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Abstract. SHACAL is a 160-bit block cipher based on the hash stan-
dard SHA-1, as a submission to NESSIE. SHACAL uses the XOR, mod-
ular addition operation and the functions of bit-by-bit manner. These
operations and functions make the differential cryptanalysis difficult, i.e,
it is hard to find a long differential characteristic with high probability.
But, we can find short differential characteristics with high probabilities.
Using this fact, we discuss the security of SHACAL against an ampli-
fied boomerang attack. We find a 36-step boomerang-distinguisher and
present attacks on reduced-round SHACAL with various key sizes. We
can attack 39-step SHACAL with 256-bit key, and 47-step SHACAL with
512-bit key. In addition, we present differential attacks of reduced-round
SHACAL with various key sizes.
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1 Introduction

SHACAL[3] is a 4-round block cipher (each line consists of 20 steps.) designed by
H. Handschuh and D. Naccache and is one of the accepted NESSIE submissions.
SHACAL was designed by using the hash standard SHA-1 in encryption mode
for the first time in 2000. Also, H. Handschuh and D. Naccache introduced a
modification[4] of SHACAL in its two versions SHACAL-1 and SHACAL-2 in
2001. In its basic version, SHACAL-1 is a 160-bit block cipher based on SHA-1
and in its extended version, SHACAL-2 is a 256-bit block cipher based on SHA-
2. In this paper, we only attack reduced-round SHACAL-1. We will just call
SHACAL-1 as SHACAL.
The main cryptanalytic results obtained on SHACAL so far are the analysis

of the differential and linear attacks by the algorithm designers[3], and statis-
tical evaluation by J. Nakahara Jr[7]. In [3], the algorithm designers proposed
10-step linear approximations with bias 2−6 in rounds 1,2 and 4 respectively, and
a 10-step linear approximation with bias 2−5 in round 3. Also, they proposed a
10-step differential characteristic with probability 2−13 in rounds 1 and 3, and a
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10-step differential characteristic with probability 2−26 in rounds 2 and 4. Using
these 10-step linear approximations and differential characteristics, they con-
cluded that a linear attack with less than 280 known plaintexts is not applicable
to full-round SHACAL, and that a differential attack with less than 2116 chosen
plaintexts is not applicable to full-round SHACAL.
In this paper, we propose a 10-step differential characteristic with probabil-

ity 2−12 in rounds 2 and 4. This characteristic has much higher probability than
one proposed by the algorithm designers. Using this characteristic, we describe a
36-step boomerang-distinguisher. We use this boomerang-distinguisher to devise
amplified boomerang attacks on reduced-round SHACAL with various key sizes.
Moreover, we present a differential attack and compare the results of an ampli-
fied boomerang attack with those of a differential attack. Table 1 summarizes
attacks on reduced-round SHACAL with respect to master key sizes. Amplified
Boomerang attack is denoted by Amp.Boo. in Table 1, and a time complexity
of n means that the time of an attack corresponds to performing n encryptions
of the underlying cipher.

Master Key Steps Methods Data Time

128-bit 28 Amp.Boo. 2127.5 2127.2

128-bit 30 DC 2110 275.1

160-bit 37 Amp.Boo. 2158.8 287.8

160-bit 32 DC 2141 2105

256-bit 39 Amp.Boo. 2158.5 2250.8

256-bit 34 DC 2141 2234

512-bit 47 Amp.Boo. 2158.5 2508.4

512-bit 41 DC 2141 2491

Table 1. Our result of attacks on reduced-round SHACAL

2 Preliminaries

2.1 Description of SHACAL

SHA is a hash function which was introduced by the American National Institute
for Standards and Technology in 1993, and is known as SHA-0. In 1995, a minor
change to SHA-0 was made, this variant known as SHA-1. The standard now
includes only SHA-1. SHACAL is a 160-bit block cipher based on the hash
standard SHA-1. Description of SHACAL[3] is as follows.
Notation:

– + : Addition modulo 232 of 32-bit words.
– ROTi(X) : Rotate 32-bit word X to the left by i-bit positions.
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– ⊕ : Bitwise exclusive-or.
– & : Bitwise and.
– | : Bitwise or.

