · y2 = (x · y)2 = (f(x, y))2.

4. f(x) = x · c. By definition f 2(x2) = x2 · c2 = (x · c)2 = (f(x))2.
5. f(x) = xc. In this case f2(x2) = (x2)c = (xc)2 = (f(x))2.
6. It is clear that replacing the order of elements after they are raised to their
second power is equal to raising elements to their second power, and then
replacing their order.

1 In GF (28), 032x = 05x.



166 E. Barkan and E. Biham

7. f(x) = L(x) = Ax. By definition f 2(x2) = L2(x2) = QAQ−1x2 = QAx =
(Ax)2 = (f(x))2, as Q is the matrix which corresponds to the squaring
operation in GF (28).

8. f(x) = S(x) = LookUpTable[x]. By definition

f2(x2) = S2(x2) = QS(Q−1x2) = QS(x) = (S(x))2 = (f(x))2.

The cipher E4 = (E2)2 is a dual cipher of E2, and thus also of E. Moreover,

all ciphers E2i

(for all i), which are E, E2, E4, E8, E16, E32, E64 and E128, are

all dual ciphers of each other (there are 8 such ciphers as E28

= E).

It is interesting to note that Rijndael have these 7 dual ciphers, indepen-
dently of the key size, the block size, the number of rounds, and even the order
of operations in the cipher. These dual ciphers exist for any cipher whose all
operations are EGF (28) operations.

Note that it is possible to define a trivial square dual cipher for any cipher by
taking a cipher E and defining E2 which apply Q−1 on the plaintext and K, calls
E, and then applies Q on the result. However, we are interested in non-trivial
dual ciphers with different cores.

4 Modifying the Polynomial

An EGF (28) cipher E can include multiplication modulo an irreducible polyno-
mial. The irreducible polynomial in Rijndael is used for the inverse computation
in the S box and also in the multiplications in the MixColumn operation. Several
researchers asked why the irreducible polynomial of Rijndael was not selected
to be primitive. There are 30 irreducible polynomials of degree 8, of which 16
are primitive. In our discussion it is irrelevant if the irreducible polynomial is
primitive or not, due to the isomorphism of all fields of GF (28). The isomor-
phism transformation that takes one description of a cipher under an irreducible
polynomial g(x) to another description with a different irreducible polynomial
ĝ(x) is linear, and therefore can be represented as a binary matrix R such that
y = R · x, where x is the vector representation of an element under Rijndael’s
g(x) polynomial, and y is the representation under the new polynomial ĝ(x).
The matrix R is used in a similar way to the matrix Q of the square dual cipher.
The change of operations in the cipher is also similar to the square dual cipher.
Note that the x2 operation there is equivalent to Q · x, and the same proof of
duality follows.

The R matrix is always of the form R = (1, a, a2, a3, a4, a5, a6, a7), where the
ai’s are computed modulo the irreducible polynomial ĝ(x). Note that the matrix



In How Many Ways Can You Write Rijndael? 167

Q is actually one of these matrices R. For each irreducible polynomial we can
define its 8 square dual ciphers. Since there are 30 irreducible polynomials, we
get that there are 240 dual ciphers for each EGF (28) cipher.

For example, we describe one of these 240 dual ciphers of Rijndael: the ir-
reducible polynomial of Rijndael is replaced by the primitive polynomial x8 +
x4 + x3 + x2 + 1 (denoted in binary notation by 11Dx). In this example, the R
matrix is

R =

























1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

























R−1 =

























1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

























.

The inverse matrix R−1 takes an element of the dual cipher to Rijndael’s repre-
sentation. It is interesting to note that the affine matrix of the S box becomes
lower triangular in this case:

Â =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 0 1 1 0 0 1

























.

Also, the constant 63x in the S box becomes 64x, and the coefficients 03x, 02x of
the MixColumn operation are interchanged (i.e., to 02x, 03x). The coefficients
0Bx, 0Dx, 09x, 0Ex are also interchanged in pairs to 0Dx, 0Bx, 0Ex, 09x. The
Rcon constants (02x)

i−1 are replaced by (03x)
i−1.

Thus, we conclude that the choice of the irreducible polynomial of Rijndael
is arbitrary, and in particular, there is no advantage to selecting a primitive
polynomial over the current polynomial of Rijndael.

