Some Attacks Against a
Double Length Hash Proposal

Lars R. Knudsen' and Frédéric Muller?

! Department of Mathematics, Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark
Lars.R.Knudsen@mat.dtu.dk
2 DCSSI Crypto Lab
51, boulevard de La Tour-Maubourg 75700 PARIS 07 SP
Frederic.Muller@sgdn.pm.gouv.fr

Abstract. At FSE 2005, Nandi et al proposed a method to turn an
n-bit compression function into a 2n-bit compression function. In the
black-box model, the security of this double length hash proposal against
collision attacks is proven, if no more than 9(22"/3) oracle queries to the
underlying n-bit function are made.

We explore the security of this hash proposal regarding several classes of
attacks. We describe a collision attack that matches the proven security
bound and we show how to find preimages in time 2". For optimum
security the complexities of finding collisions and preimages for a 2n-bit
compression function should be respectively of 2" and 22". We also show
that if the output is truncated to s < 2n bits, one can find collisions in
time roughly 2°/ and preimages in time roughly 2°/2.

These attacks illustrate some important weaknesses of the FSE 2005
proposal, while none of them actually contradicts the proof of security.

1 Introduction

1.1 Hash Functions

Cryptographic hash functions are important primitives in cryptology. They are
used in a wide range of applications including message integrity, authentication
schemes or public key encryption schemes. Most importantly, they are used to
speed up digital signature schemes, which otherwise would be slow and unlikely
to be implemented widely. A cryptographic hash function takes an input of
arbitrary size and produces an output, also called the hash value, of a fixed,
predetermined size. In practice there is a limit for the length of the input, but
typically this is chosen big enough for all practical applications. The important
properties of a cryptographic hash function are :

— collision-resistance : it should be difficult to find a pair # 2’ of inputs to
the hash function H such that H(x) = H(z')

— 2nd preimage-resistance : it should be difficult, for a given z to find 2’ # x
such that H(x) = H(z')

— preimage-resistance : it should be difficult, for a given y to find = such that
H(z) =y

There are generic attacks which apply to any hash function. If the size of the
hash value is n bits, then it is well-known that collisions can be found in time
27/2 and preimages can be found in time 2”. For 2nd preimages, the complexity
of generic attacks ranges between 2%/2 and 2", depending on the length of the
target message. Recent results by Kelsey and Schneier show that the complexity
can be only 2"/2 if the length of the target message is also 2*/2 [10]. In general,
hash functions are built by iterating a basic function called the compression
function. Attacks can target either the full hash function or the compression
function only, although there are connections between both approaches.

1.2 Recent Results in Attacking Hash Functions
Many advances have been made recently for hash function cryptanalysis :

— Some important weaknesses have been shown for popular algorithms. It is
the case of MD4 [7,17], MD5 [19], SHA-0 [2, 4, 20] and SHA-1 [18], for which
it was shown how to find collisions much faster than 2"/2. These results
illustrate some weaknesses of the underlying compression functions.

— The generic construction itself could be at risk. Most hash functions are
iterative and are built using the Merkle-Damgard method [6,12]. Recent
results suggest that this construction is not necessarily a good choice [9, 10].

— Computing power is always growing. Attacks with complexity 264 are already
accessible using distributed computing. And attacks with complexity 28° may
also soon be feasible. Therefore hash functions with output size < 160 bits
are not a good choice for long term security.

In light of all this, more work is probably needed for hash function design. In
particular, it is believed that a good solution is to increase the size of the internal
state. This idea has been independently proposed by Lucks [11], Hirose [8] and
Nandi et al.[14]. Unfortunately the output size of most available compression
functions is not large enough, so one needs to design compression functions
with an increased output length. Rather than building a new primitive from
scratch, Nandi et al. suggested to use a secure m-bit compression function, in
order to build a larger compression function (of size 2n-bit for example). The
small compression function could then be instantiated with one of the available
function, or with a block cipher in the Davies-Meyer construction. An interesting
argument for this new construction is that its security has been proven, using
some assumptions on the underlying "small" compression function.

