
Boneh et al.’s k-Element Aggregate Extraction
Assumption Is Equivalent to The Diffie-Hellman

Assumption

Jean-Sebastien Coron and David Naccache

Gemplus Card International
34, rue Guynemer, Issy-les-Moulineaux, F-92447, France
{jean-sebastien.coron,david.naccache}@gemplus.com

Abstract. In Eurocrypt 2003, Boneh et al. presented a novel crypto-
graphic primitive called aggregate signatures. An aggregate signature
scheme is a digital signature that supports aggregation: i.e. given k sig-
natures on k distinct messages from k different users it is possible to
aggregate all these signatures into a single short signature.

Applying the above concept to verifiably encrypted signatures, Boneh et
al. introduced a new complexity assumption called the k-Element Ag-
gregate Extraction Problem.

In this paper we show that the k-Element Aggregate Extraction Problem
is nothing but a Computational Diffie-Hellman Problem in disguise.

Key-words: aggregate signatures, Diffie-Hellman problem, complexity as-
sumption.

1 Introduction

In Eurocrypt 2003, Boneh, Gentry, Lynn and Shacham [2] introduced the concept
of aggregate signatures. An aggregate signature scheme is a digital signature
that supports aggregation: given k signatures on k distinct messages from k
different users it is possible to aggregate all these signatures into a single short
signature. This useful primitive allows to drastically reduce the size of public-key
certificates, thereby saving storage and transmission bandwidth.

Applying the previous construction to verifiably encrypted signatures, Boneh
et al. introduced in [2] a new complexity assumption called the k-Element Aggre-
gate Extraction Problem (hereafter k-EAEP). In this paper we will prove that
k-EAEP is equivalent to the Computational Diffie Hellman assumption (CDH).

This paper is structured as follows: section 2 recalls Boneh et al.’s setting,
section 3 contains [2, 3]’s definition of the k-EAEP and section 4 concludes the
paper by proving the equivalence between k-EAEP and CDH.



Key generation

Pick random x
R← ZZp

Compute v ← gx
1

Public : v ∈ G1

Private : x ∈ ZZp

Signature
Hash the message M ∈ {0, 1}∗ into h ← h(M) ∈ G2

Compute the signature σ ← hx ∈ G2

Verification of σ (with respect to v and M)
Compute h ← h(M)
Check that e(g1, σ) = e(v, h)

Fig. 1. Boneh, Lynn, Shacham Signatures

2 Verifiable Encrypted Signatures via Aggregation

We will adopt [2, 3]’s notations and settings, namely:

– G1 and G2 are two multiplicative cyclic groups of prime order p;
– g1 is a generator of G1 and g2 is a generator of G2;
– ψ is a computable isomorphism from G1 to G2 with ψ(g1) = g2;
– e is a computable bilinear map e : G1×G2 → GT where GT is multiplicative

and of order p. The map e is:
• Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ ZZ, e(ua, vb) = e(u, v)ab

• Non-degenerate: e(g1, g2) 6= 1
– h : {0, 1}∗ → G2 is a hash function.

2.1 Boneh-Lynn-Shacham Signatures

Figure 1 briefly recalls Boneh, Lynn and Shacham’s signature scheme [1], upon
which the aggregate signatures schemes of [2, 3] are based.

2.2 Aggregate Signatures

Consider now a set of k users using Figure 1’s scheme (each user having a different
key pair bearing an index i) and signing different messages Mi. Aggregation
consists in combining the resulting k signatures {σ1, . . . , σk} into one aggregate
signature σ. This is done by simply computing:

σ ←
k∏

i=1

σi

Aggregate verification is very simple and consists in checking that the Mi

are mutually distinct and ensuring that:



e(g1, σ) =
k∏

i=1

e(vi, hi) where hi = h(Mi)

This holds because:

e(g1, σ) = e(g1,
k∏

i=1

hxi
i ) =

k∏

i=1

e(g1, hi)xi =
k∏

i=1

e(gxi
1 , hi) =

k∏

i=1

e(vi, hi)

2.3 Verifiably Encrypted Signatures via Aggregation

As explained in [2, 3], verifiably encrypted signatures are used in contexts where
Alice wants to show Bob that she has signed a message but does not want Bob to
possess her signature on that message. Alice can achieve this by encrypting her
signature using the public key of a trusted third party (adjudicator, hereafter
Carol), and send the resulting ciphertext to Bob along with a proof that she
has given him a valid encryption of her signature. Bob can verify that Alice
has signed the message but cannot deduce any information about her signature.
Later in the protocol, Bob can either obtain the signature from Alice or resort
to the good offices of Carol who can reveal Alice’s signature.

