
Modular Security Proofs for Key Agreement
Protocols

Caroline Kudla? and Kenneth G. Paterson

Information Security Group
Royal Holloway, University of London, UK
{c.j.kudla,kenny.paterson}@rhul.ac.uk

Abstract. The security of key agreement protocols has traditionally
been notoriously hard to establish. In this paper we present a modu-
lar approach to the construction of proofs of security for a large class
of key agreement protocols. By following a modular approach to proof
construction, we hope to enable simpler and less error-prone analysis
and proof generation for such key agreement protocols. The technique
is compatible with Bellare-Rogaway style models as well as the more re-
cent models of Bellare et al. and Canetti and Krawczyk. In particular,
we show how the use of a decisional oracle can aid the construction of
proofs of security for this class of protocols and how the security of these
protocols commonly reduces to some form of Gap assumption.

1 Introduction

Background
The first works formalizing the notion of security for key agreement

were those of Bellare and Rogaway [7, 8]. Extensions have been made to
these models, most notably by Blake-Wilson et al. [9] and later Bellare
et al. [6]. Although these models are generally accepted as being reason-
able approaches to modelling the security of key agreement protocols, in
general it appears to be rather difficult to prove key agreement protocols
secure in such models and only relatively few protocols have full proofs
of security in these models.

A more “modular” approach to constructing key agreement proto-
cols was advocated by Bellare, Canetti and Krawczyk [5]. This approach
entails constructing a secure protocol for ideally “authenticated links”,
and then applying “authenticators” to all the protocol flows to obtain a
protocol secure in the standard “unauthenticated links” model. A library
of basic protocols and authenticators may be built up, from which many
different secure key agreement protocols may be constructed.
? This author is funded by Hewlett-Packard Laboratories.



The disadvantage of using this modular approach is that it says noth-
ing about the security of certain very efficient protocols that are not
constructed in this modular way. In addition, cryptographic primitives
such as encryption, signatures or MACs are usually required to build
these “authenticators” and the application of these “authenticators” of-
ten increases the round complexity of a protocol. Therefore the resulting
protocols are also often less efficient than protocols designed without the
modular approach in mind. Of course protocols constructed using this
modular approach may be modified to be more efficient using various
techniques, but then the security proof may no longer be valid.

However, due to the ease of designing secure protocols using this mod-
ular approach, it has subsequently been advocated in later models such
as [15, 16] and has been used in the design of various key agreement pro-
tocols such as [12, 13, 11, 22]. Although the security models of [5, 15, 16]
do not mandate a modular approach in that their definitions of security
apply directly in the standard unauthenticated network model, they do
not consider protocols that are not constructed in this modular fashion.
Direct proofs for non-modular protocols in the standard unauthenticated
network models of [5, 15, 16] seem to be difficult to construct.

In many environments, the benefits of being able to easily design se-
cure protocols outweigh the possible disadvantages. However there exist
environments in which efficiency is of utmost importance, and most key
agreement protocols optimized for efficiency are not constructed in a mod-
ular way. Indeed we can find several efficient key agreement protocols in
the literature which do not have formal proofs of security (such as pro-
tocols in [9, 19, 23, 24, 27]) or have only proofs of security in weakened
models (such as protocols in [2, 3, 17]. Since the structure of these proto-
cols is not compatible with the modular approach in [5], complete proofs
of security for such protocols appear to be difficult to construct.

Contributions
In this paper, we consider protocols which are not designed in a mod-

ular way but which we nevertheless wish to prove secure. Since such pro-
tocols are not designed in a modular way, the proofs of security are often
complicated and error-prone. We present a technique by which the proof
process of a large class of key agreement protocols can be simplified.

Informally, our technique for proving the security of a protocol Π
works as follows. The first step is to prove that protocol Π has a property
that we call “strong partnering” (which is defined in Section 4.1). The
second step is to prove that a related protocol π is secure in a highly
reduced security model. Finally, as the main result of the paper, we show



how the proof of security of π in the reduced model can be translated
into a proof of security for Π in the full security model using a Gap
assumption.

Each step above is far simpler than a single proof of security in the
full security model. The result is a modular technique for constructing
proofs of security for a large class of key agreement protocols which are
not constructed using the modular approach presented in [5].

We then use this technique to consider various key agreement proto-
cols in the literature previously without proofs or with incomplete proofs
of security. It is possible, using our techniques, to provide full proofs of
security for protocols such as [2, 3, 9, 17, 27] (possibly after slight modifi-
cations to the protocols if necessary). Due to lack of space, we focus in
detail only on the long-standing Protocol 4 in [9] which was previously
without proof.

We also hope that our methods will aid future designers of lightweight
key agreement protocols in the formal analysis of their protocols in sim-
plifying their task by breaking it up into components.

Related Work

Since the pioneering work of Bellare and Rogaway [7, 8], many ex-
tensions and modifications have been made to the definition of secure
key agreement [6, 5, 9, 15, 16, 26]. The model of security in which work is
a slightly modified version of the model of Bellare et al. [6], although
analogous versions of our results also hold in the models of [7, 9, 15].

Our technique also makes use of Gap assumptions, as defined by
Okamoto and Pointcheval [25]. Informally, a Gap problem is the prob-
lem of solving some computational problem (e.g. computational Diffie-
Hellman) with the help of a corresponding decisional oracle (in this case
a decisional Diffie-Hellman oracle). The decisional problem may be easy
or hard; irrespective of this a Gap problem may still be defined.

