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Abstract. Even and Mansour [EM97] proposed a block cipher construc-
tion that takes a publicly computable random permutation oracle P and
XORs different keys prior to and after applying P : C = k2 ⊕P (M ⊕ k1).
They did not, however, describe how one could instantiate such a per-
mutation securely. It is a fundamental open problem whether their con-
struction could be proved secure outside the random permutation ora-
cle model. We resolve this question in the affirmative by showing that
the construction can be proved secure in the random function oracle
model. In particular, we show that the random permutation oracle in
their scheme can be replaced by a construction that utilizes a four-round
Feistel network (where each round function is a random function oracle
publicly computable by all parties including the adversary). Further, we
prove that the resulting cipher is super pseudorandom – the adversary’s
distinguishing advantage is at most 2q2/2n if he makes q total queries to
the cipher, its inverse, as well as any random oracles. Even and Mansour,
on the other hand, only showed security against inversion and forgery.
One noteworthy aspect of this result is that the cipher remains secure

even though the adversary is permitted separate oracle access to all of

the round functions. One can achieve a two-fold and four-fold reduction
respectively in the amount of key material by a closer inspection of the
proof and by instantiating the scheme using group operations other than
exclusive-OR. On the negative side, a straightforward adaption of an ad-
vanced slide attack recovers the 4n-bit key with approximately

√
2 · 2n

work using roughly
√

2 · 2n known plaintexts. Finally, if only three Feis-
tel rounds are used, the resulting cipher is pseudorandom, but not super
pseudorandom.

1 Introduction

The Even-Mansour Construction. Even and Mansour [EM97] proposed a
block cipher construction based on XORing secret key material just prior to
and just after applying a random permutation oracle P : C = k2 ⊕ P (M ⊕ k1),
where M is the plaintext, C is the ciphertext, and k1, k2 is the key material.
The permutation P (as well as its inverse P−1) is computable by all parties,
including the adversary (see fig. 1). Even-Mansour proved that a polynomial-
time adversary with black-box query access to the cipher and its inverse, as well
as black-box query access to the internal permutation and its inverse cannot
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invert an un-queried ciphertext of his choice, except with negligible probability.
They also proved an analogous result about computing the cipher’s forward
direction.

While there are practical limitations to their construction [Dae91, BW00], the
Even-Mansour work is well known and theoretically interesting. In particular,
it is an example of a cipher for which an adversary has black-box access to the
only real “cryptographic” component; i.e., the random permutation oracle. The
only secrets are simply XORed at the beginning and the end, and everything
else is publicly accessible.

Fundamental Open Problems. The Even-Mansour work may be described
within the framework of the random-oracle model [BR93] in which their cipher
makes use of a random permutation oracle. Naturally, the need for such a permu-
tation oracle is unpleasant, especially since Even and Mansour did not indicate
how one might instantiate such a random permutation oracle while maintaining
security. This motivates the following problem:

Open Problem 1: How can one go about instantiating the random permuta-
tion oracle in the Even-Mansour scheme?

Furthermore, Even and Mansour only proved security against inversions and
forgeries. However, for block ciphers, the current bar is to prove super pseu-
dorandomess [LR88]. That is, the cipher should be indistinguishable from a
randomly chosen permutation on the same message space even if the adversary
is granted black-box access to the forward and inverse directions of the cipher.1

This motivates a second problem:

Open Problem 2: Can one prove that an Even-Mansour type construction
yields a super pseudorandom permutation?

Our Contributions. We address the first question by demonstrating that
the random permutation oracle can be replaced by a construction involving
random function oracles; i.e., the underlying oracle (which must be accessible to
all parties) does not have to be bijective, but we construct a permutation using
it that is bijective. By supplanting the use of random permutation oracles by
random function oracles, we have a result based on a less restrictive model. Our
construction uses a Feistel ladder in which the random function oracle is used
as a round function (see fig. 1). However, what is different in this setting is that
the adversary not only has access to the forward and reverse directions of the
cipher, but also to each of the individual round functions.

We address the second problem by proving that the construction is super
pseudorandom. We remark the one can construe the Kilian-Rogaway analysis
of DESX [KR96] as a proof that Even-Mansour is pseudorandom. Recall that
in DESX, the Even-Mansour random permutation is supplanted with a keyed

1 Their is also a notion of pseudorandomness for block ciphers wherein the adversary
must distinguish it from a random permutation given black-box access to only the
forward direction of the cipher.
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Fig. 1. The diagram on the left depicts the Even-Mansour scheme where P is a random
permutation oracle; i.e., the adversary has black-box access to P and P−1. The diagram
on the right depicts our scheme in which the permutation oracle is instantiated by a
Feistel network consisting of publicly-accessible random function oracles f, g.

block cipher, such as DES. The Kilian-Rogaway proof allowed the adversary
oracle access to the internal permutation P (modeled as an ideal block cipher)
as well as P−1, to simulate that an adversary had correctly guessed the key –
this maneuver isolates the benefits of the pre- and post-whitening keys. However,
in their published proof the adversary was not given access to the inverse of the
block cipher – so super pseudorandomness was not proved.2

In addition, Ramzan-Reyzin [RR00] noted that one could use their round se-
curity framework to prove that Even-Mansour is super pseudorandom, but their
focus was different, so no proof was supplied. Also their comment was limited to
the original Even-Mansour construction (which used the random permutation
oracle). Therefore, we consider addressing the first fundamental open problem
as our main technical contribution; a side benefit of our work is a proof of super-
pseudorandomness for Even-Mansour style block ciphers.