1.3 Our results

In this paper, we focus on the security of the new double length hash proposal
of FSE 2005 [14] against all usual attacks. Regarding the proven security, the
authors have only focused on collision attacks, so one may hope to find (second)

preimage attacks without contradicting the security proof. Another interesting
open problem is to find a collision attack that matches the security proof claimed
in [14].

First, we show that a collision can be found for this proposal in time 227/3,
which fits the proven security bound (but a generic attack on a 2n-bit function
would cost 2™). Secondly, we show that preimages can be found in 2", while the
best generic attack on a 2n-bit compression function costs 227.

An interesting question is how these results would apply to a full hash func-
tion built using the FSE 2005 compression function. Iterated constructions gen-
erally require the compression function to be collision-resistant in order to guar-
antee the security of the full hash function. This is the case of the popular
Merkle-Damgard construction [6,12]. Another example was given at Crypto’05,
where Coron et al. revisited the Merkle-Damgard construction [5]. In their anal-
ysis, the compression function is modeled as a random oracle.

Sometimes the iterative structure even allows to find better attacks against
the full hash than against the compression function alone, as demonstrated in [9,
19]. However we did not take into account such scenarios.

1.4 Notions of security for truncated hash

We introduce new notions of security for compression functions and hash func-
tions. These notions are the near-preimage resistance and the near-collision
resistance. The idea is that it should remain difficult to find collisions or preim-
ages on a truncated version of the function. It is often easier to find "near" attacks
than attacks against the full hash. This was illustrated in the case of the SHA
family where Biham and Chen first described near collisions [1] before "real"
collision attacks were later demonstrated |2, 18].

There are important motivations for taking into account near-collision and
near-preimage attacks in practice. First, truncating the output diminishes the
size of the hash value. This can be critical to reduce data storage or to reduce the
communication complexity (case of MAC’s for instance). When it is estimated
that s bits are a sufficient level of security, it is customary to truncate the output.
In some case, this even helps to prevent some attacks (it makes more difficult to
detect internal collisions in MAC algorithms, for instance).

Secondly, another motivation is that new hash functions may need to re-
main compatible backward with former applications. For instance, an output
of size 160 bits may be needed for compatibility with systems that previously
implemented SHA-1. Therefore it is likely that new designs may end up being
truncated for practical purpose. A nice illustration of hash function truncation
is given by the SHA-2 family [15] : intermediate hash sizes (224 bits and 384
bits) are obtained by truncation of the larger hash sizes (256 bits and 512 bits).

It is expected that the best attacks against truncated hash function remain
generic attacks. If the output size is reduced from n to s bits, then the best
collision attack should cost 2%/ steps and the best preimage attack should cost
2% steps. In their original paper, Biham and Chen [1] considered near preimages
where the truncated positions are freely chosen by the attacker. With

these additional degrees of freedom, the task of the attacker is easier, because
he can first test several messages and choose the truncated positions only after-
wards. For example, it is very easy to find a near preimage for SHA with s = 80
when the attacker can choose the truncated positions. However, such scenarios
are not very realistic in practice, so we only focus on near attacks where
the truncated positions are predetermined.

On the one hand, the security of a truncated hash function is unlikely to drop
dramatically compared to the full version. Suppose that one can find preimages
in time T for a s-bit truncated output. Then, for a given n-bit challenge v,
an attacker can simply truncate y to s bits and obtain a preimage z for the
truncated value. Then, s bits of the initial challenge are already satisfied by z,
and the attacker can simply hope that the remaining n — s bits also satisfy the
challenge. Therefore a preimage attack for the full hash should cost :

T'=Tx2""*

However there is no guarantee. The previous relation is true for most designs,
but there may also exist special designs where this is not true.