Gap assumptions have recently found several applications in cryptog-
raphy. In particular, Gap assumptions have been used in [1, 14, 20] to
prove the security of certain key agreement protocols.

In this paper, we show that, if a protocol satisfies some weakened
notion of security and has a specific form, then using the Gap assumption,
a full proof of security can be constructed. This result holds for protocols
analyzed in the Bellare-Rogaway model [7] (or its extensions [6, 9]) or in
the Canetti-Krawczyk model of SK-security [15].



2 Preliminaries

Following the notation of Okamoto and Pointcheval [25], we informally
define a family of Gap problems.

Let f : X × Y → {0, 1} be any relation on sets X and Y . The com-
putational problem (or inverting problem in the language of [25]) of f is,
given x ∈ X, to compute any y ∈ Y such that f(x, y) = 1 if such a y
exists, or to return Fail otherwise.

The decisional problem of f is, given (x, y) ∈ X×Y , to decide whether
f(x, y) = 1 or not.

Definition 1. The Gap problem of f is to solve the computational prob-
lem of f using an oracle which solves the decisional problem of f .

As an example, we define the computational, decisional and Gap
Diffie-Hellman problems.

Let p and q be primes where q|p−1. Let G be a multiplicative subgroup
of Z∗p, of order q, and let g ∈ G generate G. We denote by DL(g, h) ∈ Zq

the discrete logarithm of h ∈ G with respect to base g. So gDL(g,h) =
h mod p.

Given a, b, c ∈ Zq, we define the Diffie-Hellman relation fDH as follows:

fDH : (G×G)×G → {0, 1}, where fDH(ga, gb, gc) =
{

1 if gab = gc

0 otherwise

We can now define the computational, decisional and Gap problems
of fDH , better known as the computational, decisional and Gap Diffie-
Hellman problems.

Computational Diffie-Hellman (CDH) Problem: Given ga, gb ∈ G,
where a, b ∈R Zq, compute gc ∈ G, such that fDH(ga, gb, gc) = 1. That
is, compute gc = gab mod p.

Decisional Diffie-Hellman (DDH) Problem: Given ga, gb, gc ∈ G,
where a, b ∈R Zq, determine whether fDH(ga, gb, gc) = 1 or not. That
is, determine whether c = ab mod q or not.

Gap Diffie-Hellman (GDH) Problem: Given ga, gb ∈ G where a, b ∈R

Zq, as well as an oracle that solves the DDH problem on G, compute
gab mod p.

The corresponding assumptions are that the above problems are hard,
that is, they are infeasible to solve in polynomial time in a security pa-
rameter used to define the problem instances.



3 The modified Bellare-Rogaway model

We start by defining a modified Bellare-Rogaway (mBR) model for au-
thenticated key agreement protocols. The model follows closely the model
of Bellare et al. [6] which extends the original Bellare-Rogaway model [7].
However we present our model in the public key setting as in the model
of Blake-Wilson et al. [9].

The model includes a set of participant IDs {U}, where each partic-
ipant has a distinct ID U , a long-term public key PU and a long-term
private key SU . We use Πi

U to denote the oracle modelling the ith in-
stance of participant U . An oracle Πi

U may accept at any time, and once
accepted it should hold a role role ∈ {initiator, responder}, a partner ID
pid (the ID of the oracle with which it assumes it is communicating), a
session ID sid and a session key sk. We note that the value i is not the
sid but rather an internal session counter for each oracle. This may act
as an internal identifier for the session until the sid is established.

Oracles follow the rules of the protocol, responding to input messages
(from the adversary). Each oracle maintains a public transcript TΠi

U
which

records all messages they have sent or received as a result of queries they
have answered.

3.1 The mBR Game

The security of a key agreement protocol is modelled via the following
game between a challenger C and an adversary E.

C runs a Setup algorithm on a security parameter k to create the
public parameters, a set of participants {U} and oracles Πi

U to model
instances of each participant U , and to distribute long-term keys to each
participant. C also randomly selects a bit b.

The model also includes an adversary E who is given all the partici-
pants’ public keys and has access to all the participants’ oracles as well
as any random oracles in the game. E can make the following queries:

Send(U, i, M): E can send the oracle Πi
U a message M . If oracle Πi

U has
pid = U ′, then Πi

U assumes that M has come from U ′ and responds
according to the protocol. E may also make a special Send query λ
to an oracle Πi

U which instructs U to initiate a protocol run with
its partner U ′. An oracle Πi

U sets roleU = initiator and is called an
initiator oracle if the first message it has received is λ. If Πi

U did not
receive a message λ as its first message, then it sets roleU = responder
and is called a responder oracle.



Reveal(U, i): this allows E to ask the oracle Πi
U to reveal the session

key (if any) it currently holds to E.
Corrupt(U): this allows E to ask participant U to reveal its long-term

private key.

Oracle States An oracle exists in one of the following possible states:

Accepted: an oracle has accepted if it decides to accept, holding a ses-
sion key, after receipt of properly formulated messages.

Rejected: an oracle has rejected if it decides not to establish a session
key and to abort the protocol.