Our results help us better understand block cipher design. First, they point
to the benefit of pre- and post- whitening. In particular, our construction shows
that, in the random function oracle model, one can construct a super pseudo-
random block cipher in which the all key material is only incorporated during
the pre- and post-whitening phases and in a very simple way. This is despite
the fact that the adversary has access to the internals of the cipher. Second, our
constructions show that it may be possible to obtain a middle ground between
pure black-box analysis and one in which an adversary has some meaningful

2 Kilian and Rogaway mentioned that one could extend their proof to address chosen
ciphertext queries, however, they did not provide the proof, nor did they state a
formal security theorem where such access is given.
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knowledge about the internal design of the black box. This can be thought of
as a “gray-box” analysis. We also remark that the random permutation oracle
model seems less appealing than the random function oracle model. Instantiat-
ing a random function oracle while maintaining security seems more plausible
since such functions could be made sufficiently complex that their behavior is
ill understood. On the other hand, when instantiating a random permutation
oracle with an actual permutation, one is limited in the complexity of the de-
sign since the function must remain bijective and efficient to invert. Our results
give hope that one may be able to base future cryptosystems on random permu-
tation oracles and replace them with constructions based on random function
oracles in a provably secure way. Finally, our work helps bridge the gap between
the theory and practice of Feistel ciphers. In particular, the theoretical work
on Feistel ciphers (e.g., [LR88]) considers round functions that are strong (e.g.,
pseudorandom) and potentially complex keying mechanisms (e.g., the functions
themselves are keyed). This departs from practice in two ways. First, round func-
tions in practice are weak. Second, block cipher round keys are introduced in
some simple way, for example by XORing them prior to applying an un-keyed
function (c.f., DES [FIPS46]). Our work sits somewhere in between since it con-
siders complex round functions (random oracles), but simple keying procedures
(XORing). Therefore, we can view our work as providing better mathematical
insight into the security of DES-like ciphers.

Other Results. Our proof of security holds even if the amount of key material
is reduced twofold. Also, if we permit group operations other than XOR, we can
recycle keying material, yielding a fourfold reduction; interestingly, if XOR is
used with recycled keying material, the cipher behaves like an involution and
is trivially distinguishable from a random permutation. This idea of consider-
ing different group operations has previously been applied to Luby-Rackoff ci-
phers [PRS02]. On the negative side, a “sliding with a twist” attack [BW00]
allows an adversary to recover the key using

√
2 · 2n known plaintexts and√

2 ·2n work. Finally, if we instantiate the permutation with three Feistel rounds,
the construction is pseudorandom, but is not super pseudorandom. The attack
adapts the standard distinguisher for three-round Luby-Rackoff ciphers [LR88].
Due to space constraints, as well as the fact that these results follow easily from
existing techniques, we omit a further discussion. For details, see the full version
of the paper [GR04].

Caveat(s) Emptor. While the random-oracle model is an extremely useful
cryptographic tool, there are instances of schemes that are secure in the random
oracle model, but are insecure for any instantiation of the random oracle by a
polynomial-time computable function [CGH98, GK03, BBP04]. We further note
that the lower bounds we present indicate that n should be chosen so that 2n/2

is sufficiently large to thwart distinguishing attacks. We also remark that Even
and Mansour gave a O(2−n) upper bound on the adversary’s success probabil-
ity, whereas our bound resembles O(2−n/2). However, Even and Mansour only
proved security against inversions and forgeries whereas we show super pseudo-
randomness. Moreover, we eliminate the random permutation oracle requirement
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and also give the adversary access to the innards of the cipher. Therefore, we
expect there to be a sizeable gap in the respective security guarantees. In light of
these caveats, we stress that our main contribution is in resolving fundamental
issues from the Even-Mansour work and gaining more theoretical insight into
block cipher design; we do not recommend this as a practical approach to build-
ing a block cipher. In fact, efficient random oracle model based block ciphers are
desired, then Ramzan and Reyzin have a four-round Feistel block cipher con-
struction in which the middle two rounds use a random oracle, and the outer
two rounds involve universal hash functions [RR00].

Organization. Section 2 reviews prior definitions and constructions. Section 3
discusses our main construction and security proof. Finally, we make concluding
remarks in Section 4.

2 Prior Definitions and Constructions

We describe definitions and prior constructions that are germane to our work. We
avoid asymptotic analysis in favor of the “concrete” (or “exact”) security model
as laid out by Bellare, Kilian, and Rogaway [BKR94], and Bellare, Canetti,
Krawczyk [BCK96]. However, our results can be adapted to either model.