The procedure to encrypt a message is as follows.

1. Insert the 160-bit message X(= X1||X2||X3||X4||X5) where each Xi is a
32-bit word in the 32-bit words, A0, B0, C0, D0, E0, by

A0 = X1, B0 = X2, C0 = X3, D0 = X4, E0 = X5.

2. Encrypt the 32-bit words, A0, B0, C0, D0, E0 in a total of 80 steps. So, we
have a ciphertext, A80, B80, C80, D80, E80. Encryption process of the i

th step
is as follows.

Ai = Ki +ROT5(Ai−1) + fi(Bi−1, Ci−1, Di−1) + Ei−1 + yi

Bi = Ai−1

Ci = ROT30(Bi−1)

Di = Ci−1

Ei = Di−1

for i = 1, · · · , 80, where

fi(B,C,D) = (B&C)|(¬B&D), (1 ≤ i ≤ 20)

fi(B,C,D) = B ⊕ C ⊕D, (21 ≤ i ≤ 40, 61 ≤ i ≤ 80)

fi(B,C,D) = (B&C)|(B&D)|(C&D), (41 ≤ i ≤ 60)

We call each fi as fif (1 ≤ i ≤ 20), fxor (21 ≤ i ≤ 40, 61 ≤ i ≤ 80), and
fmaj (41 ≤ i ≤ 60), respectively. Each Ki is a 32-bit subkey of the i

th step. Each
constant yi is defined as

yi = 5a827999x, (1 ≤ i ≤ 20)

yi = 6ed9eba1x, (21 ≤ i ≤ 40)

yi = 8f1bbcdcx, (41 ≤ i ≤ 60)

yi = ca62c1d6x, (61 ≤ i ≤ 80)

The key scheduling of SHACAL takes a maximum 512-bit key and shorter
keys may be used by padding the key with zeros to a 512-bit string. However,
SHACAL is not intended to be used with a key shorter than 128 bits. Let the
512-bit key string be denoted K = [K1||K2|| · · · ||K16], where each Ki is a 32-bit
word. The key expansion of 512 bits K to 2560 bits is defined by

Ki = ROT1(Ki−3 ⊕Ki−8 ⊕Ki−14 ⊕Ki−16), (17 ≤ i ≤ 80)
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2.2 Amplified Boomerang Attack

The amplified boomerang attack[6] is a chosen plaintext attack, while the boomerang
attack[8] is an adaptive chosen plaintext and ciphertext attack. The main idea
of the amplified boomerang attack is to use two short differential characteristics
with high probabilities instead of a long characteristic with low probability.
Let a block cipher E : {0, 1}n× {0, 1}k → {0, 1}n be composed of a cascade

E = E1 ◦ E0. We assume that for E0 there exists a differential characteristic
α → β with probability p, and for E1 there exists a differential characteristic
γ → δ with probability q, where pq À 2−n/2.
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Fig. 1. Boomerang-Distinguisher

The amplified boomerang attack is based on building quartets of plaintexts
(X1, X2, X3, X4) which satisfy several differential conditions. Assume that X1⊕
X2 = α and X3 ⊕ X4 = α. We denote by X ′

1, X
′
2, X

′
3, X

′
4 the encrypted values

of X1, X2, X3, X4 under E0 respectively, and by X ′′
1 , X

′′
2 , X

′′
3 , X

′′
4 the encrypted

values of X ′
1, X

′
2, X

′
3, X

′
4 under E1 respectively. We are interested in the cases

where X ′
1 ⊕ X ′

2= X ′
3 ⊕ X ′

4 = β and X ′
1 ⊕ X ′

3 = γ (or X ′
1 ⊕ X ′

4 = γ), as in
these cases X ′

2 ⊕ X ′
4 = (X

′
1 ⊕ β) ⊕ (X ′

3 ⊕ β) = γ (or X ′
2 ⊕ X ′

3 = γ) as well.
If the output difference of E1 becomes δ when the input difference is γ, i.e
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X ′′
1 ⊕X ′′