5 Log Dual Ciphers

In this section we discuss dual ciphers, to which we call log dual ciphers. We
actually describe a family of log dual ciphers, which differ slightly from each
other.



168 E. Barkan and E. Biham

Let g be a generator in GF (28). Since the cipher works on elements of GF (28)
we can write any element x as an exponent of g, i.e., x = gi, except for x = 0,
which we define as g−∞. In a logarithmic notation we write: logg x = i, where
logg0 = −∞. In the log cipher we use the logarithm representation of the ele-
ments, instead of the polynomial representation used in the original description
of the cipher.

Let x and y be elements of GF (28), and let i = logg x, j = logg y.

We use the notation Elogg , or shortly Elog, to denote the log dual cipher.
The log dual cipher is defined by taking the specifications of the cipher, and
replacing the following operations:

1. The operation f(x, y) = x ⊕ y is replaced by the operation f log(i, j) =
j + T (i − j) (mod 255) or by f log(i, j) = i + T (j − i) (mod 255), where
T (i) is defined as T (i) = logg(g

i ⊕ 1). In cases where −∞ appears in f log,

we define f log(−∞, j) = j, and f log(i,−∞) = i.
2. The operation f(x) = x⊕c is replaced by the operation f log(i) = k+T (k−i)
(mod 255) where k = logg c.

3. The operation f(x, y) = x · y is replaced by the operation f log(i, j) = i + j
(mod 255). If either x or y is −∞, then the result is −∞.

4. The operation f(x) = x · c is replaced by the operation f log(i) = i + k
(mod 255), where k = logg c.

5. The operation f(x) = xm is replaced by the operation f log(i) = i · m
(mod 255). If i = −∞ then the result is −∞.

6. Replacement of the order of elements remains the same replacement of order
of the elements.

7. The operation S(x) = LookUpTable[x] is replaced by the operation S log(i) =
logg(S(g

i)).
8. The linear transformation L(x) = Ax is treated as a lookup table (like in
the previous item).

The definition of logx(0) = −∞ is made carefully, ensuring that this definition
is consistent: When applying the operation j + T (i− j), a −(−∞) might result
as an argument to T . We define that j + (−∞) = −∞ (which corresponds
to multiplication by 0 in the original cipher or to XOR of a value with itself),
−∞·c = −∞ (which corresponds to an exponentiation of 0 in the original cipher),
−∞− (−∞) = 0 (which corresponds to 0⊕0, or to x⊕0), i− (−∞) 6= j− (−∞)
for i 6= j (meaning that −(−∞) does not consume i). T (−∞) = 0, T (0) = −∞.
T (i − (−∞)) = −(−∞) + i. Note that the −(−∞) is always a result of an
application of T . Then, another +(−∞) is always waiting to cancel it (as j).
Therefore, the result of the T operation is always a number or a −∞.

The following theorem proposes that if P is the plaintext, K is the key and
the result of encryption of P under the key K with cipher E is C, the result



In How Many Ways Can You Write Rijndael? 169

of encrypting logg(P ) under the key logg(K) with the cipher Elog is necessarily
logg(C).

Theorem 2 Let g be a generator in GF (28). For any K and P :

Elog
logg K

(logg P ) = logg(EK(P )).

In the context of this paper loggX denotes the log of each byte of X.

Proof It suffices to show that for each operation f(x) in E, and the correspond-
ing operation in Elog, which we denote by f log(x), it follows that f log(logg x) =
logg(f(x)).

1. f(x, y) = x⊕ y. By definition f log(i, j) = j+T (i− j) = j+ logg(g
i−j ⊕ 1) =

logg(g
j · (gi−j ⊕ 1)) = logg(g

i ⊕ gj) = logg(x⊕ y) = logg(f(x, y)).
2. f(x) = x⊕ c, in the same way as the previous item.
3. f(x, y) = x · y. In this case f log(i, j) = i + j = logg(g

i+j) = logg(x · y) =
logg(f(x, y)).

4. f(x) = x · c, in the same way as the previous item.
5. f(x) = xc. In this case f log(i) = i · c = logg(x

c) = logg(f(x)).
6. It is clear that replacing the order of elements after their log-value is taken
is equal to replacing the order of elements and then taking their log-value.

