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Abstract. This paper proposes a new sieving algorithm that employs
a bucket sort as a part of a factoring algorithm such as the number
field sieve. The sieving step requires an enormous number of memory
updates; however, these updates usually cause cache hit misses. The
proposed algorithm dramatically reduces the number of cache hit misses
when the size of the sieving region is roughly less than the square of the
cache size, and the memory updates are several times faster than the
straightforward implementation.

1 Introduction

The integer factoring problem is one of the most important topics for public-key
cryptography, because the RSA cryptosystem is the most widely used public-key
cryptosystem, and its security is based on the difficulty of the integer factoring
problem. Over a few hundred bits, the number field sieve [1] is currently the
most fastest algorithm to factor an RSA modulus.

The number field sieve consists of many steps. It is known that the sieving
step is theoretically and experimentally the most time-consuming step. It is
noted that a straightforward implementation of the sieving step on a PC causes
a long delay in memory reading and writing, and the sieving program is several
dozen times faster if all memory accesses utilize the cache memory.

This paper focuses on memory access in the software implementation of the
sieving step on a PC, and introduces an algorithm that reduces the number
of cache hit misses. The experimental results confirm that the proposed sieving
algorithm is several times faster than that in the straightforward implementation.

2 Preliminaries

2.1 Number Field Sieve

This section briefly describes the number field sieve algorithm that is relevant
to the scope of the paper. Details regarding this algorithm can be found in (e.g.
[1]).
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Let N be a composite number and it will be factored. Find an irreducible
polynomial f(X) ∈ ZZ[X ] and its root M such that f(M) ≡ 0 (mod N). The
purpose of the sieving step is to collect many coprime pairs (a, b) ∈ ZZ2 such
that NR(a, b) = |a + bM | is BR-smooth and NA(a, b) = |(−b)deg ff(−a/b)| is
BA-smooth1. Such a coprime, (a, b), is called a relation.

We describe the line-by-line sieve (hereafter we simply referred to as line

sieve) as Algorithm 1, and it is the most basic algorithm used to find relations.
Hereafter, we omit the details on the algebraic side, because very similar algo-
rithms are used for the algebraic side. Algorithm 1 assumes that 2Ha elements
are allocated for array S. The sieving region may be divided if 2Ha is greater
than the suitable size for the implementation platform. The size of each ele-
ment, S[a], is typically 1 byte, and the base for log p is selected such that it does
not to exceed the maximum representable value of S[a]. In Step 8 in the inset,

Algorithm 1 (line sieve for rational side (basic version)).

1: for b← 1 to Hb

2: for all a (−Ha ≤ a < Ha), initialize S[a] to log NR(a, b)
3: for prime p← 2 to BR

4: Compute a ≥ −Ha as the first sieving point depending on b and p

5: while a < Ha

6: S[a]← S[a] − log p

7: a← a + p

8: Completely factor NR(a, b) for all a if S[a] < some threshold

the threshold is determined by considering the error generated by the logarithm
rounded to the nearest integer in Steps 2 and 6, and the omission of prime
powers2.

2.2 Large Prime Variation

If BR is close to or greater than Ha, the while-loop in Step 5 is hardly activated,
and the first sieving point computation in Step 4 may dominate the sieving time.
For this case, we can use the large prime variation. The changes compared to
the basic version are as follows:

1. Set the bound for p at Step 3 to BL
R ( < BR).

2. Relax the threshold at Step 8 in Algorithm 1.

The faster the primality testing and factoring for small integers greater than BL
R

become available, the more relaxed the threshold can become.

1 “x is y-smooth” means that all prime factors of x are less than or equal to y.
2 By regarding prime power pe as prime and log pe as log p, prime powers can be easily

incorporated into Algorithm 1.
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Based on the experience, the most time-consuming part in large prime vari-
ation is reading and writing to memory to update S[a] in Step 6. This paper
optimizes the memory read/write process.