3 = X ′′
2 ⊕X ′′

4 = δ (or X ′′
1 ⊕X ′′

4 = X ′′
2 ⊕X ′′

3 = δ), a quartet satisfying
all these differential conditions is called a right quartet. An description of such
a quartet is shown in Fig. 1.
If we havem pairs with difference α, we can calculate the fraction of the right

quartets among all the quartets generated by m pairs. First, we have about
mp pairs satisfying a differential characteristic α → β for E0. The mp pairs
generate about (mp)2/2 quartets consisting of two such pairs. Assuming that
the intermediate encryption values distribute uniformly over all possible values,
we get X ′

1 ⊕ X ′
3 = γ or X ′

1 ⊕ X ′
4 = γ with probability 2−n+1. Second, for the

((mp)2/2) · 2−n+1 quartets satisfying above differential conditions, we can get
right quartets with probability q2 by the characteristic for E1. Therefore, the
expected number of right quartets is about m2 · 2−n · (pq)2.
For a random permutation, the expected number of right quartets is about

m2 · 2−2n(= (m2/2) · 2−2n+1). Therefore, if pq > 2−n/2 and m is sufficiently
large, we can have a boomerang-distinguisher which distinguishes between E
and a random cipher.

3 Amplified Boomerang Attacks on SHACAL

We describe the differential properties of two operations and three step functions
used in SHACAL. We find a 36-step boomerang-distinguisher of SHACAL using
these properties and attack reduced round SHACAL.

3.1 Differential properties for SHACAL

We present two differential properties used in generating a differential charecter-
istic of SHACAL. What generates a differential probability on SHACAL is
first, the use of both XOR and modular additions, and second, the functions
fif , fxor, fmaj .
First, we consider the relation between XOR differences and modular ad-

dition. Let X,Y and X∗, Y ∗ be 32-bit words. We assume Z = X + Y and
Z∗ = X∗ + Y ∗. If the words X and Y only differ in the position of bit i
(0 ≤ i ≤ 31), we denote by X ⊕ Y = ei where the most significant bit (left)
is a bit of position 31. Then, we have the following four relations [5] between
XOR differences and modular addition. In the relations 3 and 4, the j indicates
0 ≤ j ≤ 30.

1. If X⊕X∗ = e31 and Y = Y ∗, then it holds Z⊕Z∗ = e31 with probability 1.
2. If X⊕X∗ = e31 and Y ⊕Y ∗ = e31, then it holds Z = Z∗ with probability 1.
3. If X⊕X∗ = ej and Y = Y ∗, then it holds Z⊕Z∗ = ej with probability 1/2.
4. If X⊕X∗ = ej and Y ⊕Y ∗ = ej , then it holds Z = Z∗ with probability 1/2.

Second, we consider differential probabilities for the functions fif , fxor, fmaj .
These functions operate in the bit-by-bit manner. Thus, we can regard each
fi as a boolean function assigning from a 3-bit input to a 1-bit output. Table
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2 [5] shows distribution of XOR differences through all three functions. The
notation of the table is as follows. The first three columns represent the eight
possible differences in the one-bit inputs, x, y, z. The next three columns indicate
the differences in the outputs of each of the three functions. In the last three
columns, a ‘0’(‘1’) means that the difference will always be zero(one), and a ‘0/1’
means that in half of the cases, the difference will be zero and in the other half
of the cases, the difference will be one.