State *: an oracle is in state * if it has not made any decision to accept
or reject.

Revealed: an oracle is revealed if it has answered a reveal query.
Corrupted: an oracle is corrupted if it has answered a corrupt query.

Partners When running the protocol, if oracles Πi
U holding (sk, sid, pid)

and Πj
U ′ holding (sk′, sid′, pid′) have both accepted and the following

conditions hold:

1. sid = sid′, sk = sk′, pid = U ′ and pid′ = U ,
2. roleU = initiator and roleU ′ = responder or vice versa,
3. No oracle in E’s game besides Πi

U or Πj
U ′ accepts with session ID

equal to sid,

then Πi
U and Πj

U ′ are said to be partners.

Freshness An oracle Πi
U is called unfresh if it is revealed, or it has a

revealed partner, or if its partner Πj
U ′ was corrupted. If an oracle is not

unfresh, then the oracle is fresh.

Test query E may make a polynomial number of queries in k. Then at
some point E makes a special Test query to an oracle Πi

U . This oracle
must be accepted and fresh, and it answers as follows. If b = 0, then Πi

U

randomly chooses a session key sk and outputs it, otherwise if b = 1 it
outputs its own session key ski

U .
After this point E can continue querying the oracles except that E

cannot reveal or corrupt the test oracle or its partner (if it exists). Finally
E outputs a guess b′ for b.

E’s advantage, denoted advantageE(k), is the probability that E out-
puts a bit b′ such that b = b′.



3.2 Definition of security

We define a benign adversary as in [7]. Informally, a benign adversary
is one who simply relays messages between parties without modification.
We then define secure authenticated key agreement (AKE) protocols as
follows:

Definition 2. A protocol is an mBR-secure AKE protocol if:

1. In the presence of the benign adversary, two oracles running the pro-
tocol both accept holding the same session key and session ID, and the
session key is distributed uniformly at random on {0, 1}k; and

2. For any adversary E, AdvantageE(k) is negligible.

We say that protocol Π is mBR-insecure if it is not mBR-secure. That
is, there exists an adversary E which, with non-negligible probability (in
k), wins the game against challenger C. We say that such an adversary
E can successfully mBR-attack protocol Π.

3.3 Notes on the Security Model

Our model of security is closely related to that of Bellare et al. [6]. How-
ever we do not explicitly distinguish between acceptance and termination
as is done in [6], and we do not model perfect forward secrecy. Both of
these properties can be added as in [6]. We omit them for simplicity of
presentation, but our results still hold if these properties are included.

Notice that corruption in our model is simply a query to an oracle
which reveals the long-term secret key held by the oracle. The adversary
does not learn other internal state of the oracle and does not gain control
of the oracle. Therefore a corrupted oracle may still be considered to be
fresh and can therefore still be chosen as a Test oracle. This is important
in order to model key compromise impersonation attacks as defined in
[9], since these attacks involve oracles whose long-term private keys have
been compromised but which are not under adversarial control.

The main differences between our model and the original models of
Bellare and Rogaway [7] and its public key version [9], are that our model
is adaptive (that is, the adversary may continue making queries after the
Test query), and we define partnering via session IDs and partner IDs
(as in [6]) rather than by matching conversations. We also include the
possibility for corrupted oracles to be considered fresh, allowing us to
model key compromise impersonation attacks. As mentioned before, our
model can easily be extended to model perfect forward secrecy as well.



We direct the reader to [6] for further details of the model presented
here and to [5–7, 9, 15] for details of other models illustrating different
methods for dealing with partnering, corruptions and freshness.

4 Modular Construction of Security Proofs

From now on, we assume that we are only dealing with key agreement
protocols that produce a hashed session key on completion of the protocol.
By this we mean that the key agreement protocol Π specifies that the
session key be computed as the hash H of some string which we call the
session string ssΠ . We define the session string for a particular oracle Πi

U ′
to be ssΠi

U
. We will model H as a random oracle in our security analysis.

This reliance on hashing to produce a session key does not seem to be
too strong a restriction since it is fairly common to use a key derivation
function to obtain a session key from a secret value established during
a key agreement protocol, and this key derivation function is usually
implemented via a hash function.

4.1 Protocol Partnering

When trying to establish that a protocol Π is secure in the BR-style
model, we need to ensure that an adversary cannot trivially win the game
defined in Section 3.1 by an attack on the partnering properties of Π.

Definition 3. Suppose Π is a key agreement protocol. If there exists an
adversary E, which when attacking Π in an mBR game defined in Section
3.1 and with non-negligible probability in the security parameter k, can
make any two oracles Πi

U and Πj
U ′ accept holding the same session key

when they are not partners, then we say that Π has weak partnering. If Π
does not have weak partnering, then we say that Π has strong partnering.