Notation. For a natural number n, we let In denote the set of bit strings of
length n: {0, 1}n. For a bit string x, we let |x| denote its length. If |x| is even, then
xL and xR denote the left and right halves of the bits respectively; we sometimes
write x = (xL, xR). If x and y are two bit strings with |x| = |y|, we denote by

x⊕y their bitwise exclusive OR. If S is a probability space, then x
R← S denotes

the process of picking an element from S according to the underlying probability
distribution. Unless otherwise specified, the underlying distribution is assumed
to be uniform. By a finite function (or permutation) family F , we denote a set of
functions with common domain and common range. Let Rand

k→` be the set of
all functions going from Ik to I`, and let Perm

m be the set of all permutations on
Im. We call a finite function (or permutation) family keyed if every function in
it can be specified (not necessarily uniquely) by a key a. We denote the function
given by a as fa. We assume that given a, it is possible to efficiently evaluate fa

at any point (as well as f−1
a in case of a keyed permutation family). For a given

keyed function family, a key can be any string from Is, where s is known as “key
length.” (Sometimes it is convenient to have keys from a set other than Is; we
do not consider such function families simply for clarity of exposition, but our
results continue to apply in such cases.) For functions f and g, g ◦ f denotes the
function x 7→ g(f(x)).

Model of Computation. We model the adversary A as a program for a Ran-
dom Access Machine (RAM) with black-box access to some number k of oracles,
each computing some specified function. If (f1, . . . , fk) is a k-tuple of functions,
then Af1,...,fk denotes a k-oracle adversary who is given black-box oracle access
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to each of the functions f1, . . . , fk. We define A’s “running time” to be the num-
ber of time steps it takes plus the length of its description (to prevent one from
embedding arbitrarily large lookup tables in A’s description).

Pseudorandom Functions and Block Ciphers. The pseudorandomness of
a keyed function family F with domain Ik and range I` captures its compu-
tational indistinguishability from Rand

k→`. The following definition is adapted
from [GGM84]:

Definition 1. A pseudorandom function family F is a keyed function family
with domain Ik, range I`, and key length s. Let A be a 1-oracle adversary. Then
we define A’s advantage as

Adv
prf
F

(A) ,

∣

∣

∣
Pr[a

R← Is : Afa = 1]− Pr[f
R← Rand

k→` : Af = 1]
∣

∣

∣
.

For any integers q, t ≥ 0, we define Adv
prf
F

(q, t) , maxA{Adv
prf
F

(A)}, as an
insecurity function, where the maximum is taken over choices of adversary A
such that:

– A makes at most q oracle queries, and

– the running time of A, plus the time necessary to select a
R← Is and answer

A’s queries, is at most t.

Recall that the Even-Mansour cipher [EM97] operates on a 2n-bit string x as
follows E(x) = k2⊕P (x⊕k1) where k1, k2 ∈ I2n constitutes the keying material
and P is a random permutation oracle. Here P and P−1 are publicly computable
(in a black-box fashion) by all parties. Even and Mansour proved that E is hard
to invert on a point C0 of the adversary’s choice even if the adversary has oracle
access to E, E−1, P, P−1 subject to the restriction that the adversary cannot
query the E−1 oracle on the point C0; i.e., it is hard to find M0 such that
M0 = E−1

k1,k2
(C0). Similarly, they showed that the adversary cannot compute

the ciphertext corresponding to a message point M0 of its choice with access to
these same oracles, but this time subject to the restriction that the adversary
cannot query the E oracle on point M0; i.e., it is hard to find C0 such that
C0 = Ek1,k2

(M0). While these results capture some of the security requirements
needed for a block cipher, there are stronger notions of security for a block
cipher. One such notion, proposed by Luby and Rackoff [LR88], is called super
pseudorandomness. The notion captures the pseudorandomness of a permutation
family on I` in terms of its indistinguishability from Perm

`, where the adversary
is given access to both directions of the permutation. In other words, it measures
security of a block cipher against chosen plaintext and ciphertext attacks. We
now describe such notions and how to achieve them.

Definition 2. A block cipher P is a keyed permutation family with domain and
range I` and key length s. Let A be a 2-oracle adversary. Then we define A’s
advantage as

Adv
sprp
P

(A) ,

∣

∣

∣
Pr[a

R← Is : Apa,p−1

a = 1]− Pr[p
R← Perm

` : Ap,p−1

= 1]
∣

∣

∣
.
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For any integers q, t ≥ 0, Adv
sprp
F (q, t) specifies the insecurity function (analogous

to Definition 1).

Luby and Rackoff showed how to construct a secure block cipher using Feistel
permutations.

Definition 3 (Basic Feistel Permutation). Let F be a function family with
domain and range In. Let f ∈ F . Let x = (xL, xR) with xL, xR ∈ In. We denote
by f the permutation on I2n defined as f(x) = (xR, xL⊕f(xR)). Note that it is a
permutation because f−1(y) = (yR⊕ f(yL), yL). Similarly, let F = {f | f ∈ F}.

