
Constant-Round Authenticated Group Key

Exchange for Dynamic Groups ?

Hyun-Jeong Kim1??, Su-Mi Lee1, and Dong Hoon Lee2 ? ? ?

Center for Information Security Technologies(CIST),

Korea University, Seoul, Korea,

{khj,smlee}@cist.korea.ac.kr1, donghlee@korea.ac.kr2

Abstract. An authenticated group key exchange (AGKE) scheme al-
lows a group of users in a public network to share a session key which
may later be used to achieve desirable cryptographic goals. In the pa-
per, we study AGKE schemes for dynamically changing groups in ad hoc
networks, i.e., for environments such that a member of a group may join
and/or leave at any given time and a group key is exchanged without
the help of any central sever. Difficulties in group key managements un-
der such environments are caused by dynamically changing group and
existence of no trustee. In most AGKE schemes proposed so far in the
literature, the number of rounds is linear with respect to the number of
group members. Such schemes are neither scalable nor practical since the
number of group members may be quite large and the efficiency of the
schemes is severely degraded with only one member’s delay. We propose
an efficient provably secure AGKE scheme with constant-round. The pro-
pose scheme is still contributory and efficient, where each user executes
three modular exponentiations and at most O(n) XOR operations.

Keyword. dynamic authenticated group key exchange, ad hoc networks.

1 Introduction

Recently, secure and efficient AGKE protocols have received much attention with
increasing applicability in various collaborative and distributive group settings
such as multicast communication, audio-video conference, multiplayer game, etc.
In addition to provable security, the recent researches in group key exchange have
concentrated on the efficiency which is related to the costs of communication
and computation. Especially the number of rounds may be of critical concern in
practical environment where the number of group members are quite large and
a group is dynamic. As noted in [10], even in the case of a group where only few
members have a slow network connection, the efficiency of the protocol with n

? Supported by the Ministry of Information & Communications, Korea, under the
Information Technology Research Center (ITRC) Support Program.

?? A guest researcher at ESAT/SCD-COSIC,K.U.Leuven from 2003 to 2004.
? ? ? Supported by grant No. R01-2001-000-00537-0 from the Korea Science & Engineering

Foundation.

244

rounds for a group of n members can be severely degraded. Furthermore, it is
clear that a scheme with n rounds is not scalable.

In the paper, we design a secure and efficient dynamic AGKE protocol for
ad hoc networks [26]. Most group communication environments are dynamic,
where users can join and leave a group frequently. In particular, many group key
exchange protocols [1, 7, 20, 23, 25] have considered ad hoc networks, i.e., absent
fixed infrastructure. IEEE 802.11 standards [18] includes as a component an ad
hoc network environment such as IBSS (Independent Basic Service Set). Diffi-
culties in designing a secure and efficient dynamic group key exchange scheme
arise from the facts that a group key should be updated whenever a membership
changes and exchanged without any trustee.

1.1 Overview

Related Work: The security models and provably secure protocols for au-
thenticated static group key exchange have been first proposed by Bresson et al.

[11], in which the security models have been based on the secure 2-party key ex-
change models constructed by Bellare et al. [2, 5, 6]. Their scheme requires O(n)
rounds.

Authenticated static group key exchange protocols with constant round have
been proposed by Tzeng and Tzeng [24] and Boyd and Nieto [9]. In the protocol
[24] with a fixed constant-round, however, the cost of communication is very
high. Each member should compute n modular exponentiations for a group key
exchange and additionally perform 3n modular exponentiations for authentica-
tions, since non-interactive proof systems are used in the authentication process.
Boyd and Nieto have proven the security of the protocol [9] in the random ora-
cle model [4]. In [9], group members consist of one member called initiator and
other members called responders. While the responders only perform one signa-
ture verification, one decryption in a public cryptosystem and one operation of
one-way hash function, the initiator has a heavy burden caused by (n − 1) en-
cryptions in a public cryptosystem and one signature generation. Furthermore,
both of these protocols [9, 24] cannot provide forward secrecy.

Katz and Yung have proposed a scalable authenticated static group key
exchange protocol [19] which is based on [15] introduced by Burmester and
Desmedt. Burmester and Desmedt’s protocol provides 2-round and more effi-
cient computation rate of group members than previous protocols [9, 24]; each

member performs 3 modular exponentiations and (n2

2 + 3n
2 − 3) modular mul-

tiplications. However, Burmester and Desmedt’s protocol has not proposed any
authentication method and any clear security proof. In [19], Katz and Yung pro-
pose a scalable compiler which transforms a secure group key exchange protocol
into a secure authenticated group key exchange protocol. The compiler preserves
forward secrecy of an original protocol. As Katz and Yung adapt this compiler
to Burmester and Desmedt’s protocol, they construct a 3-round authenticated
static group key exchange protocol. Each member performs the same modular
computations as the protocol [15] and additionally performs 2 signature genera-
tions and (2n− 2) signature verifications. The rate of modular exponentiations

245

in [15, 19] is constant, but still the rate of modular multiplications is dependent
on the number of group members.

More recently, Bresson and Catalano have proposed a provably authenticated
static group key exchange protocol with 2-round in the standard model [10].
The protocol is based on standard secret sharing techniques. The protocol is
inefficient from a point of view of the computation rate. Each member should
perform more than 3n modular exponentiations, 3n modular multiplications, n

signature generations and n signature verifications.