7. f(x) = S(x) = LookUpTable[x]. In this case, by definition of f log it follows
that: f log(i) = Slog(i) = logg(S(g

i)) = logg(S(x)) = logg(f(x)).
8. L(x) = Ax is considered like a table in the previous item, and is treated in
the same way.

The above equations hold also in the case that −∞ is an argument.

Note that the non-linear part of the ByteSub transformation of Rijndael in
the log dual cipher becomes very simple (and linear). The non-linear part is
finding the multiplicative inverse of an element. This operation is replaced by
negation in the log dual cipher:

x−1 −→ −i.

The T transformation is non-linear. It has interesting properties. Here are
some of the properties of the T transformation:

1. T (x)− T (−x) = x
2. T (2x) = 2T (x) (therefore, ∀i, T (2ix) = 2iT (x))
3. T (T (x)) = x

4. Let g
∆
= g′y, yTg(x) = Tg′(yx)

5. Tg = T
g2

i



170 E. Barkan and E. Biham

6. T (x) = −T (−T (−x))
7. T (85) = 170, T (170) = 85, and if T (x) = x/2 then x ∈ {85, 170}. Note that
85/2 ≡ 170 (mod 255)

8. T (0) = −∞.
9. T (−∞) = 0.
10. T (x) = T (x± 255) - The cycle size of T is 255.

Proofs of the properties of T (x) will appear in the full paper.

The table of T (x) with the generator 03x is described in Table 1.

T [x] =

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 −∞ 25 50 223 100 138 191 112 200 120 21 245 127 99 224 33
16 145 68 240 92 42 10 235 196 254 1 198 104 193 181 66 45
32 35 15 136 32 225 179 184 106 84 157 20 121 215 31 137 101
48 253 197 2 238 141 147 208 63 131 83 107 82 132 186 90 55
64 70 162 30 216 17 130 64 109 195 236 103 199 113 228 212 174
80 168 160 59 57 40 170 242 167 175 203 62 209 19 158 202 176
96 251 190 139 13 4 47 221 74 27 248 39 58 161 71 126 246
112 7 76 166 243 214 122 164 153 9 43 117 183 180 194 110 12
128 140 239 69 56 60 250 177 144 34 46 5 98 128 52 218 150
144 135 16 217 53 206 188 143 178 226 119 201 159 169 41 93 155
160 81 108 65 182 118 227 114 87 80 156 85 211 229 232 79 88
176 95 134 151 37 124 29 163 123 38 249 61 204 149 219 97 6
192 247 28 125 72 23 49 26 75 8 154 94 89 187 207 148 205
208 54 91 241 171 78 233 116 44 67 146 142 189 252 102 237 3
224 14 36 152 165 77 172 231 230 173 213 244 22 73 222 51 129
240 18 210 86 115 234 11 111 192 105 185 133 96 220 48 24 —

and
T [−∞] = 0.

T [i− (−∞)] = −(−∞) + i

Table 1. The Table T (x) with the generator 03x with the irreducible polynomial 11Bx

(Rijndael).

Each one of the 240 mentioned representations of Rijndael has the same set
of 128 log dual ciphers.

6 Self-Dual Ciphers

We mention that any cipher is trivially dual to itself. However, it is possible to
find ciphers that are self-dual in a non-trivial way. One such interesting family of



In How Many Ways Can You Write Rijndael? 171

dual ciphers is square dual ciphers. Let E be a square self-dual cipher. It follows
that:

(EK(P ))
2 = EK2(P 2).

This means that each constant is the square of itself. In GF (28) it means
that the constants are either 0 or 1.

If we take Rijndael as an example, we need to change the constant 63x in the
affine transformation in the S box to either 00x or 01x. We would also need to
change the constants of the mix column operation. A possible alternative matrix
for the mix column operation, whose entries consist of only 0’s and 1’s is:

M =M−1 =









1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1









.

In the key expansion we need to change the round constant. Any selection
of values from {0x, 1x} can be made for the Rcon constants. There are various
such selections that can still prevent related key attacks.