On the other hand, truncated the hash function may improve the level of
security. This situation has been observed for MAC algorithms where truncation
sometimes prevents the detection of internal collisions. Therefore, it is interesting
to analyze how the complexity of an attack changes when the output is truncated.
For instance, the FSE 2005 double length hash proposal [14] has a security
regarding collision attacks proven with a bound of 22"/3. Thus, it is very tempting
to truncate its output to

2x(2n/3) =4n/3

bits only, since it appears to be the highest security one can achieve. Unfortu-
nately, in that case, we show that collision attacks would become much easier
than 22%/3. More generally, when the hash output is truncated to s < 2n bits,
we show how to find collisions in time 2%/3 and preimages in time 2%/

2 Description of the Double Length Compression
Function

A compression function is a function F : {0,1}"™ — {0,1}" where m > n.
Suppose that F' requires t calls to either

— a block cipher of block size [.
— a smaller compression function with inputs of [bits

Then, the rate r of F is generally defined as the ratio :

m—n
tl

T =

It represents the amount of data compressed for each application of the block
cipher (or the smaller function). Achieving a compression function with a ratio

r =1 and which is practical seems to be a very difficult task [3]. In their paper,
Nandi et al. [14] introduce two new constructions of respective rates r = 1/3
and r = 2/3. The attacks against both proposals are essentially the same, so we
consider first the compression function of rate 1/3.

Let f; : {0,1}?" — {0,1}" be independent random functions, for i = 1,2, 3.
We define the double-length compression function F : {0,1}3" — {0,1}?" by :

F(x,y7z) = (F1($7y72) | Fg(x7y,z))
= (fl(may) D fz(y,Z) | fz(y,Z) D f3(2,$))

This function has a rate of 1/3 : it compresses one block of n bits with 3 evalua-
tions of the "small" f; functions. This construction is also illustrated in Figure 1.

—< |- X
|-————
l—— N

Fig. 1. The double length 1/3-rate construction of FSE 2005

Similarly, a function with rate 2/3 is proposed in [14]. The idea is to in-
stantiate all the f;’s with a block cipher using keys of length 2n bits, in the
Davies-Meyer construction. This allows to compress an input of 4n bits into an
output of 2n bits, thereby improving the ratio from 1/3 to 2/3. This construction
could be instantiated with AES-256 for instance.

3 Collisions

In [14], it is proven that no collision can be exhibited for the proposed 2n-bit
compression function with less than (2(22"/ 3) queries to the three underlying
n-bit functions. In addition, it is described how to match this bound.

First, we quickly remind the attack proposed by the designers. Then we
argue that the number @ of oracle queries is not the proper way to estimate the
complexity of a collision attack. We denote the actual time and memory needed

for the attack by 7' and M : while the original attack is such that Q = 2"/, the
authors of [14] do not give many details about its complexity. Apparently their
attack requires T'= M = 2". Using additional tricks, we propose a better attack
which satisfies Q = T' = M = 22"/3, We do not take into account constant and
logarithmic factors to evaluate the complexities of all attacks.

3.1 The original attack

Let us pick at random 2"/3 values for x, y and z. We call these values z;, y; and
2z for i = 1...2"/3. Compute for all pairs (i, j),

Aij = fi(zi,y))

Then store all results in a table T4 (i, j) with 22*/3 entries. Similarly, compute
Bij = f2(yi: %)

and store in a table T5(i, j). Finally, compute
Cij = fs(zi, ;)

and store in a table T (7,). At this point Q = 3 x 227/3 queries have been made
to the n-bit compression functions.

Now consider all triplets (x;,y;, z). There are 2" such triplets and the com-
pression function F' produces 2n-bit outputs. So the birthday paradox tells us
that, with good probability, two triplets will give a collision on F. One table
lookup to T4, one to Tz and one to T¢ are sufficient to evaluate each F'(z;, y;, 21),
so no new oracle query is needed. After computing the 2™ outputs, we store them
in a table and sort it, in order to detect if an element appears twice. Therefore
a collision is expected to be found with Q = 22"/3 and T = M = 2.