x y z fxor fif fmaj

0 0 0 0 0 0
0 0 1 1 0/1 0/1
0 1 0 1 0/1 0/1
1 0 0 1 0/1 0/1
0 1 1 0 1 0/1
1 0 1 0 0/1 0/1
1 1 0 0 0/1 0/1
1 1 1 1 0/1 1

Table 2. The XOR differential distribution table of the f -functions

3.2 The 36-step Boomerang-distinguisher

Using the differential properties shown in the previous subsection, we describe
two differential characteristics which make a boomerang-distinguisher for SHA-
CAL. That is, the first differential characteristic is α → β with probability
p (= 2−45) from steps 1 to 21, where the differences α = (0, e22, e15, e10, e5)
and β = (e2,7,14,24,29, e19, e12, e7, e2) where ei1,···,ik indicates ei1 ⊕ · · · ⊕ eik . The
second differential characteristic is γ → δ with probability q (= 2−31) from steps
22 to 36, where the differences γ = (e1,5,8, e1,3,5, e3,13, e1,5,13,31, e6,10,13,31) and
δ = (e9,19,29,31, e14,29, e7,29, e2, e29). Table 3 shows the first differential character-
istic composed of 21 steps. In Table 3, the first row indicates an input difference
of the 1st step, and the second column of the ith step indicates an output differ-
ence of the ith step, and the third column of the ith step indicates the probability
with which an output difference of the (i − 1)th step becomes an output differ-
ence of the ith step. Note that the function fif is used from steps 1 to 20, and
the function fxor is used at the 21

th step. We can easily check probabilities in
Table 3 using the differential properties on SHACAL. Thus, we have the first
differential characteristic α→ β with probability p (= 2−45) from steps 1 to 21
shown in Table 3.
Table 4 shows the second differential characteristic composed of 15 steps.

Note that the function fxor is used from steps 22 to 36. Similarly, we can have
the second differential characteristic γ → δ with probability q (= 2−31) from
steps 22 to 36 shown in Table 4.
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Step ∆A ∆B ∆C ∆D ∆E Prob

0 e22 e15 e10 e5

1 e5 0 e20 e15 e10 2−4

2 0 e5 0 e20 e15 2−3

3 e15 0 e3 0 e20 2−3

4 0 e15 0 e3 0 2−2

5 0 0 e13 0 e3 2−2

6 e3 0 0 e13 0 2−2

7 e8 e3 0 0 e13 2−2

8 0 e8 e1 0 0 2−2

9 0 0 e6 e1 0 2−2

10 0 0 0 e6 e1 2−2

11 e1 0 0 0 e6 2−2

12 0 e1 0 0 0 2−1

13 0 0 e31 0 0 2−1

14 0 0 0 e31 0 2−1

15 0 0 0 0 e31 2−1

16 e31 0 0 0 0 1

17 e4 e31 0 0 0 2−1

18 e9 e4 e29 0 0 2−2

19 e14 e9 e2 e29 0 2−3

20 e19 e14 e7 e2 e29 2−4

21 e2,7,14,24,29 e19 e12 e7 e2 2−5

Table 3. The first differential characteristic for SHACAL

Two differential characteristics above can be regarded as extended ones for
10-step differential characteristics with high probabilities respectively. That is, in
the first differential characteristic, the good 10-step characteristic is (0,e8,e1,0,0)
→(e9,e4,e29,0, 0) with probability 2

−13 from steps 9 to 18, and in the second
differential characteristic, the good 10-step characteristic is (0,e1,3,e6,31,0,e3,6,31)
→(e14,29,e9,31 ,e2,e29,0) with probability 2

−12 from steps 26 to 35. Especially,
the 10-step characteristic from steps 26 to 35 has much higher probability than
one proposed by algorithm designers[3]. Also, if we extend the differential char-
acteristics in Table 3,4 to more steps, hamming weights in the differences of the
five words become much bigger and the probabilities decrease rapidly. In the
heuristic point of view, we conjecture that the 36-step boomerang-distinguisher
using two differential characteristics in Table 3,4 is one of the longest boomerang-
distinguishers such that pq À 2−80 for SHACAL.