For dynamic groups, Bresson et al. improved the protocol [11] into dynamic
group key exchange protocols in [12, 13]. However, Bresson et al.’s protocols do
not have constant-round; in their schemes, each group member embeds its secret
in the intermediate keying materials and forwards the results generated with the
secret to the next group member. This makes the number of rounds in setup/join
algorithms linear with respect to the number of group members. Though the
number of rounds in leave algorithm is constant-round, for the constant-round
leave algorithm all members should store data of which length is linear with
respect to the number of group members.

Bresson et al. [14] have introduced a provably secure authenticated group
key distribution protocol with 2-round in the random oracle model [4], which
is suitable for restricted power devices and wireless environments. They have
concentrated on an efficient computation rate of a group member with a mobile
device. In the protocol, however, there exists a base station as a trustee. The
computation rate of the base station is similar to the maximum rate of group
members in other protocols without any central server; n modular exponentia-
tions, n signature verifications, n one-way hash function operations, and n XOR
operations.

Our Contribution: We propose a 2-round dynamic AGKE protocol with-
out using any trustee. All legitimate members can also detect errors and stop
execution the protocol instantly, if invalid messages are broadcasted by cor-
rupted members. For dynamic group communications, we propose setup, join,
and leave algorithms with 2-round. In the setup algorithm, each group member
performs at most 3 modular exponentiations, 4 one-way hash function opera-
tions, and n XOR operations. Since the operation dependent on the number of
group members is the XOR operation, the total cost of computations can be
highly reduced, compared to the previous protocols. For authentication, each
group member generates 2 signatures and performs 2n signature verifications:
this computation rate is similar to other AGKE protocols using secure signa-
ture schemes [19]. Our join/leave algorithms are executed for generations of new
session keys, whenever some members join or leave. Simply, setup algorithms of
static constant-round AGKE protocols can be performed, whenever group mem-
bership changes. In our join/leave algorithms, however, the communication rate
and the total computation rate of group members are dependent on the number
of joining/leaving members. Therefore our joining/leaving algorithms are more
efficient than the setup algorithms with the rates dependent on the number of
total members, when the number of joining/leaving members is smaller than

246

the number of remaining group members. With reduced round complexity, our
protocol is still contributory; in our protocol, each member can participate in
the generation of a group key with a one-time random value without any trust
party.

In Table 1, we show efficiency analysis between our protocol and Bresson et

al.’s dynamic AGKE protocol (Bresson(Dyn)) [13]. While the number of round
in Bresson(Dyn) is depending on the number of group members, the proposed
scheme is of constant round without degrading efficiency. However, our protocol
cannot avoid the number of verification operations per each member increasing
as like other authenticated group key exchanges [19, 24]. Our further research is
to decrease or fix the number of verification operations. The following efficiency
measures, Round, Communication, Message and Computation are similar to the
measures defined by Katz and Yung in [19].

– Storage: the storage rate of a member.
– Round : the number of rounds during the execution of protocol.
– Comm.: the maximum number of bits that a member sends during the exe-

cution of protocol.
– Mess.: the total length of all bits transmitted during the execution of proto-

col.
– Comp.: the maximum computation rate of a member during the execution

of protocol.

Protocol Bresson(Dyn) Our Protocol

Storage Secret-|p|, Non Secret-N|p| Secret-3|h|

Setup Round N 2

Comm. N|p| + |σ| |p| + 3|h| + 2|σ|

Mess. O(N2)|p| + N|σ| O(N)(|p| + |h| + |σ|)

Comp. Ne + s + v 3e + 4h + (N + 1)x + 2s + O(N)v

Join Round O(Nj) 2

Comm. (N + Nj)|p| + |σ| |p| + 3|h| + 2|σ|

Mess. O(NNj)|p| + O(Nj)|σ| O(Nj)(|h| + |p| + |σ|)

Comp. (N + Nj)e + 2s + Nj v 3e + 4h + (Nj + 1)x + 2s + O(Nj)v

Leave Round 1 2

Comm. (N − N`)|p| + |σ| |p| + 3|h| + 2|σ|

Mess. (N − N`)|p| + |σ| N`|p| + (N + N`)(|h| + |σ|)

Comp. (N − N`)e + s 3e + 4h + (N + 1)x + 2s + (N` + N)v

Table 1. The analysis of efficiencies.

Notations of Table1: |σ|-the length of a signature, |h|-the output size of a hash function, |p|-the length of a prime

number p where p is an order of a cycle group G; N-the number of members, Nj -the number of joining members,

N`-the number of leaving members; s-the cost of a signing operation, v-the cost of a verifying operation, e-the cost

of a modular exponentiation, h-the cost of a hash function operation, x-the cost of a XOR operation. Note that

|h| ≤ |p| may be satisfied in general. We do not consider the post computation rates in our protocol.

247

2 The Model

In this section we present a security model for a dynamic AGKE protocol based
on [11, 12] by Bresson et al. and [19] by Katz and Yung.

Participants. A nonempty set U is a set of users who are able to participate in
an AGKE protocol P . Each user generates secret/public key pairs (sk, pk) and
the list of all public keys are known by all users. These key pairs are long-lived
and used for signature generation/verification. An adversary is not a participant,
but can control all communication on a network and corrupt group members.