If a protocol Π had weak partnering against an adversary E, then E
could make oracles Πi

U and Πj
U ′ accept holding the same session key but

without being partners. The rules of the mBR game would then allow the
adversary to reveal the session key held by Πi

U , and then choose Πj
U ′ as

the test session, allowing E to can trivially win the game.
Therefore, for Π to be a secure key agreement protocol as defined in

Definition 2, Π must have strong partnering.
The observations above apply equally to our BR-style model as they

do to the Canetti-Krawczyk model [15], even though the concept of part-
ners are slightly different in the two models. In our security model, part-
nership is defined via session keys, session IDs and partner IDs. For oracles



Πi
U and Πj

U ′ to accept holding the same session key but without being
partners, they must have different sids and/or pids. To ensure that the
protocol Π has strong partnering, we must ensure that (with overwhelm-
ing probability) ski

U = skj
U ′ only if rolei

U 6= rolej
U ′ , sidi

U = sidj
U ′ and

pidi
U = pidj

U ′ . This can be ensured by including rolei
U , sidi

U and pidi
U in

the session string ssΠi
U

(and therefore in the computation of the session
key ski

U ).
This idea of including the “partnering information” in the session

string ensures strong partnering in other models as well. For example, in
the models of [7–9], partnering is defined via matching conversations, or
transcripts. Therefore a key agreement protocol secure in these models
can never allow two oracles to share the same key without having identical
transcripts. Strong partnering in these models can therefore be ensured
by including the protocol transcript in the session string of each oracle.

4.2 Reduced Games

We now consider two reduced mBR games. The first game is identical
to the mBR game defined in Section 3.1 except that the adversary E
is not allowed to make any Reveal queries. We call this reduce game a
No-Reveals mBR (NR-mBR) game. The second game is identical to the
NR-mBR game, except that the adversary no longer makes a Test query.
Instead, to win the game, the adversary must select an accepted and fresh
Test oracle at the end of its computation and output the session key for
this oracle. Since the adversary in this game must actually compute the
session key of an oracle (instead of having to decide between a session
key and a random value from the key space), we call this game a compu-
tational NR-mBR (cNR-mBR) game. We define E’s advantage, denoted
AdvantageE(k), in the cNR-mBR game to be the probability that E out-
puts a session key sk such that sk = skΠi

U
where Πi

U is the Test oracle
selected by the adversary.

Definition 4. A protocol Π is a (c)NR-mBR-secure key agreement pro-
tocol if:

1. In the presence of the benign adversary, two oracles running the pro-
tocol both accept holding the same session key and session ID, and the
session key is distributed uniformly at random on {0, 1}k; and

2. For any adversary E, AdvantageE(k) in the (c)NR-mBR game is
negligible.



We say that protocol Π is (c)NR-mBR-insecure if it is not (c)NR-
mBR-secure. That is, there exists an adversary E which, with non-negligible
probability (in k), wins the (c)NR-mBR game against challenger C. We
say that such an E can successfully (c)NR-mBR-attack protocol Π.

As part of our proof process for a given protocol Π which produces
hashed session keys on completion of the protocol, we will consider a
related protocol π. Protocol π is defined in the same way as Π except
that the session key generated by π will be the session string of Π. That
is, skπi

U
= ssΠi

U
. It will then be necessary to prove that protocol π is

cNR-mBR secure. Since the cNR-mBR game is a highly reduced game,
it is usually fairly easy to establish a protocol’s security in this model.
Although it may not be obvious how a proof of security in this reduced
model may be helpful, in Section 4.3 we present a theorem which shows
how a proof of cNR-mBR security for π can be transformed into a proof of
mBR security for Π using a Gap assumption, provided that Π has strong
partnering.

The reason we defined NR-mBR security when cNR-mBR security is
our focus is that, although it is a more complex game than the cNR-mBR
game, a number of recent papers presenting new key agreement protocols
prove that their protocols meet such a weakened definition of security [2,
9, 17, 3]. That is, they take an appropriate security model, and prove the
security of their protocols in the No-Reveals (NR) variant of the security
model.

It is trivial to see that if protocol Π is NR-mBR secure, then it is also
cNR-mBR secure. We also have the following result relating the NR-mBR
security of Π and the cNR-mBR security of the related protocol π.

Theorem 1. If a protocol Π produces a hashed session key via hash func-
tion H and is NR-mBR secure, then the related protocol π is cNR-mBR
secure.

A sketch of the proof of this theorem is in Appendix A. We note that
in the proof of the above theorem, no assumption is required concerning
the properties of H.

4.3 Handling Reveal Queries using Gap Assumptions

We now consider a protocol Π which has strong partnering and for which
the related protocol π is cNR-mBR secure. In order to translate these
results into a proof of mBR security for Π, we need to be able to construct
a challenger C in an mBR game for Π which is able to answer an adversary
E’s Reveal queries.



At first glance, it seems that C needs to be able to compute the session
key skU for any oracle Πi

U that E may wish to reveal during the mBR
game. However this is not the case if Π produces a hashed session key
(via hash function H) and if H is modelled as a random oracle. We will
see below in Theorem 2 that in this case, C only needs to be able to solve
the following decisional problem:

Given the transcript T i
U of oracle Πi

U in an mBR game, as well as
the PU and PU ′ (the public keys of U and U ′ where pidi

U = U ′)
and s, where s is a string, decide whether s = ssΠi

U
, where ssΠi

U

is the session string of oracle Πi
U .

We call this decisional problem the session string decisional problem
for protocol Π.

We now present our main result.

Theorem 2. Suppose that key agreement protocol Π produces a hashed
session key on completion of the protocol (via hash function H) and that
Π has strong partnering. If the cNR-mBR security of the related protocol
π is probabilistic polynomial time reducible to the hardness of the com-
putational problem of some relation f , and the session string decisional
problem for Π is polynomial time reducible to the decisional problem of
f , then the mBR security of Π is probabilistic polynomial time reducible
to the hardness of the Gap problem of f , assuming that H is a random
oracle.