Definition 4 (Feistel Network). If f1, . . . , fs are mappings with domain and
range In, then we denote by Φ(f1, . . . , fs) the permutation on I2n defined as
Φ(f1, . . . , fs) = fs ◦ . . . ◦ f1.

Theorem 1 (Luby-Rackoff). Let h1, f1, f2, h2 be independently-keyed func-
tions from a keyed function family F with domain and range In and key space
Is. Let P be the family of permutations on I2n with key space I4s defined by
P = Φ(h1, f1, f2, h2) (the key for an element of P is simply the concatenation of

keys for h1, f1, f2, h2). Then, Adv
sprp
P

(q, t) ≤ Adv
prf
F

(q, t)+
(

q
2

) (

2−n+1 + 2−2n+1
)

.

The Luby-Rackoff result proved security when the adversary has access to the
permutation and its inverse. In our case, we will show security of the Even-
Mansour cipher when the adversary has black-box access to the cipher, its in-
verse, and to each of the internal round functions.

Having presented the classical definitions of block ciphers and Feistel net-
works, we now describe notions of the Ramzan-Reyzin round security frame-
work [RR00] which we make use of in the present work.

Definition 5 (Round Decomposition [RR00]). Let P ,F1,F2, . . . ,Fr be
keyed permutation families, each with domain and range I` and key length s,
such that for any key a ∈ Is, pa = fr

a ◦ · · · ◦ f1
a . Then F1, . . . ,Fr is called an

r-round decomposition for P. For i ≤ j, denote by (i → j)a the permutation

f j
a ◦ . . . ◦ f i

a, and by (i← j)a the permutation
(

f j
a ◦ . . . ◦ f i

a

)−1
. Denote by i→ j

and i← j the corresponding keyed function families.

Note that having oracle access to a member of i → j means being able to give
inputs to round i of the forward direction of a block cipher and view outputs
after round j. Likewise, having oracle access to i← j corresponds to being able
to give inputs to round j of the reverse direction of the block cipher and view
outputs after round i. Thus, the oracle for 1→ r = P corresponds to the oracle
for a chosen plaintext attack, and the oracle for 1 ← r = P−1 corresponds to
the oracle for a chosen ciphertext attack.

We now give a formal security definition of a block cipher when an adversary
has access to internal rounds. Note that the adversary is allowed oracle access
to some subset K of the set {i → j, i ← j : 1 ≤ i ≤ j ≤ r}, and the insecurity
function additionally depends on K.
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Definition 6 (Round Security [RR00]). Let P be a block cipher with domain
and range I`, key length s, and some r-round decomposition F1, . . . ,Fr. Fix
some subset K = {π1, . . . , πk} of the set {i→ j, i ← j : 1 ≤ i ≤ j ≤ r}, and let
A be a k + 2-oracle adversary. Then we define A’s advantage as

Adv
sprp

P,F1,...,Fr,K(A) =
∣

∣

∣
Pr[a

R← Is : Apa,p−1

a ,π1

a,...,πk
a = 1]− Pr[p

R← Perm
`, a

R← Is : Ap,p−1,π1

a,...,πk
a = 1]

∣

∣

∣

For any integers q, t ≥ 0 and set K, Adv
sprp

P,F1,...,Fr,K(q, t) specifies our insecurity

function (analogous to Definition 2).

Ramzan and Reyzin [RR00] were the first to consider what happens when inter-
nal round functions of a Feistel network are available to an external adversary.

Theorem 2 (Ramzan-Reyzin). Let f1, f2, f3, f4 be independently-keyed func-
tions from a keyed function family F with domain and range In and key space
Is. Let P be the family of permutations on I2n with key space I4s defined by
P = Φ(f1, f2, f3, f4) with the natural 4-round decomposition F ,F ,F ,F . Let
K = {i→ j, i← j : 2 ≤ i ≤ j ≤ 3}. Then

Adv
sprp

P,F,F,F,F,K
(q, t) ≤ Adv

prf
F

(q, t) +

(

q

2

)

(

2−n+1 + 2−2n+1
)

+ q2
(

2−n−1
)

.

Ramzan-Reyzin consider the case where all parties have black-box access to the
internal permutations f2, f3. They noted that if the underlying round functions
f1, and f2 are chosen from Rand

n→n, then one could translate their results to
the random oracle model wherein f2, f3 are modeled as random function oracles
that are accessible to all parties, including the adversary.