3.2 A better attack

While the notion of oracle queries is useful for a security proof, it is not relevant in
practice : specifications of a hash function are typically public, so an attacker can
evaluate off-line the functions f;. It is therefore not natural to make a distinction
between the time needed for the) oracle queries and the rest of the analysis.
According to the security proof of [14] any generic attack needs to evaluate at
least 22"/3 times one of the n-bit compression functions. Therefore

T> 22n/3

for any generic collision attack. In this section, we describe how to reach this
lower bound. Fix one of the inputs of F, for instance let y = yo. Then, consider
227/3 random values of z and z. We denote these values by x; and z; for i =
1...227/3 Compute, for all 4,

A; = fi(zi,90)

and store the results in a table T4. Similarly, compute for all ¢

Bi = f2(yo, i)

and store the results in a table Tz. Both tables have 227/3 entries.

Next, fix an arbitrary 2n/3-bit pattern o and compute all pairs of elements
(A; € Ta, Bj € Tg) such that A; & B; starts by « in its 2n/3 least significant
bits. There are

such pairs. They can be obtained with 22"/3 computation. This merging of T
and T’p under the constraint of the pattern a can be done by first XORing a to all
the elements of T4, then sorting Tz, and finally searching for a collision between
the two tables. This costs 22*/% in time and memory. Such merging algorithms
have been known for a long time by the folklore but have been thoroughly studied
by Wagner in [16]. The resulting table is noted T'= T4 <, T5.

Finally, compute F for the 22*/3 triplets (x4, yo, zj) corresponding to elements
of T'. It is guaranteed that the 2n-bit output always starts by the prefix a. Hence
the probability of collision among two such triplets is 2-41/3 instead of 272",
Since there are 22/3 triplets to test, the birthday paradox tells us that a collision
is expected. To summarize, our improved collision attack requires about

T = 22n/3

computations steps, which is an optimal result, according to the security proof
of [14]. The memory required is of the order of M = 22/3,

For an ideal compression function with a 2n-bit output, finding a collision
should require the computation of 2" function values. Therefore the FSE hash
proposal is not optimal. Also, one might be tempted to truncate the output
of the F;-functions, e.g., to 2n/3 bits each, thereby obtaining a hash result of
s = 4n/3 bits. However, as we shall show next, this enables one to find collisions
in time less than 22"/3.

3.3 Near-collisions

If the output of F' is truncated to s < 2n we show how to find a near-collision
with 7" = 2%/3, that is, two inputs to F which are equal in s fixed bit-positions.

When F; and Fy are truncated by the same number of bits, the method is
exactly similar to the one above, replacing 2n by s.

Fix the input y of F to a value yo. Then, consider 2°/3 random values of z
and z. We denote these values by z; and z; for i = 1,...,2%3. Compute, for all
i, A; = f1(zi,yo) and store the results in a table T4. Similarly, compute for all i
B; = f2(yo, z;) and store the results in a table Tz. Both tables have 25/3 entries.
In both tables, we truncate the outputs of fi; and fo as it is done in F'. Then,
we fix an arbitrary s/3-bit pattern 8 on the s/2 remaining bits, and merge T4

and T’p according to this pattern. We use the same algorithm as in Section 3.2.
The result is a table T'= T4 <, T containing :

23/3 % 28/3
2s/3

_ 23/3
elements of s/2 bits. Finally, we apply F' to all triplets (z;,y,2;) of T It is
guaranteed that the first s/3 bits of all outputs of Fy are equal to 3. Hence the
probability of having a collision among two such triplets in all the s bits is only
2-25/3 instead of 27°. Since there are 25/3 triplets to test, the birthday paradox
tells us that a collision is expected.