To turn the aggregate signature scheme into a verifiably encrypted signature
scheme, [2, 3] proceed as follows:

– Alice wishes to create a verifiably encrypted signature that Bob will ver-
ify, Carol being the adjudicator. Alice and Carol’s keys are generated as if
they were standard signers participating in the aggregate signature protocol
described in the previous subsection.

– Alice creates a signature σ on M under her public key. She then forges a
signature σ′ on some random message M ′ under Carol’s public key (we refer
the reader to [2, 3] for more details on the manner in which this existential
forgery is produced). She then combines σ and σ′ obtaining the aggregate
ω. The verifiably encrypted signature is {ω, M ′}.

– Bob validates Alice’s verifiably encrypted signature {ω, M ′} on M by check-
ing that ω is a valid aggregate signature by Alice on M and by Carol on
M ′.

– Carol adjudicates, given a verifiably encrypted signature {ω, M ′} on M by
Alice, by computing the signature σ′ on M ′ and removing σ′ from the ag-
gregate thereby revealing Alice’s signature σ.

3 The k-Element Aggregate Extraction Problem

As is clear, the security of Boneh et al.’s verifiable encrypted signature scheme
depends on the assumption that given an aggregate signature of k signatures



(here k = 2) it is difficult to extract from it the individual signatures (namely:
Alice’s signature on M). This is formally proved in theorem 3 of [2, 3].

Considering the bilinear aggregate signature scheme on G1 and G2, Boneh
et al. assume that it is difficult to recover the individual signatures σi given the
aggregate σ, the public-keys and the message digests. Actually, [2, 3] assume that
it is difficult to recover any aggregate σ′ of any proper set of the signatures and
term this the k-Element Aggregate Extraction Problem (hereafter k-EAEP).

More formally, this assumption is defined in [2, 3] as follows: Let G1 and G2

be two multiplicative cyclic groups of prime order p, with respective generators
g1 and g2, a computable isomorphism ψ : G1 → G2 such that g2 = ψ(g1), and a
computable bilinear map e : G1 ×G2 → GT .

Consider a k-user aggregate in this setting. Each user has a private key
xi ∈ ZZp and a public key vi = gxi

1 ∈ G1. Each user selects a distinct message
Mi ∈ {0, 1}∗ whose digest is hi ∈ G2 and creates a signature σi = hxi

i ∈ G2.
Finally, the signatures are aggregated yielding:

σ =
k∏

i=1

σi ∈ G2

Let I be the set {1, . . . , k}. Each public-key vi can be expressed as gxi
1 , each

digest hi as gyi

2 , each signature σi as gxiyi

2 and the aggregate signature σ as gz
2

where:

z =
∑

i∈I

xiyi

Definition 1 (k-EAEP). The k-Element Aggregate Extraction Problem is the
following: given the group elements gx1

1 , . . . , gxk
1 , gy1

2 , . . . , gyk

2 and g
∑

i∈I xi·yi

2 , out-
put (σ′, I ′) such that I ′  I and σ′ = g

∑
i∈I′ xi·yi

2 .

The advantage of an algorithm E in solving the k-EAEP is defined as:

Adv k-ExtrE
def= Pr




(I ′  I) ∧ (σ′ = g
∑

i∈I′ xiyi

2 ) :
x1, . . . , xk, y1, . . . , yk

R← ZZp, σ ← g
∑

i∈I xiyi

2 ,

(σ′, I ′) R← E(gx1
1 , . . . , gxk

1 , gy1
2 , . . . , gyk

2 , σ)




wherein the probability is taken over the choices of all xi and yi and the coin
tosses of E .

In the following, we define the hardness of the k-EAEP. For simplicity, we
use the asymptotic setting instead of the concrete setting of [2].

Definition 2. The k-Element Aggregate Extraction Problem is said to be hard
if no probabilistic polynomial-time algorithm can solve it with non-negligible ad-
vantage.



[2, 3] is particularly concerned with the case k = 2 where the aggregate
extraction problem boils down to the following:

Definition 3 (2-EAEP). Given ga
1 , gb

1, gu
2 , gv

2 and gau+bv
2 , output gau

2 .

We refer the reader to [3] for more details on the manner in which this
assumption is used in proving the security of the verifiable encrypted signature
scheme.

4 k-EAEP is equivalent to the Computational
co-Diffie-Hellman problem

The Computational co-Diffie-Hellman problem (hereafter co-CDH) is a natural
generalization to two groups G1 and G2 of the standard Computational Diffie-
Hellman problem; it is defined as follows [2]:

Definition 4 (co-CDH). Given g1, g
a
1 ∈ G1 and h ∈ G2, output ha ∈ G2.