Proof. Since the cNR-mBR security of π is probabilistic polynomial time
reducible (in security parameter k) to the hardness of the computational
problem of some relation f , there exists an algorithm A that, on input
a problem instance of the computational problem of f and interacting
with an adversary E which has non-negligible probability η of winning
the cNR-mBR game for π in time τ , is able to solve the computational
problem of f with some non-negligible probability g(η) and in time h(τ),
where g and h are polynomial functions.

We now define an algorithm B which, given an adversary D which has
non-negligible probability η′ of winning the mBR game for Π in time τ ′, is
able to solve the Gap problem of f with some non-negligible probability
g′(η′) and in time h′(τ ′) where g′ and h′ are polynomial functions. B will
act as a challenger for D. B will also run algorithm A and will simulate
an adversary for A. Since B attempts to solve the Gap problem of f , B
will also have access to a decisional oracle for f .



Since Π has strong partnering, we know that if two oracles share
the same session key, then they must be partners (with overwhelming
probability). We therefore know that D will never reveal a session key
sk where sk is equal to the Test oracle Πi

T ’s session key skΠi
T
. This is

because D is not permitted to reveal the session key of the Test oracle or
its partner (if it exists).

We also assumed that the session string decisional problem for Π is
polynomial time reducible to the decisional problem of f . That is, there
exists some algorithm C which, given a decisional oracle for f , is able to
solve the session string decisional problem for Π in polynomial time τ ′′.

B runs A on the problem instance of the computational problem of
f and simulates an adversary for A. A sets up a cNR-mBR game for B
and gives all the public parameters to B. B in turn passes these public
parameters to adversary D. B now answers all of D’s queries as follows.

B passes all D’s queries besides Reveal and H queries to A. Since,
in any session, protocol π is identical to protocol Π until the session
is completed and the session key is computed, these queries will all be
answerable by A. B passes A’s responses back to D.

In order for B to answer D’s Reveal queries, B maintains a Guess
session key list (G-List). Each element on the G-List is a tuple of the
form (T j

V , PV , PV ′ , R
j
V ) where T j

V is the transcript of oracle Πj
V , PV is the

public key of V , PV ′ is the public key of V ′ where pid
Πj

V
= V ′, and Rj

V is

a random guess for the session key skj
V of oracle Πj

V . Initially the G-List
is empty.

In order for B to answer E’s H queries, B maintains an (initially
empty) H-List containing tuples of the form (si, ski, str). For each H
query on string s that D makes, B checks whether s is on the H-List as
the first component in some tuple (si, ski, str). If it is, then B outputs
ski. If s is not on the H-List then B uses the algorithm C to determine
whether s is a valid session string for any oracle Πj

V on the G-List. If
s = ss

Πj
V

is the session string for some oracle Πj
V on the G-List, then B

outputs Rj
V and adds the tuple (s,Rj

V , str) where str=“V,j” to the H-
List. Otherwise B selects a random sk from the session key space, adds
the tuple (s, sk, str) (where str is the empty string λ) to the H-List, and
outputs sk.

When D makes a Reveal query on any oracle Πi
U which has accepted,

B proceeds as follows. If Πi
U has an entry on the G-List of the form

(T i
U , PU , PU ′ , R

i
U ), B outputs the value Ri

U . Otherwise B checks whether
any entry on the H-List of the form (si, ski, str) where str = λ has si =



ssΠi
U

using algorithm C. If such an entry (si, ski, str) exists, then str is
set to “U,i” on the H-List and the entry (T i

U , PU , PU ′ , R
i
U ) is added to

the G-List, where Ri
U = si, T i

U is the transcript of Πi
U , PU is the public

key of U and PU ′ is the public key of U ′ where pidΠi
U

= U ′. Otherwise
a random session key Ri

U is selected and the entry (T i
U , PU , PU ′ , R

i
U ) is

added to the G-List. To answer the Reveal query, B outputs the value
Ri

U in every case.
In this way, B can consistently answer D’s Reveal and H queries. At

some point D selects a Test oracle Πi
T . B selects a random element sk

from the session key space and gives this to D.
If D does not query H on the Test oracle’s session string ssΠi

T
, then

D can only win with probability 1/SH where SH is the size of the output
space of H, which we assume is negligible in security parameter k. So with
overwhelming probability 1− 1/SH , D queries H on ssΠi

T
. B can detect

this value by checking which of the tuples (si, ski, str) on the H-List with
str = λ has si = ssΠi

T
using algorithm C. B gives this si to A.

Since ssΠi
T

= skπi
T
, B has simulated a valid adversary E for A with

non-negligible probability η = η′ · (1 − 1/SH) and in polynomial time
τ = τ ′ + τ ′′ · NH · (NR + 1), where NH and NR are the number of H
and Reveal queries that D makes respectively. So A outputs the solution
to the instance of the computational problem of f with non-negligible
probability g(η) and in time h(τ).

Therefore B solves the Gap problem of f with non-negligible proba-
bility g(η) and in time h(τ).

¤

4.4 Different Security Models

Analogous results to Theorem 2 can be obtained for the security models
of [6–9, 15].