Partnering. Whenever group membership changes, a new group Gv = {u1, · · · ,
un} is formed and each group member of Gv can obtain a new session key skv

through an instance performing P : the index v increases whenever group mem-
bership changes and G0 denotes the initial group. Πj

ui
denotes an instance j

of a group member ui. An instance Πj
ui

has unique session identifier sidj
ui

and
partner identifier pidj

ui
. After the group key exchange protocol P has been termi-

nated successfully, Πj
ui

has a unique session key identifier skj
ui

corresponding to
the session key skv. pid

j
ui

corresponds to a set of group members Gj
ui

= Gv\{ui}.
When the group key exchange protocol P has been successfully terminated in
the instance Πj

ui
, each member uk of Gj

ui
has an instance Πjk

uk
(1 ≤ k 6= i ≤ n)

containing {sidjk
uk

, pidjk
uk

, skjk
uk
} such that sidjk

uk
= sidj

ui
, pidjk

uk
= Gv \ {uk}

and skjk
uk

= skj
ui

: we state that the instances Πj
ui

and Πjk
uk

are partnered [19].

Protocol Model. A dynamic AGKE protocol P consists of the following algo-
rithms:

– Key Generation: With an input value 1k where k is a security parameter,
this probabilistic polynomial time algorithm outputs a long-lived key for
each user of U .

– Setup(G0): This algorithm starts the protocol P and the initial group G0 is
generated.

– Join(J , Gv−1): Inputs to this algorithm are a set of joining members’ identi-
ties denoted by J and the current group Gv−1. The output of this algorithm
is a new group Gv = Gv−1 ∪ J and all members of Gv share a new session
key skv secretly.

– Leave(R, Gv−1): Inputs of this algorithm are a set of leaving members’ identi-
ties denoted by R and the current group Gv−1. The output of this algorithm
is a new group Gv = Gv−1 \ R and all members of Gv share a new session
key skv secretly.

Security Model. We define the capabilities of an adversary. We allow the
adversary to potentially control all communication in the network via access
to a set of oracles as defined below. We consider an experiment in which the
adversary asks queries to oracles, and the oracles answer back to the adversary.
Oracle queries model attacks which an adversary may use in the real system.
We consider the following types of queries in this paper.

248

– Send(Πj
ui

, m): A sends a message m to an instance Πj
ui

. When Πj
ui

receives
m, it responds according to the group key exchange protocol. An adversary
may use this query to perform active attacks by modifying and inserting the
messages of the key-exchange protocol. Impersonation attacks and man-in-
the-middle attacks are also possible using this query.

– Setup(G0), Join(J , Gv−1), Leave(R, Gv−1): Using these queries, A can start
the Setup, Join or Leave algorithm.

– Reveal(Πj
ui

): A can obtain a session key sk which has been exchanged be-
tween the instance Πj

ui
and partnered instances, while ui’s long-lived key are

concealed. This query models known key attacks (or Denning-sacco attacks).
– Corrupt(ui): A can obtain ui’s long-lived key. In our protocol, we consider

adaptive corruptions [22]; in general, adaptive corruptions mean weak cor-

ruptions in which an adversary can obtain an honest member’s long-lived
key, but cannot obtain the member’s “ephemeral” keys.

– Test(Πj
ui

): This query is used to define the advantage of an adversary. A
executes this query on a fresh instance Πj

ui
at any time, but only once (other

queries have no restriction). When A asks this query, it receives a session
key sk of the instance Πj

ui
if b = 1 or a random string if b = 0 where b is the

result of a coin flip. Finally, A outputs a bit b′.

To define a meaningful notion of security, we must first define freshness.

Definition 1. An instance Πj
ui

is fresh if both the following conditions are true
at the end of the experiment described above:

(a) None of the instance Πj
ui

and its partnered instances has received an adver-
sary’s Reveal query.

(b) No one of ui and other members in Gj
ui

has received an adversary’s Corrupt

query before adversary’s Send queries.

Let P be a group key exchange protocol and let A be an active adversary
against P . When A asks a Test query to a fresh instance Πj

ui
in P , A receives the

result of the coin flip b which is either a session key or a random value and then
outputs a bit b′. If the probability that A correctly guesses the bit b is negligible,
P is secure in the sense that A cannot obtain any information about a session
key through re-keying broadcast messages. Let Adv

agke
A,P denote the advantage

for A’s guess over the result of a coin-flip in a Test query with P . Then, Adv
agke
A,P

is defined as follows.

Adv
agke
P,A = Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0] = 2 Pr [b′ = b]− 1.

We say that P is a secure AGKE if Adv
agke
P

= max
A
{Adv

agke
P,A } is negligible.

For the security of authentication, we consider the ability of A for imper-
sonation attacks against a group member ui in an instance Πj

ui
[11]. For imper-

sonation attacks, A should be able to forge a signature of the group member
ui in the instance Πj

ui
. If it is computationally infeasible that A generates a

249

valid signature with any message under a chosen message attack, we say that
the signature scheme is CMA-secure. Let Σ = (K,S,V) be a signature scheme
where K,S and V are key generation, signing and verification algorithms. For-
mally, let Succcma

Σ,A be a success probability of A’s existential forgery under a
chosen message attack against Σ. Then, we state that Σ is CMA-secure [21] if
Succcma

Σ = max
A
{Succcma

Σ,A} is negligible.

Let G = 〈g〉 be a group. Given gx and gy, CDH problem is to compute a
value gxy [17]. For the CDH problem, we consider a probability Succcdh

G
such

that

Succcdh
G,A = Pr [C = gxy|gx, gy ← G; C ← A(gx, gy)] ,

Succcdh
G = max

A
{Succcdh

G,A}

where A is a CDH attacker against a group G.