3.3 Attack Procedure

We present here amplified boomerang attacks on reduced-round SHACAL with
various key sizes. We now present a method to use the 36-step boomerang-
distinguisher to find subkey material.



250 J. Kim et al.

Step ∆A ∆B ∆C ∆D ∆E Prob

e1,5,8 e1,3,5 e3,13 e1,5,13,31 e6,10,13,31

22 0 e1,5,8 e1,3,31 e3,13 e1,5,13,31 2−3

23 e1,8 0 e3,6,31 e1,3,31 e3,13 2−4

24 e1,3 e1,8 0 e3,6,31 e1,3,31 2−4

25 0 e1,3 e6,31 0 e3,6,31 2−4

26 e1 0 e1,31 e6,31 0 2−3

27 e1 e1 0 e1,31 e6,31 2−2

28 0 e1 e31 0 e1,31 2−1

29 0 0 e31 e31 0 2−1

30 0 0 0 e31 e31 1

31 0 0 0 0 e31 1

32 e31 0 0 0 0 1

33 e4 e31 0 0 0 2−1

34 e9,31 e4 e29 0 0 2−1

35 e14,29 e9,31 e2 e29 0 2−3

36 e9,19,29,31 e14,29 e7,29 e2 e29 2−4

Table 4. The second differential characteristic for SHACAL

Let S = Ef ◦ E = Ef ◦ E1 ◦ E0 be reduced-round SHACAL such that E0

indicates from steps 1 to 21, and E1 indicates from steps 22 to 36. We find
the subkey material of Ef in S. The first differential characteristic α → β used
in E0 has the probability p (= 2−45) and the second differential characteristic
γ → δ used in E1 has the probability q (= 2

−31). The differences α, β, γ and δ are
presented in the subsection 3.2. So, we have the 36-step boomerang-distinguisher
with probability pq (= 2−76) from steps 1 to 36.
For m = 2157.5 pairs with the input difference α, the expected number of

right quartets is 8 (= (2157.5)2 ·2−160 · (2−76)2). From this fact, we can construct
an algorithm to attack S with at least 160 bits key as follows.

1. Choose m(= 2157.5) pairs with the input difference α.
The expected number of possible quartets from the pool of m pairs is about
m2(= 2315). We denote the plaintexts of a quartet by (P1, P2, P3, P4) where
P1⊕P2= P3⊕P4 = α and the corresponding ciphertexts by (C1, C2, C3, C4).

2. Initialize the counter array with 0’s.

The number of the counter array is equal to the number of possible keys for
Ef .

3. Check the differences C1 ⊕ C3= C2 ⊕ C4 = δ′ where δ′ is an element

of the set composed of possible output differences for Ef with the

input difference δ (= (e9,19,29,31, e14,29, e7,29, e2, e29)).

4. For all the quartets which passed the last test, increase the coun-

ters by 1 which correspond to all subkeys Kf of Ef for which
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E−1
fKf

(C1)⊕E
−1
fKf

(C3)= E−1
fKf

(C2)⊕E
−1
fKf

(C4) = δ.

5. Check all counters, and output the subkey whose counter is greater

than or equal to 7.

First, using this algorithm, we show that the reduced 39-step SHACAL with
256-bit key can be broken by an attack which is faster than an exhaustive search
for a master key. Since Ef consists of the 37

th, 38th and 39th steps, we can find
the 96-bit subkey Kf .
In Step 1, we have 2315 quartets derived from 2157.5 pairs with the difference