We can replace the affine transformation to a self-dual one. We can easily find
8 affine transformations that are self-squares: The matrix Q (shown in Eq. (1))
is the square of itself under our definition, since Q2 = Q(Q)Q−1 = Q. The order
of Q is 8, therefore, we can easily find 8 self-square affine transformations: Q,
Q ·Q, Q ·Q ·Q, . . . , Q ·Q ·Q ·Q ·Q ·Q ·Q and Q ·Q ·Q ·Q ·Q ·Q ·Q ·Q = I.
Notice that all the linear combinations with coefficients from {0x, 1x} of these
matrices, are also self-squares matrices. Therefore, there are 256 such self-square
matrices. Detailed analysis shows that these are all the self-square matrices. Of
these 256 matrices only 128 matrices are involutions.

6.1 Higher Order Self-Dual Cipher

In Section 6 we introduced the square self-dual cipher. In a similar way we can
define the 4’th power self-dual cipher. Let E be a 4’th power self-dual cipher. It
follows that:

(EK(P ))
4 = EK4(P 4).



172 E. Barkan and E. Biham

This means that each constant is the 4’th power of itself. There are 4 such
elements: the elements 0 and 1, and the two elements of order 3 (which are g85,
g170, where g is a generator).

We need the affine transformation to be self-dual, and therefore: A4 = Q ·Q ·
(A) ·Q−1 ·Q−1 = A. We can see that Q, Q ·Q, Q ·Q ·Q, . . . , Q ·Q ·Q ·Q ·Q ·Q ·Q
and Q ·Q ·Q ·Q ·Q ·Q ·Q ·Q = I solve it much like for the square self-dual cipher,
along with all their linear combinations, with coefficients from {0x, 1x, g

85, g170}
(which is GF (22)). The total number of linear combinations is 216, of which
3 · 213 are involutions.

For the 16’th power square self-dual cipher all the constants should be 0, 1,
and all the 14 elements of orders 3, 5, and 15. The 16’th power square self-dual
matrices are all the linear combinations of the Qi matrices, with coefficients from
the above constants. The total number of 16’th power square self-dual matrices
is 232, of which 7 · 5 · 32 · 222 matrices are involutions. Fortunately, Rijndael’s
matrix is none of these matrices.

6.2 Cryptanalysis of Self-Dual Ciphers

The self-dual property of a cipher can be used to mount an attack which reduces
the complexity of exhaustive search by a factor of about 8 in the case above
(or by a factor of the number of the self-duals in the more general case). For
example, if the key size is 128 bit, exhaustive search takes 2128 operations, and
the attack we propose requires about 2125 operations. If we consider the expected
time to complete the attack, exhaustive search takes about 2127, and our attack
takes about 2124 operations.

It is interesting to note that the number of rounds of the cipher does not
affect the complexity of this attack.

By using the following chosen plaintext attack the key can be discovered in
2125 operations using 8 chosen plaintexts.

The attack takes advantage of cycles of keys under the squaring operation:
A cycle is a set of keys where each key is the square of its predecessor, i.e.,

{K ′,K ′2, . . . ,K ′2
7

}, and where the square of the last element equals the first

element : K ′ = K ′2
8

. Note that the possible cycle lengths are 8, 4, 2, and 1.

1. Choose a plaintext P , and compute Pi = P 2i

, for i = 0, . . . , 7.
2. Ask for the encryption of P0, . . . , P7, and denote the corresponding cipher-
texts by C0, . . . , C7. For every i, compute Ĉi = (Ci)

2−i

, where the square
root is defined to be the operation that finds for every byte its square root
in GF (28) (there is only one square root for each value).



In How Many Ways Can You Write Rijndael? 173

3. Choose one key K ′ in each cycle, and compute C = EK′(P0). If C = Ĉi for

some i ∈ {0, . . . , 7}, K ′2
i

is a candidate to be K. Otherwise, K is not one of

{K ′2
i

}.

An equality C = Ĉi in step 3 ensures that encryption of Pi under the keyK ′2
i

gives Ci: If C = Ĉi, then C2i

= Ĉ2i

i = Ci. Therefore, C
2i

= (EK′(P0))
2i

= Ci =

EK(P
2i

0 ) = E2i

K(P
2i

0 ). From the self-duality property it follows that: K = K ′2
i

(or that this is a false-alarm).