3 Our Main Result

We now prove our main result. We use the Ramzan-Reyzin round-security frame-
work [RR00] to analyze our construction and leverage their techniques to obtain
the desired result. However, for technical reasons, the proof must also incorpo-
rate an additional hybrid distribution into the argument. Now, let Ψ f,g

k1,k2
denote

the Even-Mansour construction when the internal permutation is replaced by a
four-round Feistel network with outer round function g and inner round func-
tion f : Ψf,g

k1,k2
(x) = k2 ⊕ Φ(g, f, f, g)(x⊕ k1). Here k1, k2 ∈ I2n are the keys and

f, g are modeled as random function oracles; i.e., they are publicly accessible to
all parties (including the adversary) and behave like random functions. Observe
then that the adversary can compute not only the Even-Mansour permutation,
but also knows its internal structure and has black-box access to the functions
f and g around which it is designed. We view this construction as consisting of
the composition of six round permutations:

– πk1

1 (x) = x⊕ k1
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– π3, π4 = f . Recall that f denotes a permutation on I2n defined as f(x) =
(xR, xL ⊕ f(xR)).

– π2, π5 = g.
– πk2

6 (x) = x⊕ k2.

Observe that Ψf,g
k1,k2

(M) = πk2

6 ◦π5 ◦ · · · ◦π2 ◦πk1

1 . We now state our main result
in the following theorem:

Theorem 3 (Main Result). Suppose K ⊆ {i → j, i ← j | 2 ≤ i ≤ j ≤ 5}.
Let f be modeled as a random oracle, and let k1 and k2 be picked randomly and
independently from I2n. Let Ψf,g

k1,k2
(x) = k2 ⊕ Φ(g, f, f, g)(x ⊕ k1), and R be a

random permutation on I2n. Then

Adv
sprp
P,π1,π2,...,π6

(q, t, K) ≤
(

2q2 − q
)

· 2−n +

(

q

2

)

· 2−2n+1.

Observe that we do not consider any terms of the form Adv
prf
F

(q, t) since we
assume that the underlying round functions are modeled as random oracles in
which case such terms will evaluate to 0.

Recasting the problem in the round-security framework allows us to apply
the techniques of Ramzan and Reyzin [RR00] (who generalized the techniques
of Naor and Reingold [NR99] to deal with the extra queries from an oracle with
internal access). We note that access to the oracles of K is equivalent to access
to the oracles for f and g.3 Now, consider the following theorem.

Theorem 4. Let f and g be modeled as random oracles, and let k1 and k2 be
picked randomly and independently from I2n. Let Ψf,g

k1,k2
(x) = k2⊕Φ(g, f, f, g)(x⊕

k1), and let R be a random element of Perm
2n. Then, for any 4-oracle adversary

A (we do not restrict the running time of A) that makes at most qc queries to
its first two oracles (either Ψ, Ψ−1 or R, R−1) and at most qof and qog queries
to its second two oracles (f and g) respectively, it follows that:

∣

∣

∣
Pr[AΨ,Ψ−1,f,g = 1]− Pr[AR,R−1,f,g = 1]

∣

∣

∣

≤ (q2
c +2qofqc+2qogqc+q2

c−qc)2
−n+

(

qc

2

)

(

2 · 2−n + 2−2n+1
)

.

Observing that the total number of queries q = qc+qof +qog, it is straightforward
to see that

(q2
c + 2qofqc + 2qogqc + q2

c − qc) ≤ 2q2 − q.

Therefore, we see that theorem 4 implies theorem 3. In the sequel, we describe
the proof of theorem 4. The first part of the proof focuses on the adversary’s

3 We remark, however, that one query to an oracle in K may need to be simulated by
multiple queries to f, g. Therefore, the total number of queries made to f and g is
an upper bound on the number of queries that would need to be made to an oracle
in K.
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transcript (i.e., his “view”) and shows that each possible transcript is about as
likely to occur when A is given Ψ, f, g as when A is given R, f, g. This part of the
proof also relies on a hybrid distribution Ψ̃ to facilitate the proof. The second
part uses a standard probability argument to show that if the distributions on
transcripts are similar, then A will have a small advantage in distinguishing Ψ
from R.

Proof of Theorem 4. To start with, let P denote the permutation oracle
(either Ψ or R) that A accesses. From now on, for notational convenience we
ignore the superscripts f, g and the subscripts k1, k2 associated with Ψ . Let Of

and Og denote the oracles that compute the functions f and g (note that when A
gets Ψ as its permutation oracle, f and g are actually used as the round function
in the computation of the oracle P = Ψ ; when A gets R as its permutation
oracle, f and g are independent of P = R). The machine A makes two types of
queries to the oracle P : (+, x) which asks to obtain the value of P (x), or (−, y)
which asks to obtain the value of P−1(y) – where both x and y are in I2n. We call
these cipher queries. We define the query-answer pair for the ith cipher query as
〈xi, yi〉 ∈ I2n×I2n if A’s query was (+, xi) and yi is the answer it received from P
or its query was (−, yi) and xi is the answer it received. We assume that A makes
exactly qc cipher queries and we call the sequence {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P the

cipher-transcript of A. In addition, A can make queries to Of and Og . We call
these oracle queries. We denote these queries as: (Of , x′) (resp. (Og , x′)) which
asks to obtain f(x′) (resp. g(x′)). We define the query-answer pair for the ith

oracle query as 〈x′
i, y

′
i〉 ∈ In × In if A’s query was (Of , x′) and the answer it

received was y′ and as 〈x′′
i , y′′

i 〉 ∈ In × In if A’s query was (Og , x′′) and the
answer it received was y′′. We assume that A makes qof and qog queries to
Of and Og respectively. We call the sequence {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of the

f -oracle-transcript of A and {〈x′′
1 , y′′

1 〉, . . . , 〈x′′
qog

, y′′
qog
〉}Og the g-oracle-transcript

ofA. Note that sinceA is computationally unbounded, we can make the standard
assumption that A is a deterministic machine. Under this assumption, the exact
next query made byA can be determined by the previous queries and the answers
received. We formalize this as follows:

Definition 7. We denote the i + j + k + 1st query A makes as a function of
the first i+ j + k query-answer pairs in A’s cipher and oracle transcripts (where
either i < qc or j < qof or k < qog) by:

CA[{〈x1, y1〉, . . . , 〈xi, yi〉}P , {〈x′
1, y

′
1〉, . . . , 〈x′

j , y
′
j〉}Of , {〈x′′

1 , y′′
1 〉, . . . , 〈x′′

k , y′′
k 〉}Og ].

For the case that all queries have been made (i.e., i = qc, j = qof , k = qog), we
define the above expression to denote A’s output as a function of its cipher and
oracle transcripts.

Definition 8. Let σ = (TP , Tf , Tg) be a three tuple comprising the sequences
TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg =

{〈x′′
1 , y′′

1 〉, . . . , 〈x′′
qog

, y′′
qog
〉}Og , and where for 1 ≤ i ≤ qc we have that 〈xi, yi〉 ∈

I2n × I2n, for 1 ≤ j ≤ qof , we have that 〈x′
j , y

′
j〉 ∈ In × In, and for 1 ≤ k ≤ qog,
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we have that 〈x′′
k , y′′

k 〉 ∈ In × In. Then, σ is a possible A-transcript if for every
1 ≤ i ≤ qc, for every 1 ≤ j ≤ qof and for every 1 ≤ k ≤ qog,

CA[{〈x1, y1〉, . . . , 〈xi, yi〉}P , {〈x′
1, y

′
1〉, . . . , 〈x′

j , y
′
j〉}Of {〈x′′

1 , y′′
1 〉, . . . , 〈x′′

k , y′′
k 〉}Og ] ∈

{(+, xi+1), (−, yi+1), (Of , x′
j+1), (Og , x′′

k+1)}.

We now consider two useful processes for answering A’s cipher queries.

Definition 9. Let Ψ̃ denote the process in which the cipher queries and f -oracle
queries are answered as they would be for Ψ , however the g-oracle queries are
answered by another independent random function oracle h.

Definition 10. Let R̃ denote the process that answers all oracle queries as Ψ
would, but answers the ith cipher query of A as follows:

1. If A’s query is (+, xi) and for some 1 ≤ j < i the jth query-answer pair is
〈xi, yi〉, then R̃ answers yi.

2. If A’s query is (−, yi) and for some 1 ≤ j < i the jth query-answer pair is
〈xi, yi〉, then R̃ answers xi.

3. If neither of the above happens, then R̃ answers with a uniformly chosen
element in I2n.

We formalize the fact that R̃’s answers may not be consistent with any function,
let alone any permutation.

Definition 11. Let σ′ = {〈x1, y1〉, . . . , 〈xqc
, yqc
〉}P be any possible A-cipher

transcript. We say that σ′ is inconsistent if for some 1 ≤ j < i ≤ qc the corre-
sponding query-answer pairs satisfy xi = xj but yi 6= yj , or xi 6= xj but yi = yj.
Likewise, we call any A-transcript σ that contains σ′ inconsistent.

Note 1. If σ = (TP , Tf , Tg), with sub-transcripts TP = {〈x1, y1〉, . . . , 〈xqc
, yqc
〉}P ,

Tf = {〈x′
1, y

′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg = {〈x′′

1 , y′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , is a

possible A-transcript, we assume from now on that if σ is consistent and if i 6= j
then xi 6= xj , yi 6= yj , x′

i 6= x′
j , and x′′

i 6= x′′
j . This formalizes the concept

that A never repeats a query if it can determine the answer from a previous
query-answer pair.

Fortunately, the process R̃ often behaves like a permutation. It turns out that
if A is given oracle access to either R̃ or R to answer its cipher queries, it will
have a negligible advantage in distinguishing between the two. Proposition 1
states this more formally. Before doing so, we first consider the distributions on
the various transcripts seen by A as a function of the different distributions on
answers it can get.

Definition 12. The discrete random variables TΨ , TΨ̃ , TR, TR̃ denote the cipher

and oracle transcripts seen by A when its cipher queries are answered by Ψ , Ψ̃ ,
R, R̃ respectively, and its oracle queries are answered by Of or Og.
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Remark 1. Observe that according to our definitions and assumptions,AΨ,Ψ−1,f,g

and CA(TΨ ) denote the same random variable. The same is true for the other
discrete random variables.