3 A Constant-Round AGKE Protocol

Our protocol is based on the Computational Diffie-Hellman (CDH) assump-
tion and a secure signature scheme Σ = (K,S,V). A group key space belongs
to {0, 1}` where ` is a security parameter. Let G = 〈g〉 be a cyclic group of
prime order p. g and p are public parameters and ` ≤ |p| is satisfied. Let
H : {0, 1}∗ → {0, 1}` be a one-way hash function.

Key Generation. Each user ui of U has a private/public key pair (skui
, pkui

)
for signing/verifying. The list of public keys is published to all users.

Setup. Let G0 = {u1, · · · , un} be an initial group. We consider a ring structure
among the members of G0, i.e., members’ indices could be considered on the
circulation of {1, · · · , n}. L(i) (R(i), resp.) means the left (right, resp.) index of
i on the ring for i ∈ {1, · · · , n}. Let I0 = IDu1 || · · · ||IDun

. Figure 1 shows the
example of this algorithm with four members.

– Round 1. Each member ui randomly chooses ki ∈ {0, 1}` and xi ∈ Z∗
p,

computes yi = gxi and keeps ki secretly. The last member un computes
H(kn||0). Each member ui generates a signature σ1

i = Sskui
(M1

i ||I0||0) where

M1
i = yi for 1 ≤ i ≤ n− 1 and M1

n = H(kn||0)||yn, and broadcasts M1
i ||σ

1
i .

– Round 2. All members receive (M 1
i ||σ

1
i)’s and verify σ1

i ’s. If some signatures
are not valid, this process fails and halts. Otherwise, ui computes tLi =
H(yxi

L(i)||I0||0), tRi = H(yxi

R(i)||I0||0) and generates Ti = tLi ⊕ tRi . The last

member un additionally computes T̂ = kn ⊕ tRn . Each member ui generates
σ2

i = Sskui
(M2

i ||I0||0) and broadcasts M2
i ||σ

2
i where M2

i = ki||Ti for 1 ≤ i ≤

n− 1 and M2
n = T̂ ||Tn.

250

���������
	��
�����������
�������������������� �! ! �"����#�! ! ���$��%�! ! ������&
' 	 ' � ' � ' �

(�)+* ��,���-���.���/)+*10�23 ��4
) �6587 9
:<;�= >) ! ! ����! ! ,�?

@BA
C�D�E�F�D�G H�IKJ�C�L�M�E -

> 		 �ON"P ��4 		 > 	� �ON"P # ��4 	� > 	� �ON�P % �K4 	� > 	� �6QR= (�"! ! ,�?�! ! N"P & �K4 	�

S

S

@BA
C�D�E�F�D�G H�IKJ�C�L�M�E�T
U�V) �6QR= N P�W�X ; Y P ; ! ! ����! ! ,�?
� U�Z) �OQ[= N P�\"X ; Y P ; ! ! ����! ! ,�?
��]) � U�V)$^ U�Z)

> �	 � (�! !]+	 > �� � (��! !]8�

S S

4 �	 4 ��

_"` G
G
a C�Mcb `�dce (���6QR= (�! ! (��! ! (�"! ! (�"! ! ,�?
f+C�G H g�hBC�i$j�LkH
D�H
a C�M

l V 	 � l Z 	 ��m
l V) �OQ[= N P W�X ; Y P ; ! ! e (� ! ! ,�?
� l Z) �6QR= N P \kX ; Y P ; ! ! e (� ! ! ,�?
��mn�6Q[= (� ! ! e (� ! ! ,�?

l V� � l Z� ��m l V� � l Z� ��m l V� � l Z� ��m

S S S

4 ��
> �� � (��! !]
� > �� �po]$! !]8�

4 ��

S

o]�� (� ^ U�Z�rq 4 �) �65
7 9
:
;�= > �) ! ! ����! ! ,�?

Fig. 1. Setup algorithm with G0 = {u1, u2, u3, u4}

– Key Computation. Session Key Computation: All members verify sig-
natures σ2

i ’s. If all signatures are valid, ui computes t̃Ri+1, t̃
R
i+2, · · · , t̃R

i+(n−1) (=

t̃Li) by using tRi :

t̃Ri+1 = Ti+1⊕ tRi , t̃Ri+2 = Ti+2⊕ t̃Ri+1, · · · , t̃Ri+(n−1) = Ti+(n−1)⊕ t̃Ri+(n−2).

Finally ui can check if tLi = t̃Li holds. Even though wrong messages (or no
message) are broadcasted by illegal members or system faults, honest mem-
bers can notice the errors through the above check process and then halt the
protocol. However, it is not easy to find who transmitted illegal messages.
When members want to find illegal members, all members participating in
this protocol should reveal their secret values xi’s. If the above check process
has been valid, all members have t̃Rn (= tRn). Then they can obtain k̃n from T̂

and check if H(k̃n||0) = H(kn||0) holds. Note that Key Control can be guar-
anteed by this check value and the one-way hash function H. All members
compute a session key like as

sk0 = H(k1||k2|| · · · ||kn−1||kn||0).

Post-Computation: Each member ui generates hL
i = H(yxi

L(i)||sk0||0),

hR
i = H(yxi

R(i)||sk0||0) and X = H(kn||sk0||0) and saves (hL
i , hR

i , X, sk0)

secretly. All members should erase other ephemeral data.