Note that the correct key is always found by this method, since for the
correct keyK: EK(P0) = C0. The self-duality property implies that this happens

if and only if for any i, E
K2i (P 2i

0 ) = C2i

0 . For each cycle, for example, for

{K ′,K ′2, . . . ,K ′2
7

}, we test only one key. If this key is K, then we would find
it on the first equation. If one of the other keys is K, then the corresponding
equation holds. So by checking one key out of a cycle we cover the whole cycle.

We test about 8 keys for every trial encryption. It is easy to choose the keys
K in such a way that we choose only one key out of each cycle of keys. Therefore,
this attack finds the key in about 2125 time. In the full version of this paper we
analyze the complexity of the attack and show how to enumerate the keys (choose
only one key of each cycle), and show that the total number of cycles, and thus,
the maximal complexity of this attack, is 2125 + 261 + 230 + 215, using 8 chosen
plaintexts. The average case complexity is 2124+ ε where ε = 2−4+2−67+2−98.

We note that a similar attack can be designed for higher order self-dual
ciphers.

7 Application to Other Ciphers

Square [7], Scream [10], Anubis [2], Crypton [13] and Khazad [3] are all EGF (28)
ciphers. E2 [16] (without the initial and final permutations), and Camellia [1]
(with different key scheduling and different FL) are also EGF (28) ciphers. Thus,
our results hold to these ciphers as well.

Our work can be extended to include ciphers such as Safer++ [14]. The
only operation in Safer++ that is not a EGF (28) operation is addition mod-
ulo 256: f(x, y) = x+ y (mod 256). For the square dual cipher, we can define
f2(x2, y2) = (f(x, y))2. f2 can be implemented by f2(x, y) = Qf(Q−1x,Q−1y).
This results in a substitution table of size 216.

It should be noted that since Safer++ does not use GF (28) multiplications
or exponentiations, the irreducible polynomial is irrelevant. For such a cipher,



174 E. Barkan and E. Biham

we can create a wide range of dual ciphers by using any invertible binary matrix
Q of size 8 × 8. The operation fQ(x) is defined as fQ(x) = Qf(Q−1x). For
operations with two parameters fQ(x, y) = Qf(Q−1x,Q−1y). A constant c is
replaced by Qc. This change does not fundamentally change the differential [4]
properties of such functions, since Q and Q−1 are linear and invertible.

If we take E2, and remove the initial and final transformations, the affine
operation, and also change the v−1 value of the key scheduling to be composed
only from 0’s and 1’s, then E2 is a self-dual cipher. That means that the attack
we present in this paper is also applicable to this variant.

8 Other Applications

A possible application of dual ciphers is for developing differential [4] or lin-
ear [15] attacks. In such cases the insight gained from the dual ciphers can be
used to attack the dual cipher, an attack which can be easily transformed to the
original. A possible example for such insight might be the simplification of the
affine transformation in the S box to a triangular matrix (see Section 4), which
reduces the effect of modifying bits in the input on the resultant output of this
transformation.

An other interesting application of dual ciphers might be an optimization
of the speed of the cipher, as in some cases the dual cipher might actually be
faster to compute than the original cipher! For example, many ciphers include
multiplications by constants. The Hamming weight and the size of the constant
has implications on the implementation efficiency. Thus, finding a more efficient
dual cipher might be a good optimization strategy. Also, in some cases encryption
might be fastest using one dual cipher, and decryption be fastest using another
dual cipher.

The existence of dual ciphers can also be used to protect implementation
against fault-analysis [5] and power-analysis [12], by selecting a different dual
cipher at random each time an encryption or decryption is desired.

9 Summary

In this paper we show how to write many different implementations of Rijndael
using its various dual ciphers. We describe hundreds of non-trivial dual ciphers of
Rijndael, many of them differ from Rijndael only by the replacement of constants.
We also discuss an attack on self-dual ciphers.

We conclude that the irreducible polynomial of Rijndael is chosen arbitrar-
ily, and that it is possible to replace the irreducible polynomial of Rijndael by



In How Many Ways Can You Write Rijndael? 175

any other irreducible or primitive polynomial without changing the strength of
cipher, and even without changing the cipher itself.

Acknowledgments

We are pleased to thank Ronny Roth for the various discussions which helped
improving the results of this paper and to John Kelsey for observing that dual
ciphers may be used to prevent power analysis.

The work described in paper has been supported by the European Commis-
sion through the IST Programme under Contract IST-1999-12324.