Proposition 1. |PrR̃[CA(TR̃) = 1]− PrR[CA(TR) = 1]| ≤
(

qc

2

)

· 2−2n.

The proof of this proposition has appeared in numerous places [NR99, RR00].
The idea is to observer that TR, TR̃ have the same distribution conditioned on
TR̃ being consistent. One can then bound the probability that TR̃ is inconsistent
by

(

qc

2

)

· 2−2n. The proof can be completed by a standard probability argument.
We omit the details, though they are available in the full version [GR04]. We now
proceed to obtain a bound on the advantage that A will have in distinguishing
between TΨ and TR̃. We first show that TΨ and TΨ̃ are identically distributed,
unless the input to g in a cipher query related to Ψ matches the input to g in
an oracle query related to Ψ . We can compute the likelihood of such an event as
a function of only k1 and k2 – we term this event BadG and define it next; we
then compute the probability that it occurs.

Definition 13. For every specific pair of keys k1, k2 ∈ I2n, we define BadG(k1, k2)
to be the set of all possible and consistent transcripts σ = (TP , Tf , Tg), with sub-
transcripts TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of ,

and Tg = {〈x′′
1 , y′′

1 〉, . . . , 〈x′′
qog

, y′′
qog
〉}Og satisfying at least one of the following

events:

– BG1: there exists 1 ≤ i ≤ qc, 1 ≤ j ≤ qog such that xR
i ⊕ kR

1 = x′′
j , or

– BG2: there exists 1 ≤ i ≤ qc, 1 ≤ j ≤ qog such that yL
i ⊕ kL

2 = x′′
j .

Proposition 2. Let k1, k2 be randomly and independently chosen from I2n. For
any possible and consistent A− transcript σ = (TP , Tf , Tg), with sub-transcripts
TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg =

{〈x′′
1 , y′′

1 〉, . . . , 〈x′′
qog

, y′′
qog
〉}Og , we have that

Pr
k1,k2

[σ ∈ BadG(k1, k2)] ≤ 2qogqc · 2−n.

Proof. (Sketch) A transcript σ is in BadG(k1, k2) if one of BG1 or BG2 occur.
We obtain an upper bound on the probabilities of each of these events separately
by using the fact that k1, k2 are chosen uniformly at random from I2n. Applying
the union bound to sum the individual probabilities yields the desired result.

We now show that TΨ and TΨ̃ are identically distributed if neither BG1 nor
BG2 occur.

Lemma 1. Let σ = (TP , Tf , Tg), where TP = {〈x1, y1〉, . . . , 〈xqc
, yqc
〉}P , Tf =

{〈x′
1, y

′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg = {〈x′′

1 , y′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , be any pos-

sible and consistent A− transcript, then

Pr
Ψ

[TΨ = σ|σ /∈ BadG(k1, k2)] = Pr
Ψ̃

[TΨ̃ = σ].
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Proof. (Sketch) Observe that xR
i ⊕ kR

1 6= x′′
j and yL

i ⊕ kL
2 6= x′′

j for all i, j
whenever σ /∈ BadG(k1, k2). In such a case, the inputs to g during the cipher
queries are distinct from the inputs to g during the g-oracle queries. Since there
is no overlap in the two sets of queries, since g is modeled as a random oracle,
and since the events depend only on the choice of k1 and k2 (which are chosen
independently of g), the distribution is identical to one in which g is replaced by
another independently chosen random oracle h.

We now focus on TΨ̃ . It turns out that TΨ̃ and TR̃ are identically distributed
unless the same value is input to the inner random oracle f on different occasions
(we show this in Lemma 2). We can compute the likelihood of this event as a
function of only k1, k2, and g. We call this event “Bad” (in the next definition)
and obtain a bound on the probability that it actually occurs (in Proposition 3).

Definition 14. For every specific pair of keys k1, k2 ∈ I2n and oracle g ∈
Rand

n→n, define Bad(k1, k2, g) to be the set of all possible and consistent tran-
scripts σ = (TP , Tf , Tg), with sub-transcripts TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P ,

Tf = {〈x′
1, y

′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg = {〈x′′

1 , y′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , sat-

isfying at least one of the following events:

– B1: ∃ 1 ≤ i < j ≤ qc such that g(xR
i ⊕ kR

1 )⊕ xL
i = g(xR

j ⊕ kR
1 )⊕ xL

j

– B2: ∃ 1 ≤ i < j ≤ qc such that yR
i ⊕ g(yL

i ⊕ kL
2 ) = yR

j ⊕ g(yL
j ⊕ kL

2 )

– B3: ∃ 1 ≤ i, j ≤ qc such that g(xR
i ⊕ kR

1 )⊕ xL
i ⊕ kL

1 = kR
2 ⊕ yR

j ⊕ g(yL
j ⊕ kL

2 )

– B4: ∃ 1 ≤ i ≤ qc, 1 ≤ j ≤ qof such that g(xR
i ⊕ kR

1 )⊕ xL
i ⊕ kL

1 = x′
j

– B5: ∃ 1 ≤ i ≤ qc, 1 ≤ j ≤ qof such that kR
2 ⊕ yR

i ⊕ g(yL
i ⊕ kL

2 ) = x′
j .