For each of these models, an equivalent definition of strong partnering
can be made. In the models of [7–9] partnering is defined via the concept
of matching conversations, so strong partnering would be defined in this
context as well.

For each of these models, NR and cNR versions can be defined in the
same way as for our mBR model. The definition of the related protocol
π is independent of the model used.

It is then possible to prove analogous versions of Theorem 2 for these
models. These in turn illustrate how proofs in these models can be con-
structed in a modular way.



We notice that analogous versions of Theorem 1 for alternative secu-
rity models are also easy to formulate and prove.

Further details will be provided in the full paper.

5 Applying the Technique to Existing Protocols

We are now able to apply our results to key agreement protocols in the
literature. We find numerous protocols [2, 3, 9, 17] which use a hash func-
tion to derive a session key and which have proofs of security reducing to
some computational assumption but only in the NR version of the secu-
rity model used1. For each such protocol Π, full proofs of security in the
relevant model can be obtained as follows.

1. It must be shown that the protocol Π has strong partnering. If Π does
not have strong partnering, this can be achieved by modifying the
protocol to include the appropriate partnering information (for the
security model used) in the session string. It should be checked that
such modifications do not affect the existing proof of security.

2. The appropriate version of Theorem 1 can now be applied to Π to
guarantee that the related protocol π is secure in the cNR version of
the security model used.

3. It must be shown that the appropriate decisional oracle can be used
to solve the session string decisional problem of Π. In general this is
a trivial reduction.

4. The appropriate version of Theorem 2 may now be used to obtain a
complete security proof for Π in the full version of the security model
used.

For example, the proof of security for Protocol 3 of [9] can be com-
pleted in the manner described above, although the protocol does require
some modifications to achieve strong partnering. A suitably modified ver-
sion of this protocol is in fact presented in [21] together with a proof of
security. Interestingly, Protocol 3 of [9] and the modified version in [21]
are vulnerable to a key compromise impersonation attack. However this
does not affect the proof of security since the model of [9] does not capture
security against these attacks.

1 A proof for the protocol of [17] appearing in [10] allows the adversary to make some
but not all Reveal queries



5.1 A Concrete Example

We now consider Protocol 4 in [9], which was conjectured to be secure in
[9] but has never been proven secure. We modify the protocol slightly to
guarantee strong partnering and then prove this protocol secure in our
mBR model. It is possible to prove the unmodified protocol secure in the
model of [9] using the method described above, but the proof of strong
partnering is more complicated.

We now present our modified version of Protocol 4 of [9].

Protocol 1

The Setup algorithm generates primes p and q where q|p− 1. It then
chooses G to be a multiplicative subgroup of Z∗p, where G has order q,
and element g ∈ G generates G. It also sets the session ID space S = G4

and selects a hash function H : G2 × S → {0, 1}k . Each participant I
selects a private key xI randomly from Zq and sets their public key to be
XI = gxI mod p.

Suppose that A and B are participants with public keys XA = gxA mod
p and XB = gxB mod p respectively. A and B run the protocol as follows:

A, as initiator will receive some input (XB, initiator) and initiates
session Πi

A, setting pidA = XB and roleA = initiator.
A randomly picks a value a ∈ Zq, computes TA = ga mod p and sends

the following to B:
A → B : TA, XA, XB.

On receipt of the message from A, B initiates session Πj
B with pidB =

XA and roleB = responder. B randomly picks a value b ∈ Zq and com-
putes TB = gb mod p. B then sends the following to A:

B → A : TB, TA, XB, XA.

B computes sidB = XA, XB, TA, TB and KB = H(T xB
A mod p,Xb

A mod
p, sidB) and accepts with session key skB = KB.

On receipt of the message from B, A computes sidA = XA, XB, TA, TB

and KA = H(Xa
B mod p, T xA

B mod p, sidA) and accepts with session key
skA = KA.

If the protocol completes correctly, it is easy to see that KA = KB.
The modified version of Protocol 1 in which the session key is equal

to the session string of Protocol 1 is denoted by Protocol 1′.

Theorem 3. The cNR-mBR security of Protocol 1′ is probabilistic poly-
nomial time reducible to the hardness of the CDH problem in G.



This is proved in Appendix A. It is interesting to note how short the proof
of this theorem is; this is due to the simplicity of the cNR-mBR model.

We note that a common error when proving that a protocol Π is mBR-
secure (or even NR-mBR or cNR-mBR secure) is to make the assumption
that the Test oracle Πi

U has a partner, and that the input to Πi
U comes

from this partner. In fact the challenger has no control over the input
to Πi

U since the adversary controls all communications between oracles.
This error can be seen in papers such as [4, 18] where proofs of security
were attempted in the full security model. Their corrected versions [3, 17]
provide proofs in the NR versions of the original models.

Theorem 4. Protocol 1 has strong partnering in the random oracle model.

The simple proof of this theorem is left to the reader.

Corollary 1. Protocol 1 is secure in the random oracle model assuming
the hardness of the Gap Diffie-Hellman problem.