2.3 Memory Latency of a PC

Recent PCs have incorporated cache memory, and cache memory can usually
be classified into several levels. A low level cache represents fast access but low
capacity. For better understanding, we provide an example. Let us consider the
Pentium 4 memory characteristics for logical operations performed by general
purpose registers as shown in Table 1.

Table 1. Pentium 4 Northwood [2, p.1-17,1-19,1-20]

Line size Size Latency

Register (4 B) 32 B 1

2
processor cycle

Level 1 cache 64 B 8 KB 2 processor cycles
Level 2 cache 64 B+64 B 512 KB 7 processor cycles
Main memory (4 KB) ≈1GB 12 processor cycles + 6-12 bus cycles

The memory system in a PC is constructed to provide good performance
for continuous address access, that is, random address access is very poor. A
line sieve algorithm updates S[a] by step p in Step 6 in Algorithm 1. When p is
greater than the size of cache memory, the updates seem to be random access.
A read from the main memory requires at least 12 + 6 × (2.53/0.533) = 40.5
processor cycles, where the Pentium 4 frequency is 2.53GHz and FSB is 533MHz,
according to Table 1. However, the user probably feels that the time required
for main memory access requires more processor cycles. An experiment shows
that the time for a random read from the main memory requires several hundred
processor cycles.

2.4 Previous Work

Sieving can be considered as waiting for memory because other steps in the in-
nermost loop are small and very simple, according to Steps 5 to 7 in Algorithm 1.
To overcome cache hit misses, [3] proposed the block sieving algorithm. There
are two differences between the basic version of the line sieve in Algorithm 1 and
the block sieving algorithm: the addition of Algorithm 2 between Steps 2 and 3,
and the initial p in Step 3 is modified to the smallest prime greater than BS

R.
The block sieving algorithm classifies factor base primes into smallish primes

(∈ (0, BS ]) and largish primes (∈ (BS , BL]), and updates each small region
whose size is HS

a by smallish primes. To achieve better performance, HS
a and

BS
R are set to approximately the size of the cache memory. Note that the com-

putation of the first sieving point in Step 3 in Algorithm 2 can be omitted if the
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Algorithm 2 (Additional steps from line sieve to block sieving algo-
rithm).

1: for aS ← −Ha to Ha step +HS
a

2: for prime p← 2 to BS

R

3: Compute a ≥ aS as the first sieving point
4: while a < aS + HS

a

5: S[a]← S[a] − log p

6: a← a + p

last sieving point computed in Step 4 is available. Focusing on the memory hier-
archy, the performance of the sieving step may be better optimized in order to
consider more parameters in classifying smallish primes in some environments.

3 Sieving Using Bucket Sort

The number of cache hit misses for smallish primes greatly decreases using the
block sieving algorithm described in Sect. 2.4; however, the sieving for largish
primes still generate many cache hit misses. This section describes the reduction
in the number of cache hit misses for largish primes using the bucket sorting
algorithm [4, Sect. 5.2.5].

As mentioned in Sect. 2.3, memory updates between close addresses are not
penalized, and the log p minuses which are memory update operations are com-
mutative. Sorting (a, log p) using key a can reduce the number of cache hit misses;
however, the sorting should be done very quickly, because the number of S[a]
updates is roughly 2Ha(log log BL− log log BS), that is, it is almost linear to Ha.
While complete sorting is not required and recent PC models have very large
memory capacity, we use the bucket sorting algorithm to address this issue.

3.1 Proposed Algorithm

The proposed algorithm replaces the largish prime sieving in Algorithm 1, that
is, the algorithm has the same function as Algorithm 1 for sieving largish primes.

The algorithm is based on bucket sorting. Let n be the number of buckets, and

r be
⌈nS

n

⌉

, where nS denotes the number of elements in S. Note that nS = 2Ha

for Algorithm 1. The algorithm comprises the continuous runs of Algorithms 3
and 4.