Now suppose F} is truncated to s; bits and F5 is truncated to s bits, with
s = s1+s2. The pattern § has length s/3 bits, while the elements in 7" have length
s1 bits. So when s; < /3 we may have problems in the previous algorithm. In
that case, we need to exchange the roles of F; and F5, but the idea remains
essentially the same.

To summarize, independently of how the truncation is made, we find a near-
collision in s bits with about 7' = 2%/3 computation. The memory required is
also of the order of M = 25/3. The number of oracle queries is also of Q = 2%/3

4 Preimages

For a 2n-bit compression function, it is expected that 22" evaluations should be
needed in order to find an input x that maps to y = F(z) for a given challenge y.
This requirement is generally expressed as preimage resistance. Unfortunately,
the hash proposal of [14] does not satisfy this property. In this section, we de-
scribe a preimage attack with complexity of 2" steps.

4.1 The preimage attack

Let h be a given target of length 2n bits. Our goal is to find a preimage (z,y, 2)
such that F(z,y,z) = h. We can rewrite h as (h1, h2) and re-express our goal
as :

Fl(x,y,z)=f1(x,y)€Bf2(y,z)=h1 (1)
Fz(ﬂi,y,z)ng(y,z)@fg(z,ﬂi):hg (2)

The basic idea is to consider many triplets (x,y, z), and to first eliminate those
which do not satisfy (1). Actually, merging algorithms can again be used to
check this constraint efficiently. If there are enough remaining candidates, one is
expected to satisfy (2).

More precisely, let us fix an arbitrary y and compute, for all possible z,
Az = fi(z,y). Results are stored in a table T4 with 2" entries. Similarly, we
compute all B, = fa(y, z) and store the results in a table Tz. Using a merging
algorithm [16] as in Section 3.2, we compute

T = TA >y, TB

T contains all pairs of (A,, B.) such that A, ® B. = hq, so there should be :

2" x 2™
277,

entries. The corresponding time complexity is about 2". By construction, all
triplets (z,y, z) in table T satisfy relation (1). Then we compute Fy(x,y, z) for
each of them. We expect that he will be reached, since the probability for a
random triplet to satisfy (2) is 27". Therefore T should contain one preimage
by F for the target h = (hy, ha).

To summarize, we propose a preimage attack against the proposal of [14]
with time complexity of T = 2" computation steps. In addition, the memory
requirement is about M = 2". The number of oracle queries to the function f;’s
is also about 2™.

For an ideal compression function of 2n bits, finding a preimage should re-
quire about 22" computation. As was the case for collisions, it is next shown
that truncating the output of the hash function will not give ideal security for
the truncated construction.

4.2 Near-preimages

Let h be a given target of length s < 2n bits. We can find a preimage (x,y, 2)
such that F(z,y,z) truncated to s bits yields h in time roughly 2°/2. If both
functions F;’s are truncated to s/2 bits, then the method is in essence the same
as in the previous section, simply replace n by s/2.

Suppose that both halves of the hash proposal are not truncated equally. For
instance, F is truncated to s; bits and F5 to sy bits, with

S1+ 82 =38

Without loss of generality, we suppose that s; > s/2 > so. In this case, we fix an
arbitrary value of y and consider 2°/2 arbitrary values of z and z. We compute
all f1(z,y) and store in table T4 and similarly compute all f2(y, z) into a table
Tp. As in the previous section, we truncate the elements in both tables, and
then use a merging algorithm. We verify the constraint on the s; bits of h;. The
result is a table

T = TA >p, TB
of size
s/2 s/2
25/2 x 28/ _ gos1 _ o
251

At this point, we are sure to hit the target h; for all triplets of T'. Since there are
22 such triplets, one of them should also hit the target ho and therefore provide
a valid preimage.

Therefore, if the double length hash is truncated to s bits (it does not matter
which bits of the output are removed), then a preimage attack costs only 2°/2.