α. For these quartets, we can filter out wrong quartets through Step 3. In Step
3, we take δ′ that belongs to the set {(?, ?, ?, e7,17,27,29, e12,27)| ? is an arbitrary
difference} composed of possible output differences for Ef with the input dif-
ference δ. So, we have 2187 candidates for right quartets among 2315 quartets,
since a fraction of (2−64)2 of these quartets remain. In Step 4, we guess a 96-bit
subkey Kf and decrypt ciphertexts of the remaining quartets for guessed key.
If a decrypted quartet passes through Step 4, the counter of guessed key is in-
creased by 1. So, the expected value of counter of right subkey is greater than 7,
since the expected number of right quartets is about 8. But, for a wrong subkey,
the expected value of counter is equal to 0 or 1, since the expected number of
quartets passed through Step 4 is 2−5(= 2187 · (2−96)2). Thus, we can find the
right key of Ef by the maximum likelihood method. The attack requires 2

158.5

chosen plaintexts and processing equivalent to about 2158.5 · 296 · 3
39 ' 2

250.8

39-step SHACAL encryptions.
Also, using the algorithm above, we can attack on reduced-round SHACAL

with at least 256-bit keys. We assume that for i = 0, 1, · · · , 8, the reduced (39+i)-
step SHACAL uses the (256 + 32 · i)-bit master key. Since Ef consists of (i+ 3)
steps, we can find the (32 · (i+ 3))-bit subkey Kf for the reduced (39 + i)-step
SHACAL by the algorithm above. Particularly, in the algorithm for the reduced
(39 + i)-step SHACAL (i ≥ 2), there does not exist the filtering process (Step
3) since we use the 36-step boomerang-distinguisher to attack. The attack for
(39+i)-step SHACAL requires 2158.5 chosen plaintexts and processing equivalent
to about 2158.5 · 232·(i+3) · i+3

39+i (≤ 2
252.4+32·i) (39+ i)-step SHACAL encryptions

where i = 0, 1, · · · , 8. Thus we can attack the reduced 47-step SHACAL with
512-bit key. Furthermore, we can attack on reduced-round SHACAL with less
than 256-bit key except 128-bit key. In these cases, since the key sizes are small,
the expected number of quartets passed through Step 3 (filtering process) should
be less than 2156.5 to attack reduced-round SHACAL faster than the exhaustive
search. Thus, we can attack the reduced 37-step SHACAL with 160-bit key and
the reduced 38-step SHACAL with 192- or 224-bit master key. The attack for
37-step SHACAL requires 2158.5 chosen plaintexts and processing equivalent to
about 22 ·2315 ·2−256 ·232 · 1

37 ' 2
87.8 37-step SHACAL encryptions, and the attack

for 38-step SHACAL requires 2158.5 chosen plaintexts and processing equivalent
to about 22 · 2315 · 2−192 · 264 · 2

38 ' 2
184.8 38-step SHACAL encryptions.

In the case of 128-bit key, we cannot use the above 36-step boomerang-
distinguisher since the number of required plaintexts should be less than 2128.
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So, we must find a new boomerang-distinguisher with probability pq which is
higher than 2−45.5 (= {23 ·(2−127)2 ·2160)}1/2). We can find a 26-step boomerang-
distinguisher with probability 2−45 from steps 1 to 26. We can attack on 28-step
SHACAL. Since differential attack which is described in the next section is ap-
plied to SHACAL more effective than amplified boomerang attack, we omit the
detailed explanation. See table 1 for the result of an attack on SHACAL with
128-bit key.

4 Differential Attacks on SHACAL

In this section, we present differential attacks on reduced-round SHACAL. First
of all, we describe two differential characteristics which are expanded from the
21-step differential characteristic shown in Table 3. One is the 28-step differential
characteristic α→ β′ 1 with probability 2−107 from steps 1 to 28, the other is the
30-step differential characteristic α → β′′ 2 with probability 2−138 from steps 1
to 30. We can easily check probabilities of these differential characteristics using
the differential properties on SHACAL.
Using the 28-step differential characteristic, we show that the reduced 30-

step SHACAL with 128-bit key can be broken by a differential attack which
is faster than an exhaustive search for a master key. That is, we can find the
64-bit subkey of the 29th and 30th steps. Note that these steps are denoted by
Ef . Attack procedure is as follows. First, we ask for 2