Algorithm 3 throws (a, log p) in the buckets, and Algorithm 4 updates S[a]
using the elements in the buckets.

3.2 Why Can Proposed Algorithm Hit Cache Memory?

Figure 1 forms the basis for the following discussion. We first consider Algo-
rithm 4. All elements in a bucket will only updates the memory in range r.
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Algorithm 3.

1: Let all buckets empty

2: for prime p← BS

R + 1 to BL

R

3: Compute a ≥ −Ha as the first sieving point
4: while a < Ha

5: Store (a, log p) to the
⌊

a + Ha

r

⌋

th bucket

6: a← a + p

Algorithm 4.

1: for all buckets that are numbered i (0 ≤ i < n)
2: for all (a, log p) in the bucket i

3: S[a]← S[a] − log p

S

�
�
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Fig. 1. Memory usage for buckets and S
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Thus,
r × (Size of each S[a]) ≤ (Size of cache memory) (1)

should hold. Next, we consider Algorithm 3. For each bucket, the addresses for
memory writes are continuous. It is sufficient if

n × (Size of cache line) ≤ (Size of cache memory) (2)

holds. Note that the cache memory can only be updated in units called cache
lines. We assume that the size of (a, log p) is less than the size of a cache line.
When combining (1) and (2), n exists if

nS × (Size of each S[a]) = (Size of S[•]) ≤ (Size of cache memory)2

(Size of cache line)
(3)

holds.
Let us consider a typical parameter using Table 1. The size of the cache

memory is 512KB, and the size of the cache line is 128B. Therefore, the right
hand side of (3) is 231 B. If we allocate each S[a] as 1 B, then S can occupy up
to 2GB. This means that the proposed algorithm is effective for most PCs. The
proposed algorithm increases the number of memory accesses, but dramatically
reduces the number of cache hit misses with appropriate prefetching.

3.3 Related Work

[5], which follows the inspiring work [6], independently proposed sieving hard-
ware, which sorts (a, log p). The paper does not consider the cache memory;
however, their algorithm is similar in that sieving is converted to sorting .

4 Optimizations and Improvements

This section considers optimization techniques and improvements to the pro-
posed algorithm.

4.1 (a, log p) Size Reduction

The size of a stored in a bucket can be reduced. a′ = a + Ha mod r is sufficient
to recover a, because a = ir + a′ − Ha for the ith bucket.

Moreover, the number of bits for log p can be reduced to 1 bit, because
(a, log p) can be generated in ascending order on p and log p in a bucket increases
very slow.

4.2 Number of Buckets

For efficient computation of Step 5 in Algorithm 3 and the technique described
in Sect. 4.1, r should be a power of 2 on most PCs.
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4.3 Hierarchical Buckets

Considering the idea of radix sort and cache hierarchy, Algorithm 4 can be
modified to Algorithms 3 and 4 using smaller buckets.

4.4 Reduction in Memory for Buckets

Consider the case that a PC does not have enough memory to allocate buckets
to store all (a, log p)s. Whenever a bucket is full at Step 5 in Algorithm 3, call
Algorithm 4 and empty the buckets.

4.5 Reduction in Sieving Memory S

First, perform sieving for largish primes using Algorithms 3 and 4. When exe-
cuting Algorithm 4, smallish prime can be sieved between Steps 1 and 2. In the
ith bucket, a is in [ir−Ha, (i+1)r−Ha). Thus, r elements for S[a] are sufficient
for the ith bucket.

Note that this idea cannot be used with the idea described in Sect. 4.4.

4.6 Bucket Reuse for Trial Division

The trial sieving algorithm [7] was proposed to reduce the time in Step 8 in
Algorithm 1. The algorithm acts almost the same as the sieving algorithm dis-
cussed above, but it only considers a small set of (a, b). When filling buckets in
Algorithm 3, store p in addition to (a, log p), and the buckets can be used for
trial sieving. This can reduce the computational cost of the first sieving points
for largish primes. However, storing p probably doubles the memory allocation
for the buckets. It may be a good idea to avoid storing small primes that are
classified as largish primes.