Join. Let Gv−1 = {u1, · · · , un} (v ≥ 1) be the current group and J = {un+1, · · · ,
un+n′} (n′ ≥ 1) be a set of new members. We divide Gv−1 into three parts
{u1}, {u2, · · · , un−1} and {un}, and consider u2 as an agent of {u2, · · · , un−1}.
For convenience of explanation, we allow that un+n′+1, un+n′+2 and un+n′+3

denote u1, u2 and un. In this algorithm, we consider a ring structure among
the members un+1, · · · , un+n′+3. Let G be the set {un+1, · · · , un+n′+3} and
Iv = IDu1 || · · · ||IDun+n′ . Figure 2 shows the example of this algorithm.

251

���������
	�����
 ����
 ����
 ������
�����	�����
 ������
������ ��!#"�$�% % ��!&"�'�% % ��!&"�(�% % ��!&"�)�% % ��!&"�*�% % ��!&"�+
, � , � , � , �

-�.0/ 	�12
�3���4�
�5 .0/7698:
9;
�. �=<?> @BABC�D E �. % % � � % % F2G

E �� �IHKJ $ E �� �IHKL
; ��

E �� �=MND - � % % F2G�% % H�J)

D O2P �
 O�Q�
 RNG

E �� �IHKJ +

E �� � - ��% % ST�

U�V W�X�Y�Z�X�[\�]�^�W�_�`2Y�a

E �� � - �K% % S��
; �� ; ��

bKc [[d W�`fe c�gfh - � �=MND - � % % - � % % - � % % - � % % - � % % F2G
i0W�[\ j klW�mon2_�\ X�\ d W�`

p P. �=MND H J�q�r C s J C % % � � % % F2G
 p Q. �=MND H J�tKr C s J C % % � � % % F2G�u d \ v 5 � �=R7
9S . � p P.&w p Q.
yxS�� - � w p Q�lz ; �� �=< > @ A C D E �. % % � � % % F2G

R

O P. �=MND H J�q�r C s J C % % h - � % % F2GB
�O Q. �=MND H J�t�r C s J C % % h - � % % F2GB
�R{�=MND - � % % h - � % % F2G

O2P �
9R R

D O2P �
 O�Q�
 RNG

O�Q�
9R O�P�
�O�Q�
�R

D O2P�
BO�Q�
 RNG D O2P�
 O�Q�
 RNG
, � , �

D O�P�
BO�Q�
 R|G

; �� ; �� ; ��
E �� �IH�J *
; ��

} } } } }

; ��
E �� �~xS#% % S �

; ��
E �� � - �K% % S��p P�
 p Q� ; ��

E �� � - ��% % S��

} } } }

O2P�
�O�Q�
9R

D O2P�
BO�Q�
 RNG D O�P�
BO�Q�
 R|G D O2P�
 O�Q�
 RNG D O2P�
BO�Q�
 RNG D O2P�
BO�Q�
 R|G

U�V W�X�Y�Z�X�[\�]9^�W�_�`2Y 3

}

Fig. 2. Join algorithm with Gv−1 = {u1, u2, u3, u4} and J = {u5, u6}

– Round 1. Each member un+i of G randomly chooses kn+i ∈ {0, 1}` and
xn+i ∈ Z∗

p, computes yn+i = gxn+i and keeps kn+i secretly. The member

un+n′+2 (= u2) computes yn+n′+2 = gX by using the secret value X instead
of xn+n′+2 and the member un+n′+3 (= un) computes H(kn+n′+3||v). Each
member un+i generates σ1

n+i = Sskun+i
(M1

n+i||Iv ||v) where M1
n+i = yn+i

for 1 ≤ i ≤ n′ + 2 and M1
n+n′+3 = H(kn+n′+3||v)||yn+n′+3, and broadcasts

M1
n+i||σ

1
n+i.

– Round 2. All members receive (M 1
n+i||σ

1
n+i)’s and verify σ1

n+i’s. Each mem-
ber un+i computes tLn+i = H(y

xn+i

L(n+i)||Iv ||v), tRn+i = H(y
xn+i

R(n+i)||Iv ||v) and

generates Tn+i = tLn+i ⊕ tRn+i. The member un+n′+3 additionally computes

T̂ = kn+n′+3⊕tRn+n′+3. Each member un+i generates σ2
n+i = Sskun+i

(M2
n+i||

Iv ||v) and broadcasts M2
n+i||σ

2
n+i where M2

n+i = kn+i||Tn+i for 1 ≤ i ≤

n′ + 2 and M2
n+n′+3 = T̂ ||Tn+n′+3. All members of {u3, · · · , un−1} compute

tLn+n′+2 and tRn+n′+2 by using X .

– Key Computation. Session Key Computation: All members verify
σ2

n+i’s. If all signatures are valid, each member un+i computes t̃Rn+i+1, · · · ,

t̃Rn+i+n′−1(= t̃Ln+i) by using tRn+i and checks if tLn+i = t̃Ln+i holds. Also, the
members u3, · · · , un−1 can check it by using tLn+n′+2 and tRn+n′+2. Finally all

members can obtain kn+n′+3 from T̂ and compute a new session key skv as
follows:

skv+1 = H(kn+1|| · · · ||kn+n′+3||v).