109 pairs with the input
difference α. Second, we check whether the output differences of these pairs are
equal to (?, ?, e0,3,13,17,18,20,23,25,30, e1,5,10,12,23,27,28, e8,10,25). Since a fraction of
2−96 of these pairs remain, we have about 213(= 2109 · 2−96) analyzed pairs.
And then, we guess a 64-bit subkey of the 29th and 30th steps and decrypt the
analyzed pairs using a guessed key. If a difference of decrypted texts is β ′, the
counter of a guessed key is increased. Since the signal-to-noise is extremely high,
we can distinguish the right subkey in the key space. Thus, the attack requires
2110 chosen plaintexts and processing equivalent to about 214 · 264 · 2

30 ' 2
75.1

30-step SHACAL encryptions.
Also, we can attack on reduced-round SHACAL with at least 160-bit keys

using the 30-step differential characteristic α → β ′′. To attack successfully, we
must ask for 2140 pairs with the input difference α. The attack procedure is
similar to that of reduced-round SHACAL with 128-bit key. Assume that for
i = 0, 1, 2, 3, 4, the reduced (32 + i+ θ(i))-step SHACAL uses the (160 + 32 · i)-
bit master key. Here the controller θ(i) is defined as θ(0) = θ(1) = 0, θ(2) =
θ(3) = −1 and θ(4) = −2. Since Ef consists of (i+ θ(i) + 2) steps, we can find
the (32 · (i+ θ(i) + 2))-bit subkey of the reduced (32 + i+ θ(i))-step SHACAL.
The attack for (32 + i+ θ(i))-step SHACAL requires 2141 chosen plaintexts and

processing equivalent to about 2141 · 2−32·(3−i−θ(i)) · 232·(i+θ(i)+2) · i+θ(i)+2
32+i+θ(i) (≤

2106+64·i+64θ(i)) (32 + i+ θ(i))-step SHACAL encryptions where i = 0, 1, 2, 3, 4.

1 β′ = (e0,2,5,15,19,20,22,25,27, e3,7,12,14,25,29,30, e8,10,25, e5,8,12,20,27, e0,3,17,25,30)
2 β′′ = (e0,1,3,6,15,23,27,28,29, e0,1,14,17,24,29,30, e0,3,13,17,18,20,23,25,30, e1,5,10,12,23,27,28, e8,10,25)
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(2−32·(3−i−θ(i)) is a fraction of the analyzed pairs among all of the pairs.) The
reason to exist the controller θ(i) is that we decrypt only analyzed pairs for a
guessed key.
Also, for reduced-round SHACAL with at least 320-bit key, we can attack

without the process of filtering out. Assume that for j = 0, 1, · · · , 6, the reduced
(35+ j)-step SHACAL uses the (320+32 · j)-bit master key. Since Ef consists of
(j+5) steps, we can find the (32 ·(j+5))-bit subkey for the reduced (35+j)-step
SHACAL. The attack for (35+ j)-step SHACAL requires 2141 chosen plaintexts
and processing equivalent to about 2141 · 232·(j+5) · j+5

35+j (≤ 2
299+32·j) (35 + j)-

step SHACAL encryptions where j = 0, 1, · · · , 6. Thus, we can attack 41-step
SHACAL with 512-bit key.

5 Conclusion

SHACAL has short differential characteristics with high probabilities and long
ones with low probabilities. From this fact, we could find a 36-step boomerang-
distinguisher and attack reduced-round SHACAL with various key sizes. And we
discussed the security of reduced-round SHACAL against differential cryptanal-
ysis(DC). In the comparison of an amplified boomerang attack and a differential
attack, the latter is more efficient for SHACAL with a 128-bit key, but for SHA-
CAL with other key sizes, the former is more efficient.
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