4.7 Application to Lattice Sieve

The idea behind the proposed algorithm can be applied to any algorithm if the
memory update operation is commutative. There are no problems in using the
proposed algorithm for the lattice sieve.

4.8 Tiny Primes

[8, p.334] suggests that S[a] is initialized by the logarithm of tiny primes. It can
be efficiently achieved by the following idea. First, compute the sieving pattern
for tiny primes, which are less than BT , and their small powers. Once the pattern
is computed, the initialization of S[a] can be done by duplicating the pattern by
adjusting the correct starting position.
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5 Implementation on Pentium 4

We implemented Algorithms 3 and 4 in the lattice sieve using all the techniques
in Sect. 4 except for Sect. 4.4 and last haf of Sect. 4.1 on a Pentium 4 (North-
wood) with 1GB main memory and 533MHz FSB. The specifications are the
same as those described in Table 1. The prime bounds are described in Table 2.
These names are from [9]. We tried to obtain the best Bs using the factor base

Table 2. Prime Bounds and Algorithms

Range Name Algorithm

p ≤ BT p: Tiny prime Sieving pattern
BT < p ≤ BS p: Smallish prime Block sieving

BS < p ≤ BL p: Largish prime Bucket sorting
BL < p ≤ B p: Large prime Primality testing and factoring

parameter for c158 as described in [10].

5.1 Parameter Selection

We assign 1B for log p and 4B for each (a, log p), because the smallest mem-
ory read and write unit is 1B and the basic memory data unit is 4B for the
Pentium 4.

On the factorization of c158, the sieving rectangle was 2Hc×Hd = 214 ×213.
To translate the rectangle to a line sieve case, we can interpret 2Ha = 214×213 =
227. The large primes in each relation and the values of BL

R and BL
A are unclear.

Therefore, we select two large primes for both sides in each relation, and set
BL

R = 30× 106, BL
A = 0.9×Q, and BS

R = BS
A = 512× 210, where Q denotes the

special-Q according to our factoring code, the primality testing for large prime
products, factor base bound for the line sieve, and the size of level 2 cache. We
tried the depths of 1, 2, and 3 for the hierarchical buckets with all powers of 2
for r, and found that the best hierarchy depth is 2. Surprisingly, the best rs are
not the combination of the size of the level 2 cache and level 1 cache, but 2MB
and 256KB.

Next, we tried to find the best BS
R and BS

A. Based on dozens of experments,
we find that BS

R = 2Hc and BS
A = 5Hc achieve almost the best performance.

Remark 1 We sieve prime powers less than
√

BL, and select BT
R = BT

A = 5.
Remark 2 We classify smallish primes into small sets taking into account the

size of the caches and sieving range.
Remark 3 After executing Algorithm 3, the numbers of elements in each bucket

are roughly the same. We found that a 2% difference is the largest in
our experiments.
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Remark 4 We used base-2 Solovay-Strassen primality testing [11, pp.90–91], and
ρ [11, pp.177–183] and SQUFOF [11, pp.186–193] as the factoring
algorithm for large primes.

5.2 Factoring Example

We factor 164-digit cofactor c164 in 21826+1 using GNFS, and 248-digit cofactor
c248 in 21642 + 1 using SNFS employing the above implementation. Refer to the
Appendix for detailed information. The parameters used in the factoring of c164
and c248 are summarized in Table 3. For comparison purposes, Table 3 also
includes the parameters used in the factoring of RSA-512 [12].