5 Application to the 2/3 rate compression function

[14] also specifies a rate 2/3 compression function and gives an example of an im-
plementation of the scheme using a block cipher as the underlying cryptographic
primitive. Here we give only the generic description of the proposal using ran-
domly chosen functions as building blocks.

Let f; : {0,1}3" — {0,1}" be independent random functions, for i = 1,2, 3.
Define the compression function F : {0, 1}4" — {0,1}?"

F(x7yvsz) = (Fl(;my,z,w) | Fg(x,y,zﬂu))
= (fl(x7y7w) D f2(y727w) | f2(yazaw) S f3($7z7w))

This function has a rate of 2/3: it compresses two blocks of n bits with three
evaluations of the f-functions. Note however that this scheme is not directly
comparable to the first schemes presented above, since the underlying functions
are of a different nature.

Nonetheless, the collision and preimage attacks presented earlier also apply
to this variant. This is easy to observe : by fixing the value of w in the rate
2/3 scheme, one gets exactly the rate 1/3 scheme. It follows easily that all the
attacks described in the previous sections also apply to the implementation of
the proposal using a block cipher.

6 Some general considerations

There is one important property of the compression function of [14] that makes
our attacks possible : two of three of the underlying subfunctions f; can be
attacked independently, by fixing one input variable. Another important obser-
vation is that (part of) the output is the sum of the outputs of smaller subfunc-
tions. This opens the door for techniques more efficient than the usual birthday
attack. Consider a compression function of the form

h(z) = hi(z1 | y) @ ha(z2 | y),

where 7 can be varied independently of x5 and vice versa. Then in a search for
a collision on h, one is looking for values x1, x}, x2, 5, such that

hi(zy | y) @ ho(xz | y) @ hi(2] | y) ® ha(zh | y) =0,

a solution to which is known to be faster than the birthday attack [16].

One possible way to remove this freedom for an attacker could be to use
subfunctions whose outputs depend on all (three) input variables. We can do
so in a rate 1/3 construction using the subfunctions of the (insecure) rate 2/3
proposal of [14]. Let f; : {0,1}*" — {0,1}" be independent random functions,
for i = 1,2, 3. Define the compression function F : {0,1}*" — {0,1}*"

F(a:,y,z) = (f1($,y,2) D fg(x,y,z) | fg(x,y,z) D f3($ayvz))

Evidently this reduces to a construction of the form

F(x,y,z) = (gl(xvyaz) | gg(x,y,z)).

The construction of secure double length compression function of this form is
further investigated in recent papers by Lucks [11] and Nandi [13].

7 Conclusion

In this paper, we have investigated a new double block length hash function
proposed at FSE 2005 by Nandi et al.. Their idea is to turn a "small", secure,
n-bit compression function into a 2n-bit compression function. The advantage
of their method is to offer a proof of security regarding collisions attacks.
Although, we do not contradict this security proof, we show that this con-
struction is not fully satisfying. Indeed, its security level is much worse than a
generic 2n-bit compression function. Table 1 summarizes all these results.

Table 1. Summary of all attacks against [14]

Type of Attack Time|Memory|Oracle Query
Collision [14] 2" 2n 22n/3
Collision 22n/3| 92n/3 22n/3
Near-collision (s bits) | 2°9/3 | 23/3 28/3
Preimage 2" 2" 2"
Near-preimage (s-bits)| 2°/2 | 2%/2 2°/2

In addition, we have introduced new notions of security for compression func-
tions, i.e. near-collision and near-preimage resistance. These notions are im-
portant, because it is quite usual that hash function outputs are truncated for
practical purposes. One could be tempted to truncate the output of [14] to 4n/3
bits or less, in order to fit to the proven security bound. Our results show that
this would be a bad idea because it would deteriate the security of the construc-
tion below 227/3.