Proof. This result comes immediately from Theorems 2, 3 and 4 and the
observation that a decisional Diffie-Hellman oracle can be used to solve
the session string decisional problem for Protocol 1. Therefore the session
string decisional problem for Protocol 1 is reducible to the decisional
Diffie-Hellman problem (in constant time). ¤

We note that Protocol 1 can easily be extended to have perfect forward
security by including the value T b

A mod p into the computation of the hash
function H. This extended Protocol 1 can then be proven secure in an
extended mBR model which models perfect forward secrecy.

The protocol of [27], after slight modifications to ensure strong part-
nering, can also be proven secure in the random oracle model in a similar
way to our Protocol 1.

6 Special Gap Groups

The Gap assumptions may not be acceptable to all, since in developing
security proofs, one must assume the use of an oracle which is not known
to exist: a decisional oracle. For instance, for Protocol 1, the proof of
security ultimately requires an oracle which solves DDH in the group G.
This is thought to be a hard problem, so there is no known method of
constructing such an efficient oracle.

However there do exist groups in which the computational problem is
thought to be hard but where the decisional problem is known to be easy.



For instance, groups of points on an elliptic curve on which an efficient
bilinear map (or pairing operation) is defined. In such groups, the pairing
operation can be used to construct an efficient DDH oracle, and the Gap
problem is in fact equivalent to the computational problem. Therefore if
Protocol 1 had been defined over such a group, then its security would in
fact reduce to the CDH problem.

7 Conclusions

We have presented a modular technique that makes use of Gap assump-
tions for simplifying proofs of security for key agreement protocols which
are not built using the modular approach of [5]. Protocols of this type
have traditionally been notoriously hard to prove secure, and we have
indicated how the proofs of security of many such protocols in the litera-
ture may be constructed or completed using our technique. Our technique
works not only with the model presented in this paper, but also with the
models of [7–9, 15].

We considered in detail a long-standing protocol presented in [9] which
previously lacked a proof of security. We then provided a full proof of se-
curity for a slightly modified version of this protocol using the techniques
introduced in this paper. We also indicated how full proofs of security for
protocols in [2, 3, 9, 17, 27] may be constructed using our techniques.

References

1. M. Abdalla, O. Chevassut, and D. Pointcheval. One-time verifier-based encrypted
key exchange. In S. Vaudenay, editor, Public Key Cryptography - PKC 2005,
volume 3386 of LNCS, pages 47–64. Springer-Verlag, 2005.

2. S.S. Al-Riyami and K.G. Paterson. Authenticated three party key agreement
protocols from pairings. In K.G. Paterson, editor, Proceedings of 9th IMA Inter-
national Conference on Cryptography and Coding, volume 2898 of Lecture Notes
in Computer Science, pages 332–359. Springer-Verlag, 2003.

3. P.S.L.M. Barreto and N. McCullagh. A new two-party identity-based authen-
ticated key agreement. Cryptology ePrint Archive, Report 2004/122, 2005.
http://eprint.iacr.org/.

4. P.S.L.M. Barreto and N. McCullagh. A new two-party identity-based authenticated
key agreement. In Topics in Cryptology – CT-RSA’2005, volume 3376 of Lecture
Notes in Computer Science, pages 262–274. Springer-Verlag, 2005.

5. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols. In Proceedings of the 30th
Annual Symposium on the Theory of Computing, pages 419–428. ACM, 1998.

6. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In B. Preneel, editor, Advances in Cryptology – EURO-
CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155.
Springer-Verlag, 2000.



7. M. Bellare and P. Rogaway. Entity authentication and key distribution. In
Advances in Cryptology - CRYPTO ’93, volume 773 of LNCS, pages 232–249.
Springer-Verlag, 1994.

8. M. Bellare and P. Rogaway. Provably secure session key distribution: The three
party case. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing STOC, pages 57–66. ACM, 1995.

9. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In Cryptography and Coding, volume 1355 of LNCS, pages 30–45.
Springer-Verlag, 1997.

10. C. Boyd, K.-K.R. Choo, and Y. Hitchcock. On session key construction in provably-
secure key establishment protocols. In Proceedings of International Conference
on Cryptology in Malaysia - Mycrypt 2005, volume 3715 of LNCS, page 116131.
Springer-Verlag, 2005. http://eprint.iacr.org/2005/206.

11. C. Boyd, W. Mao, and K. Paterson. Key agreement using statically keyed au-
thenticators. In Applied Cryptography and Network Security: Second International
Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer Science, pages
388–401. Springer-Verlag, 2004.

12. C. Boyd, J.M. González Nieto, and Y. Hitchcock. Tripartite key exchange in the
Canetti-Krawczyk proof model. In Proceedings of 5th International Conference on
Cryptology in India INDOCRYPT 2004, volume 3348 of Lecture Notes in Computer
Science, pages 388–401. Springer-Verlag, 2004.

13. C. Boyd, J.M. González Nieto, Y. Hitchcock, P. Montague, and Y.S.T. Tin. A
password-based authenticator: Security proof and applications. In Proceedings of
4th International Conference on Cryptology in India INDOCRYPT 2003, volume
2904 of Lecture Notes in Computer Science, pages 388–401. Springer-Verlag, 2003.

14. C. Boyd, J.M. González Nieto, and Y.S.T. Tin. Provably secure mobile key ex-
change: Applying the Canetti-Krawczyk approach. In Information Security and
Privacy, 8th Australasian Conference, ACISP 2003, volume 2727 of Lecture Notes
in Computer Science, pages 166–179. Springer-Verlag, 2003.

15. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In B. Pfitzmann, editor, Advances in Cryptology –
EUROCRYPT 2001, volume 2045 of LNCS, pages 453–474. Springer-Verlag, 2001.

16. R. Canetti and H. Krawczyk. Universally composable notions of key exchange and
secure channels. In L.R. Knudsen, editor, Advances in Cryptology – EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 337–351. Springer-
Verlag, 2002.

17. L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.
Cryptology ePrint Archive, Report 2002/184, 2002. http://eprint.iacr.org/.

18. L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.
In IEEE Computer Security Foundations Workshop – CSFW-16 2003, pages 219–
233. IEEE Computer Society Press, 2003.

19. W. Diffie, P. C. van Oorschot, and M. J. Weiner. Authentication and authenticated
key exchange. Designs, Codes and Cryptography, 2:107–125, 1992.

20. M. Jakobsson and D. Pointcheval. Mutual authentication and key exchange pro-
tocol for low power devices. In Financial Cryptography, 5th International Confer-
ence, FC 2001, volume 2339 of Lecture Notes in Computer Science, page 178195.
Springer-Verlag, 2002.

21. I.R. Jeong, J. Katz, and D.H. Lee. One-round protocols for two-party authenti-
cated key exchange. In Applied Cryptography and Network Security: the Second
International Conference, ACNS 2004, volume 3089 of Lecture Notes in Computer
Science, pages 220 – 232. Springer-Verlag, 2004.



22. J. Katz and M. Yung. Scalable protocols for authenticated group key exchange.
In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of
LNCS, pages 110–125. Springer-Verlag, 2003.

23. L. Law, A. Menezes, M. Qu, J. Solinas, and S.A. Vanstone. An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography, 28(2):119–134,
2003.

24. T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-
distribution systems. Electronics Letters, E69(2):99–106, 1986.

25. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In K. Kim, editor, Public Key Cryptography
– PKC 2001, volume 1992 of LNCS, pages 104–118. Springer-Verlag, 2001.

26. V. Shoup. On formal models for secure key exchange. IBM Technical Report RZ
3120, 1999. http://shoup.net/papers.

27. N.P. Smart. An identity based authenticated key agreement protocol based on the
Weil pairing. Electronics Letters, 38(13):630–632, 2002.

Appendix A

Proof of Theorem 1. We provide a sketch of the proof of this theorem. The
details are left to the reader. We show that if there exists an adversary
E that can cNR-mBR attack π, then we can build an adversary A that
can NR-mBR attack Π.

Suppose that an adversary E wins the cNR-mBR game for protocol
π with non-negligible probability η. Suppose also that A runs an NR-
mBR game with challenger C. A in turn acts as a challenger for E in a
cNR-mBR game. A passes E’s queries to C and returns C’s outputs to
E. Finally E will output the session key skπi

U
of some fresh oracle πi

U .
Recall however that skπi

U
= ssΠi

U
.

A then chooses Πi
U as the Test oracle and receives a challenge key sk.

If sk = H(skπi
U
) then A outputs 1, otherwise it outputs 0. A wins the

NR-mBR game with probability η. ¤

Proof of Theorem 3. We assume that for security parameter k there exists
an adversary E for Protocol 1′ who can win the cNR-mBR game with
advantage η which is non-negligible in k and in polynomial time τ of
k. Suppose that the number of participants is nP and the number of
sessions each participant may be involved in is nS , where nP and nS are
polynomial functions of k.

We now construct from E algorithm F which solves the CDH problem
in G with non-negligible probability. That is, given as input elements
gx, gy ∈ G, F ’s task is to compute and output the value gxy mod p.

F simulates a challenger in a cNR-mBR game with E. F sets up
the game with the group G and generator g ∈ G. F generates a set of



participants of size nP . For each participant I, F sets I’s private key
to be a randomly chosen xI ∈ Zq and sets their public key to be XI =
gxI mod p. However for some participant P , F sets P ’s public key to be
XP = gx. F also picks a random participant Q 6= P , a session number
t ∈ {1, .., nS} and a number l ∈ {1, .., nH}. F starts E and answers E’s
queries as follows.

Send: E may make a special Send query Πs
I which sets pidI = XI′ and

instructs I to initiate a protocol run with its partner I ′. E can also
send any oracle Πs

I a message M , and the oracle responds according
to the protocol. However if E initializes or sends a message to oracle
Πt

Q, then Πt
Q outputs gy.

Corrupt(U): If E corrupts participant P , then F aborts. Otherwise F
gives E the long-term private key of the participant.

Test: When E asks a Test query to an oracle Πs
I , F outputs a random

element from the key space G2 × S = G6.

The probability that E queries oracle Πt
Q for the Test session and

that pidQ = XP is 1
n2

P .nS
. In this case, we note that E could not have

corrupted participant P , and so F would not have aborted.
E finally outputs a session key of the form (a, b, c) where a, b ∈ G and

c ∈ G4. If Πs
I was an initiator, then F outputs b as its guess for the value

gxy mod p, otherwise F outputs a as its guess. It is now easy to see that F
solves the CDH problem on input (gx, gy) with probability η′ = η.( 1

n2
P .nS

)
which is non-negligible in k, and in time τ . ¤