252

Post-Computation: Each new member un+i (1 ≤ i ≤ n′) generates hL
n+i =

H(y
xn+i

L(n+i)||skv ||v) and hR
n+i = H(y

xn+i

R(n+i)||skv||v). u1 and un respectively

compute hL
1 = H(yx1

n+n′ ||skv||v) and hR
n = H(yxn

n+1||skv ||v) instead of the pre-

vious value hL
1 (= hR

n). All members compute a new value X = H(kn||skv||v).
Each member ui saves hL

i , hR
i , X and skv secretly.

Leave. Let Gv−1 = {u1, u2, · · · , un} be the current group andR = {ul1 , ul2 , · · · ,
uln′′} with {l1, · · · , ln′′} ⊂ {1, 2, · · · , n} be a set of revoked members. Let N (R)
be a set of all left/right members of revoked members, i.e.,N (R) = {ul1−1, ul1+1,

· · · , uln′′−1, uln′′+1}. For generating a new group Gv = Gv−1 \R with a new ses-
sion key sv, a new Diffie-Hellman value should be shared between two mem-
bers ulj−1 and ulj+1 (1 ≤ j ≤ n′′). In this algorithm, we consider a ring
structure among members of Gv and we newly index the members as Gv =
{u1, u2, · · · , un−n′′}. Let Iv = IDn1 || · · · ||IDn−n′′ . Figure 3 shows the example
of this algorithm.

Gv−1 = {u1, u2, u3, u4, u5, u6}, R = {u3, u5}, Iv = IDu1
||IDu2

||IDu4
||IDu6

U1 U2 U4 U6

ki ∈ {0, 1}
`, xi ∈ Z

∗
p, σ

1
i = Sskui

(M1
i ||Iv||v)

Broadcast−Round1

M1
2

= gx2 , σ1
2

M1
4

= gx4 , σ1
4

M1
4

= H(k6||v)||g
x6 , σ1

6

?

Broadcast−Round2

tLi = H(hL
i ||Iv||v), t

R
i = H(hR

i ||Iv||v), Ti = hL
i ⊕ hR

i , T̂ = k6 ⊕ tR
6
, σ2

i = Sskui
(M2

i ||Iv||v)

M2
1

= T1 M2
2

= k2||T2

? ?

σ2
1

σ2
2

Session Key skv = H(k2||k4||k6||v)

Post-Computation

hL
1
, hR

1
, X

?

hL
i = H(hL

i ||skv||v), h
R
i = H(hR

i ||skv||v), X = H(k6||skv||v)

hL
2
, hR

2
, X hL

4
, hR

4
, X hL

6
, hR

6
, X

? ? ?

σ2
4

M2
4

= k4||T4 M2
6

= T̂ ||T6

σ2
6

(hL
1
, hR

1
, X) (hL

2
, hR

2
, X) (hL

4
, hR

4
, X) (hL

6
, hR

6
, X)

hR
2

= gx2x4 hL
4

= gx2x4

hR
4

= gx4x6 hL
6

= gx4x6

Fig. 3. Leave algorithm with Gv−1 = {u1, u2, u3, u4, u5, u6} and R = {u3, u5}

– Round 1. Each member uw of N (R) randomly chooses kw ∈ {0, 1}` and
xw ∈ Z∗

p, computes yw = gxw and keeps kw secretly. The member uln′′+1

computes H(kln′′+1||v). uw generates σ1
w = Sskuw

(M1
w||Iv ||v) where M1

w =
yw with w ∈ {l1 − 1, l1 + 1, · · · , ln′′ − 1} and M1

ln′′+1 = H(kln′′+1||v)||yln′′+1,

and broadcasts M1
w||σ

1
w.

253

– Round 2. All members of Gv verify signatures σ1
w ’s. If all signatures are

valid, each member ulj−1 (resp. ulj+1) of N (R) regenerates hR
lj−1 = y

xlj−1

lj+1

(resp. hL
lj+1 = y

xlj+1

lj−1). Then each member ui of Gv computes tLi = H(hL
i ||Iv ||v),

tRi = H(hR
i ||Iv ||v) and Ti = tLi ⊕ tRi . The member uln′′+1 additionally

computes T̂ = kln′′+1 ⊕ tRln′′+1. Each member ui generates a signature

σ2
i = Sskui

(M2
i ||Iv ||v) and broadcasts M2

i ||σ
2
i where M2

ln′′+1 = T̂ ||Tln′′+1,

M2
i = ki||Ti for other members except uln′′+1 of N (R) and M2

i = Ti for
members of Gv \ N (R).

– Key Computation. Session Key Computation: All members verify sig-
natures σ2

i ’s. If all signatures are valid, each member ui computes t̃Ri+1, t̃
R
i+2,

· · · , t̃R
i+(n−n′′−1)(= t̃Li) by using tRi . Finally, each member ui checks if tLi = t̃Li

holds. Then all members computes a session key as follows:

skv = H(kl1−1||kl1+1|| · · · ||kln′′−1||kln′′+1||v).

Post-Computation: Each member ui regenerates hL
i = H(hL

i ||skv||v),
hR

i = H(hR
i ||skv ||v) and X = H(kln′′+1||skv ||v) and saves hL

i , hR
i , X and

the session key skv secretly.

4 The Security

In this section, we prove the security of our protocol in the random oracle model.