References

1. E. Biham and R. Chen. Near-Collisions of SHA-0. In M. Franklin, editor, Advances
in Cryptology — CRYPTO’04, volume 3152 of Lectures Notes in Computer Science,
pages 290-305. Springer, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions

of SHA-0 and Reduced SHA-1. In R. Cramer, editor, Advances in Cryptology —
Eurocrypt’05, volume 3494 of Lectures Notes in Computer Science, pages 36-57.
Springer, 2005.

J. Black, M. Cochran, and T. Shrimpton. On the Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions. In R. Cramer, editor, Advances in Cryptology —
Eurocrypt’05, volume 3494 of Lectures Notes in Computer Science, pages 526—-541.
Springer, 2005.

. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk,

editor, Advances in Cryptology — CRYPTQO’98, volume 1462 of Lectures Notes in
Computer Science, pages 56—71. Springer, 1998.

J-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgéard Revisited:
How to Construct a Hash Function. In V. Shoup, editor, Advances in Cryptology
— Crypto’05, volume 3621 of Lectures Notes in Computer Science, pages 430-448.
Springer, 2005.

I. Damgard. A Design Principle for Hash Functions. In G. Brassard, editor,
Advances in Cryptology — Crypto’89, volume 435 of Lectures Notes in Computer
Science, pages 416-427. Springer, 1990.

H. Dobbertin. Cryptanalysis of MD4. In D. Gollmann, editor, Fast Software
Encryption — 1996, volume 1039 of Lectures Notes in Computer Science, pages
53-69. Springer, 1996.

S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box
Model. In C. Park and S. Chee, editors, Information Security and Cryptology —
ICISC 04, volume 3506 of Lectures Notes in Computer Science. Springer, 2005.
A. Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In M. Franklin, editor, Advances in Cryptology — CRYPTO’04,
volume 3152 of Lectures Notes in Computer Science, pages 306-316. Springer,
2004.

J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash Functions for Much
Less than 2" Work. In R. Cramer, editor, Advances in Cryptology — Eurocrypt’05,
volume 3494 of Lectures Notes in Computer Science, pages 474-490. Springer, 2005.
S. Lucks. Design Principles for Iterated Hash Functions. Cryptology ePrint
Archive, Report 2004/253, 2004. http://eprint.iacr.org/.

R. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in
Cryptology — Crypto’89, volume 435 of Lectures Notes in Computer Science, pages
428-446. Springer, 1990.

M. Nandi. Designs of Efficient Secure Large Hash Values. Cryptology ePrint
Archive, Report 2004/296, 2004. http://eprint.iacr.org/.

M. Nandi, W. Lee, K. Sakurai, and S. Lee. Security analysis of a 2/3-rate double
length compression function in black-box model. In H. Gilbert and H. Handschuh,
editors, Fast Software Encryption — FSE’05, volume 3557 of Lectures Notes in
Computer Science, pages 243-254. Springer, 2005.

National Institute of Standards and Technology (NIST). Secure
Hash Standard FIPS Publication 180-2, August 2002. Available at
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf .

D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in
Cryptology — Crypto’02, volume 2442 of Lectures Notes in Computer Science, pages
288-303. Springer, 2002. Extended Abstract.

X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In R. Cramer, editor, Advances in Cryptology — Eurocrypt’05,
volume 3494 of Lectures Notes in Computer Science, pages 1-18. Springer, 2005.

18. X. Wang, Y. Yin, and H. Yu. Finding Collisions in the Full SHA1. In V. Shoup,
editor, Advances in Cryptology — Crypto’05, volume 3621 of Lectures Notes in
Computer Science, pages 17-36. Springer, 2005.

19. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer,
editor, Advances in Cryptology — Eurocrypt’05, volume 3494 of Lectures Notes in
Computer Science, pages 19-35. Springer, 2005.

20. X. Wang, H. Yu, and Y. Yin. Efficient Collision Search Attacks on SHAOQ. In
V. Shoup, editor, Advances in Cryptology — Crypto’05, volume 3621 of Lectures
Notes in Computer Science, pages 1-16. Springer, 2005.