Proposition 3. Let k1, k2 be randomly and independently chosen from I2n.
Then, for any possible and consistent A− transcript σ = (TP , Tf , Tg), with sub-
transcripts TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of ,

and Tg = {〈x′′
1 , y′′

1 〉, . . . , 〈x′′
qog

, y′′
qog
〉}Og , we have that

Pr
k1,k2,g

[σ ∈ Bad(k1, k2, g)] ≤
(

q2
c + 2qofqc + 2 ·

(

qc

2

))

· 2−n.

Proof. (Sketch) Recall that a transcript σ ∈ Bad(k1, k2, g) if at least one of the
above events occurs. We obtain an upper bound on the probabilities of each of
these events separately using the fact that k1, k2 are chosen uniformly at random
from I2n and that g is chosen uniformly at random from Rand

n→n. Applying the
union bound to sum the probabilities for each event yields the desired result.

Lemma 2. Let σ be defined as in Lemma 1. Then,

Pr
Ψ̃

[TΨ̃ = σ|σ /∈ Bad(k1, k2, g)] = Pr
R̃

[TR̃ = σ].

Proof. It is easy to see that PrR̃[TR̃ = σ] = 2−(2qc+qof +qog)n (following an argu-
ment in [NR99], [RR00]). Now, fix k1, k2, g to be such that σ /∈ Bad(k1, k2, g).
We will now compute Prf,h[TΨ̃ = σ] (recall that in the definition of Ψ̃ , h is a
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random oracle independent of f and g, and note that the probability is now
only over the choice of f and h). Since σ is a possible A-transcript, it follows
that TΨ̃ = σ if and only if yi = k1 ⊕ Ψ̃(g, f, f, g)(xi ⊕ k2) for all 1 ≤ i ≤ qc,
y′

j = f(x′
j), for all 1 ≤ j ≤ qof , and y′′

j = g(x′′
j ) for all 1 ≤ j ≤ qog. If we define

Si = kL
1 ⊕ xL

i ⊕ g(xR
i ⊕ kR

1 ) and Ti = kR
2 ⊕ yR

i ⊕ g(yL
i ⊕ kL

2 ), then

(yL
i , yR

i ) = Ψ̃(xL
i , xR

i )⇔ f(Si)⊕ kR
1 = Ti ⊕ xR

i and f(Ti)⊕ kL
2 = yL

i ⊕ Si.

Now observe that for all 1 ≤ i < j ≤ qc, Si 6= Sj and Ti 6= Tj (otherwise
σ ∈ Bad(k1, k2, g)). Similarly, for all 1 < i, j < qc, Si 6= Tj . In addition, it follows
again from the fact that σ /∈ Bad(k1, k2, g) that for all 1 ≤ i ≤ qc and 1 ≤ j ≤ qog ,
x′

i 6= Sj and x′
i 6= Tj . So, if σ /∈ Bad(k1, k2, g) all the inputs to f are distinct. Since

f is modeled as a random oracle, Prf,h[TΨ̃ = σ] = 2−(2qc+qof +qog)n (the cipher
transcript contributes 2−2nqc and the oracle transcripts contribute 2−qof n−qogn to
the probability). Thus, for every choice of k1, k2, g such that σ /∈ Bad(k1, k2, g),
the probability that TΨ̃ = σ is exactly the same: 2−(2qc+qof +qog)n. Therefore:
PrΨ̃ [TΨ̃ = σ|σ /∈ Bad(k1, k2, g)] = 2−(2qc+qof +qog)n.

The rest of the proof consists of using the above lemma and Propositions 1, 2
and 3, as well as Lemmas 1 and 2, in a probability argument. The idea is to first
express the adversary’s advantage as a function of how its distinguishing machine
behaves on specific transcripts. Then, these probabilities are re-expressed to
incorporate the conditions Bad and BadG. By basic manipulation of probabilities,
we can show that the adversary’s advantage is bounded above by the probability
of the conditions Bad or BadG occurring, plus the probability that the transcript
is inconsistent. An additional term of the form

(

qc

2

)

· 2−2n also appears because
of an application of the triangle inequality. The complete details are omitted due
to space constraints, though are available in the full version [GR04].

4 Conclusions

We resolved a fundamental open problem of the Even-Mansour work by demon-
strating that the underlying random permutation oracle could be instantiated
with a construction based on random function oracles. There are many avenues
for future work. For example, we may be able to apply our techniques to other
situations where random permutation oracles are useful. Also, there is a sizeable
gap between the best known key-recovery attack and the bound achieved in our
security proof. Perhaps that gap can be decreased by developing a variant on
the slide-with-twist that exploits the structure of our construction.
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