Table 3. Factoring Parameters for Lattice Sieve

Hc Hd BL

R BL

A B max sp-Q #sp-Q #LP rel/MY

c164 16 K 8 K 40 m 0.95Q 4 g 194 m 8.2 m 2+2 29 k
c248 16 K 8 K 0.95Q 100 m 4 g 200 m 10.2 m 2+2 22 k

RSA-512 4 K 5 k 16 M 16 M 1 g 15.7 m 308 m 2+2 14 k

k: 103, K: 210, m: 106, M: 220 g: 109, G: 230

rel/MY: Generated relations per MIPS year

The proposed siever yields more relations per MIPS year despite that c164 is
larger than RSA-512. However, a straightforward comparison should be avoided
because the characteristics of computers used for the above factoring are quite
different, and MIPS is not optimal for comparing the sieving complexity.

Remark 1 The lattice siever used for RSA-512 is intended to factor RSA-130 [12,
Sect. 3.2].

Remark 2 We timed MIPS using the output of a “BYTE benchmark.” We ob-
tained 3969679.6 lps for Dhrystone 2 without register variables. Thus,
MIPS is computed by 3969679.6/1767≈ 2246.6. This number is used
for c164 and c248 in column rel/MY.

Remark 3 We noticed that numbers larger than RSA-512 such as RSA-576 are
already factored using GNFS [13] and that their siever seems faster
than one that was used for RSA-512. However, not enough informa-
tion is provided to estimate the timings. We used the records that
were published and the largest values [12].

6 Conclusion

We proposed a sieving algorithm that cleverly uses the cache memory. The al-
gorithm accelerates the memory update processes in the sieving step to several
times faster than that of the simple log p subtraction. Moreover, we implemented
the proposed algorithm in the lattice sieve on a Pentium 4, and successfully fac-
tored a 164-digit number using GNFS, and a 248-digit number using SNFS.
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Appendix: Factoring parameters and statistics for c164

and c248

c164 and c248 are selected from Cunningham table [14].
c164 is the 164-digit cofactor of 21826 + 1. 21826 + 1 can be trivially factored

to 2, 1826L× 2, 1826M, where 2, 1826L = 2913 − 2457 + 1, and its several factors
are already known:

2, 1826L = 997× 2113× 10957× 46202197673× 209957719973

× 457905185813813× 9118425814963735020084050069

× 758984045239765414366290480154514089× c164

c164 is factored into two primes, p68× p97, where

p68 = 343346448861824465

46273008924242084634327089789559771215864092254849.

c248 is the 248-digit cofactor of 21642 + 1. 21642 + 1 can be trivially factored
to 2, 1642L×2, 1642M, where 2, 1642M = c248 = 2821 +2411 +1. c248 is factored
into two primes, p88 × p160, where

p88 = 75052937460116417664924678548932616036

64038102314712839047907776243712148179748450190533.

We used the polynomials described in Fig. 2 to factor c164 and c248.

c164poly =
8293702863045600 x5

+ 5627796025215486707 x4

+ 557524556427309931902111 x3

+ 176917216602508818430161036 x2

− 13601173202899548432935219131949 x

− 12171622290476241497444980012311021
M = 411268775932725752596939184846

c248poly =
x6

+ 2 x3

+ 2
M = 2137

Fig. 2. Polynomials used to factor c164 and c248
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Statistics are summarized in Table 4. CPU years for sieving are converted
for the Pentium 4 2.53GHz. Line sieve is used for c164 factoring, and it yields
49m relations. Free relations are not used for both factorings. Linear algebra is
computed by a 16 PC cluster with GbE using block Lanczos with 128-bit block.
The Pentium 4 is used for both factoring, but its frequency is about 2.53GHz
for c164 and 3.2GHz for c248. The programs used for the factoring are basically
the same except that minor improvements are included for c248. More detailed
information can be found at [15, 16].

Table 4. Statistics

Sieve Linear algebra
CPU years Yields Matrix size Row weight Calendar days

c164 7 458 m 7.5 m 167 12
c248 8.2 558 m 7.4 m 208 9.5