4.1 Security Proof

The security of our protocol P is dependent on the probabilities Succcma
Σ and

Succcdh
G

, since an adversary A against P can obtain information about a ses-
sion key only by two methods: A successfully performs either signature forgery
attacks or CDH attacks. Even if random values ki’s were selected identically in
different instances, A could not get any information about a session key because
of the index v and the random hash oracle H. Our proof method is similar to
that in [14].

Theorem 1. Let A be an active adversary against our protocol P in the random

oracle model. Let qs be the number of Send queries and qH be the number of

queries to the hash oracle H. Then,

Adv
agke
P

≤ 2n · Succcma
Σ (t, qs) + 2qHq2

s · Succcdh
G

(t)

where n is the maximum number of group members and t is the adversary’s

running time.

Proof. We consider A’s attacks as a sequence of simulated protocols, which is
denoted by a sequence of games {Game0, · · · , Game3}. In each game, A executes
Test query and get a result of a coin flip b. Each Succi denotes an event in which

254

A’s a guessing bit b′ is equal to b in each Gamei. Each Gamei is simulated as
follows:
Game0: This game is equal to the real protocol P . All group members obtain
a pair of valid signing/verifying key and randomly choose ki’s and xi’s. In this
game, A’s advantage is equal to the advantage in the real protocol P . Thus,

Pr [Succ0] =
Adv

agke
P,A + 1

2
(1)

Game1: In this game, we consider a special event SigForge in which A executes a
Send query with a message m instead of a group member ui in an instance Πj

ui

and the message is verified and accepted by all group members. In particular, the
message m previously has not been used in any instances and a Corrupt(ui) query
has not been executed to the member ui. When the event SigForge occurs, this
game halts and A’s output b′ is determined randomly. The difference between
A’s outputs in games Game0 and Game1 is dependent on the event SigForge.
That is,

|Pr [Succ1]− Pr [Succ0]| ≤ Pr [SigForge] .

If one correctly guesses a member impersonated by A and the event SigForge

occurs to the member, one can be suceessful in the existential forgery against a
pair of signing/verifying key under CMA. Therefore we know that

Succcma
Σ,A(t, qs) ≥

1
n

Pr [SigForge] .

Finally, we get

|Pr [Succ1]− Pr [Succ0]| ≤ Pr [SigForge] ≤ n · Succcma
Σ,A(t, qs) (2)

Game2: In this game, a Diffie-Hellman triple (A = ga, B = gb, C = gab) is given.
Whenever two successive members ui and ui+1 should choose random values xi

and xi+1 and compute yi = gxi and yi+1 = gxi+1 , we simulate this game with
yi = Aci and yi+1 = Bci+1 where ci and ci+1 are random values in Z∗

p. Then a

hash value tRi (= tLi+1) is computed by using Ccici+1 . We know that this game
is equal to Game1 as long as ci and ci+1 are selected randomly. Therefore,

Pr [Succ2] = Pr [Succ1] (3)

Game3: In this game, a pair (A = ga, B = gb) is given and there is no information
about the Diffie-Hellman value C = gab. Whenever two successive members ui

and ui+1 should choose random values xi and xi+1 and compute yi and yi+1,
we simulate this game like Game2. However, when ui or ui+1 should broadcast
a message with a hash value tRi (= tLi+1), a random value r in {0, 1}` is used as
the hash value. Now, we consider an event Hash in which A detects the fact that
the broadcasted hash value tRi (or tLi+1) is incorrect by using A’s hash oracle
queries. This event is possible when A sends a correctly guessing value Ccici+1

to the hash oracle H and receives a hash value. At that time, A recognizes that
the value is different from the previous random value r. When the event Hash

occurs, this game is halted and A’s output b′ is randomly chosen. Therefore,

255

|Pr [Succ3]− Pr [Succ2]| ≤ Pr [Hash] .

Given (A, B) one can obtain a valid Diffie-Hellman value C if both of the
following situations occur; (1) two successive members compute yi = Aci and
yi+1 = Bci+1 and use a random value r as a hash value tR

i , (2) A executes a
hash oracle query with a correctly guessing value Ccici+1 after (1), i.e., the event
Hash occurs. Therefore

Succcdh
G,A(t) ≥ 1

qHq2
s

Pr [Hash] .

Finally, we get

|Pr [Succ3]− Pr [Succ2]| ≤ Pr [Hash] ≤ qHq2
s · Succcdh

G,A(t) (4)

Furthermore, A has no advantage for guessing a coin-flip bit b in this game
since the hash oracle H has been supposed the random oracle and each input of
the hash oracle is used only once owing to the index v. Therefore Pr [Succ3] = 1

2 .

From the above results, the theorem is proved. �

4.2 Forward Secrecy of AGKE Protocol

For a secure group key exchange protocol, forward secrecy is one of essential
security requirements. Forward secrecy means that the compromise of one or
more members’ long-lived keys should give no information for the compromise
of any earlier session key.

In an AGKE protocol, a member’s long-lived key is the member’s signing key
for authentication. Most dynamic AGKE protocols have considered an adversary
with weak corruption ability and have guaranteed forward secrecy for a mem-
ber’s signing key. Bresson et al.’s protocols [12, 13] have offered forward secrecy
for a member’s signing key. However, another secret value of a member (really,
it is an exponent) is as important as a signing key. If a member’s exponent is
revealed, earlier session keys can be revealed as well as later session keys. Fur-
thermore, unless a member is a leader of a group, the member’s secret exponent
key never changes from joining to leaving. Therefore the secret exponent should
be definitely considered as a long-lived key, even though the value is saved in a
smart card. Also, in Bresson et al. [14], forward secrecy for a member’s signing
key can be guaranteed, but forward secrecy for a member’s Diffie-Hellman value
cannot be guaranteed: a member’s Diffie-Hellman value is never changed until
the member leaves. Therefore this value should be also considered as a long-lived
key.