References

1. Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Mo-
ria, Junko Nakajima, Toshio Tokita, Camellia: A 128-Bit Block Cipher Suitable
for Multiple Platforms - Design and Analysis, submitted to NESSIE, 2000.

2. Paulo S.L.M. Barreto, Vincent Rijmen, The Anubis Block Cipher, submitted to
NESSIE, 2000.

3. Paulo S.L.M. Barreto, Vincent Rijmen, The Khazad Legacy-Level Block Cipher,
submitted to NESSIE, 2000.

4. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

5. Eli Biham, Adi Shamir, Differential Fault of Secret-Key Cryptosystems, Advances
in Cryptology, proceedings of Crypto’97, Lecture Notes in Computer Science 1294,
Springer-Verlag, pp. 513–525, 1997.

6. Antoon Bosselaers, Joan Daemen, Erik De Win, Bart Preneel, Vincent Rijmen,
The Cipher Shark, proceedings of Fast Software Encryption ’96, Lecture Notes in
Computer Science 1039, Dieter Gollmann, Ed., Springer-Verlag, pp. 99–112, 1996.

7. Joan Daemen, Lars R. Knudsen, Vincent Rijmen, The Block Cipher Square, pro-
ceedings of Fast Software Encryption ’97, Lecture Notes in Computer Science 1267,
Eli Biham, Ed., Springer-Verlag, pp. 149–165, 1997.

8. Joan Daemen, Vincent Rijmen, AES Proposal: Rijndael, submitted to the Ad-
vanced Encryption Standard (AES) contest, 1998.

9. Niels Ferguson, Richard Schroeppel, Doug Whiting, A Simple Algebraic Represen-
tation of Rijndael, proceedings of Selected Areas in Cryptography, Lecture Notes in
Computer Science 2259, Serge Vaudenay and Amr Youssef, Eds., Springer-Verlag,
pp. 103–111, 2001.

10. Shai Halevi, Don Coppersmith, Charanjit Jutla, Scream: a Software-Efficient
Stream Cipher, preproceedings of Fast Software Encryption 2002, pp. 190–204,
2002.

11. Thomas Jakobsen, Lars R. Knudsen , The Interpolation Attack on Block Ciphers,
proceedings of Fast Software Encryption ’97, Lecture Notes in Computer Science
1267, Eli Biham, Ed., Springer-Verlag, pp. 28–40, 1997.



176 E. Barkan and E. Biham

12. Paul Kocher, Joshua Jaffe, Benjamin Jun, Differential Power Analysis, Advances
in Cryptology, proceedings of Crypto’99, Lecture Notes in Computer Science 1666,
Springer-Verlag, pp. 388–397, 1999.

13. Chae Hoon Lim, Crypton: a new 128-bit Block Cipher - Specifications and Analysis,
submitted to the Advanced Encryption Standard (AES) contest, 1998.

14. James L. Massey, Gurgen H. Khachatrian, Melsik K. Kuregian, Nomination of
Safer++ as Candidate Algorithm for the New European Schemes for Signatures,
Integrity, and Encryption(NESSIE), submitted to NESSIE, 2000.

15. Mitsuru Matsui, Linear cryptanalysis method for DES cipher, Advances in Cryp-
tology, proceedings of Eurocrypt’93, Lecture Notes in Computer Science 765, T.
Helleseth, Ed., Springer-Verlag, pp. 386–397, 1994.

16. Nippon Telegraph and Telephone Corporation, AES Proposal: E2, submitted to
the Advanced Encryption Standard (AES) contest, 1998.

17. National Institute of Standards and Technology, FIPS-197:Advanced Encryption
Standard, Federal Information Processing Standard, FIPS-197, 2001.

18. Ronald L. Rivest, Adi Shamir, Leonard Adleman, A Method for Obtaining Dig-
ital Signatures and Public Key Cryptosystems, Communications of the ACM,
21(2):120–126, 1978.

19. Serge Vaudenay, Alert on Non-Linearity: Linearities in RIJNDAEL, KASUMI,...,
presented in the rump session of Crypto’01.

A The Affine Transformation of Rijndael and Rijndael2

A =

























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

























A2 =

























0 1 1 0 0 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 1 0 1 1
1 0 0 0 1 1 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
1 1 0 1 0 0 0 1
0 1 0 0 1 0 0 1


