The advantage of an algorithm A in solving co-CDH in groups G1 and G2 is:

Adv co-CDHA
def= Pr

[
A(g1, g

a
1 , h) = ha : a

R← ZZp, h
R← G2

]

The probability is taken over the choice of a, h and A’s coin tosses. Note that
when G1 = G2, this problem reduces to the standard CDH problem.

Definition 5. The Computational co-Diffie-Hellman problem in groups G1 and
G2 is said to be hard if no probabilistic polynomial-time algorithm can solve it
with non-negligible advantage.

The following theorem shows that the k-Element Aggregate Extraction Prob-
lem is equivalent to the Computational co-Diffie-Hellman problem.

Theorem 1. The k-Element Aggregate Extraction Problem is hard if and only
if the Computational co-Diffie-Hellman problem is hard.

Proof. It is straightforward to show that an algorithm A solving co-CDH can be
used to solve the k-EAEP. Namely, given the instance gx1

1 , . . . , gxk
1 , gy1

2 , . . . , gyk

2

and g
∑

i∈I xi·yi

2 , using A we obtain σ′ = gx1y1
2 from g1, g

x1
1 , gy1

2 . This gives
({1}, σ′) as a solution to the k-EAEP.

For the converse, we start with k = 2, i.e. an algorithm solving the 2-EAEP
and show how to generalize the method to arbitrary k. Letting g1, g

a
1 , gu

2 be a
given instance of co-CDH, we must compute ga·u

2 using an algorithm A solving
the 2-EAEP. We generate x

R← ZZp and y
R← ZZp; one can see that:

(ga
1 , ga+x

1 , g−u
2 , gu+y

2 , ga·y+u·x+x·y
2 )



is a valid random instance of the 2-EAEP. The instance is valid because:

−a · u + (a + x) · (u + y) = a · y + u · x + x · y
The instance is a random one because ga+x

1 and gu+y
2 are uniformly distributed

in G1 and G2. Moreover, the instance can be computed directly from gu
2 and

ga
2 = ψ(ga

1 ). Therefore, given as input this instance, the algorithm A outputs
g−a·u
2 , from which we compute ga·u

2 and solve the co-CDH problem.

More generally, for k > 2, we generate x2, . . . , xk, y2, . . . , yk
R← ZZp; then we

generate the following instance of the k-EAEP:

(ga
1 , ga+x2

1 , . . . , ga+xk
1 , g

−(k−1)u
2 , gu+y2

2 , . . . , gu+yk

2 , gz
2)

where

z =
k∑

i=2

a · yi + xi · (u + yi)

As previously, this is a valid random instance of the k-EAEP, which can be
computed from gu

2 and ga
2 = ψ(ga

1 ). Therefore, given this instance as input, an
algorithm A solving k-EAEP outputs (I ′, σ′). We assume that 1 ∈ I ′, otherwise
we can take I ′′ ← I \ I ′ and σ′′ ← gz

2/σ′. Letting σ′ = gz′
2 and k′ = |I ′| < k, we

have:

z′ = −(k − 1) · a · u +
∑

i∈I′,i>1

(a + xi)(u + yi)

z′ = a · u · (k′ − k) +
∑

i∈I′,i>1

a · yi + xi · (u + yi)

Therefore we can compute:

ga·u
2 =


σ′ ·

∏

i∈I′,i>1

(ga
2 )−yi(gu

2 )−xig−xiyi

2




1
k′−k

which is the solution of the co-CDH instance.
Therefore, given a polynomial time probabilistic algorithm solving the k-

EAEP with non-negligible advantage, we obtain a polynomial time probabilistic
algorithm solving co-CDH with non-negligible advantage, and conversely, with
a tight reduction in both directions. ut

5 Conclusion

In this paper we showed that the k-element Aggregate Extraction Problem in-
troduced by Boneh, Gentry, Lynn and Shacham in [2, 3] is equivalent to the
Computational Diffie Hellman Problem.

By shedding light on the connection between Boneh et al.’s verifiable en-
crypted signature scheme and the well-researched Computational Diffie-Hellman
Problem, we show that [2, 3] features, not only attractive computational require-
ments and short signature size, but also strong security assurances.



References

1. D. Boneh, B. Lynn and H. Shacham, Short Signatures From the Weil Pairing,
Proceedings of asiacrypt’ 2001, Lecture Notes in Computer Science vol. 2248,
Springer-Verlag, pp. 514-532, 2001.

2. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps, Advances in Cryptology - eurocrypt’
2003 Proceedings, Lecture Notes in Computer Science vol. 2656, E. Biham ed.,
Springer-Verlag, pp. 416-432, 2003.

3. D. Boneh, C. Gentry, B. Lynn and H. Shacham, Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps, Cryptology ePrint Archive, Report
2002/175, 2002, http://eprint.iacr.org/.