In our AGKE protocol, a member secretly keeps a signing key as a long-
lived key and three hashed values as short-lived keys: every time a session key is
changed, member’s short-lived keys are also changed. In the paper we consider
and prove forward secrecy for member’s long-lived key, but our protocol also
guarantees forward secrecy for member’s short-lived keys. When an adversary
obtain some members’ short-lived keys, it can obtain later session keys, but

256

cannot obtain previous session keys easily. Therefore our protocol can guarantee
forward secrecy against an adversary with strong corruption capability [22] in
which an advasary can obtain a member’s short-lived key as well as the member’s
long-lived key.

5 Conclusion

We have proposed an efficient and secure constant-round AGKE protocol for
dynamic groups in the random oracle model. We note that each membership
change in dynamic group could be handled by running other constant round
static AGKE protocols from scratch. But our Join and Leave algorithms are
more efficient than Setup algorithms of other constant round AGKE protocols
for static groups when the number of joining/leaving members is smaller than the
number of remaining group members. Hereafter, research in a provably secure
constant-round AGKE protocol for dynamic groups under standard assumptions
should be studied.

References

1. N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks. In Computer
Communication, pp.1627-1237, 2000.

2. M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to The Design
and Analysis of Authentication and Key-Exchange Protocols. In Proc. of the 30th
Annual Symposium on the Theory of Computing (STOC), ACM Press, 1998.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In Advances in Cryptology - Eurocrypt’00, LNCS 1807,
Springer-Verlag, pp.139-155, 2000.

4. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS’93, 1993.

5. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Ad-
vances in Cryptology - Crypto’93, LNCS 773, Springer-Verlag, pp.232-249, 1994.

6. M. Bellare and P. Rogaway. Provably Secure Session Key Distribtuion: The Three
Party Case. In Proc. of the 27th Annual Symposium on the Theory of Computing,
ACM Press, 1995.

7. J. Binkley. Authenticated Ad Hoc Routing at The Link Layer for Mobile Systems.
In Wireless Network, 1999.

8. V. Boyko, P.D. MacKenzie and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In Proc. of Eurocrypt 2000, LNCS 1807,
Springer-Verlag, pp.156-171, 2000.

9. C. Boyd and J.M.G. Nietio. Round-Optimal Contributory Conference Key Agree-
ment. In Proc. of Public-Key Cryptography, LNCS 2567, Springer-Verlag, pp.161-
174, 2003.

10. E. Bresson and D. Catalano. Constant Round Authenticated Group Key Agree-
ment via Distributed Computation. In Proc. of PKC 2004, LNCS 2947, Springer-
Verlag, pp.115-129, 2004.

11. E. Bresson, O. Chevassut and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange. In Proc. of the 8th ACM Conference on Computer
and Communications Security, pp.255-264, 2001.

257

12. E. Bresson, O. Chevassut and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange-The Dynamic Case. In Advances in Cryptology -
Asiacrypt’01, LNCS 2248, Springer-Verlag, pp.290-309, 2001.

13. E. Bresson, O. Chevassut and D. Pointcheval. Dynamic Group Diffie-Hellman Key
Exchange under Standard Assumptions. In Advances in Cryptology - Eurocrpt’02,
LNCS 2332, Springer-Verlag, pp.321-336, 2002.

14. E. Bresson, O. Chevassut, A. Essiari and D. Pointcheval. Mutual Authentication
and Group Key Agreement for Low-Power Mobile Devices. In The Fifth IEEE
International Conference on Mobile and Wireless Communications Networks, 2003.

15. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution
System. In Pre-proceedings of Eurocrypt’94, pp.279-290, 1994.

16. L. Chen and C. Kudla. Identity Based Authenticated Key Agreement Protocols
from Pairings. In 16th IEEE Computer Security Foundations Workshop (CSFW-16
2003), pp.219-233, 2003.

17. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transanc-
tions on Information Theory, vol.IT-22(6), pp.644-654, 1976.

18. IEEE Std 802.11. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specification, 1999 edition.

19. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.
In Advances in Cryptology - Crypto’03 , LNCS 2729, Springer-Verlag, pp.110-125,
2003.

20. H. Luo and S. Lu. Ubiquitous and Roubust Authentication Services for Ad Hoc
Wireless Networks. In Technical Report, 2000.

21. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. In Journal of Cryptology, 13(3):361-396, 2000.

22. V. Shoup. On Formal Models for Secure Key Exchange. In Technical Report RZ
3120, IBM Zurich Research Lab., 1999.

23. F. Stajano and R. Anderson. The Resurrecting Duckling: Security Issues for Ad-
hoc Wireless Networks. In AT&T Software Symposium, 1999.

24. W.-G. Tzeng and Z.-J. Tzeng. Round Efficient Conference Key Agreement Proto-
cols with Provable Security. In Advances in Cryptology - Asiacrypt’00, LNCS 1976,
Springer-Verlag, pp.614-628, 2000.

25. L. Venkatraman and D. P. Agrawal. A Novel Authentication Scheme for Ad Hoc
Networks. In WCND’00, 2000.

26. L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. In IEEE Network, 1999.

